
Scalable software distribution systems

TDT4750 Computer systems administration, depth study

Tollef Fog Heen (tfheen@idi.ntnu.no)

24th November 2004

Acknowledgements

I’d like to thank my counselor Anders Christensen for a lot of help and
guidance with the project. Without him, I would have gotten lost. I also
wish to thank my girlfriend, Karianne, without whose support I wouldn’t
have finished on time.

Trondheim, November 2004
Tollef Fog Heen

iii

Contents

1 Introduction 1
1.1 Delimitations . 1

2 Problem definition 3
2.1 Packaging systems . 3

3 Philosophy 5
3.1 Good versus bad design . 5
3.2 Who is the user . 5
3.3 Operational paradigms . 8
3.4 Programming interfaces . 11
3.5 Summary . 12

4 Existing solutions 13
4.1 Introduction . 13
4.2 Processes vs tools . 13
4.3 Existing tools . 14
4.4 Other tools . 18
4.5 Summary . 20

5 Composition / Evaluation 23
5.1 Evaluation . 23
5.2 Ranking . 24
5.3 Needed changes . 24

6 Further work 27

v

Dissertation text

The text should describe scalability problems in the current software distri-
bution systems for Unix-like operation system. The goal is to suggest ways
they can be improved.

vii

Chapter 1

Introduction

Computers are becoming more and more complex, more and more inter-
connected and have an ever-increasing amount of software installed and
configured. In this paper, I will research one way to handle the problem of
managing the installed software and growing number of hosts.

This text requires a good knowledge of Unix-based operating systems
and concepts. The text has been kept short while still being informative.
The intended audience is developers of packaging systems and others with
similar interests. The choice of English rather than Norwegian is due to the
small size of the community and based on a goal that this article will help
software distribution systems handle scalability problems better.

1.1 Delimitations

Making a generalized solution for all systems under the sun is, if possible,
extremely hard. Also, rather than making a “one-size-fits-none” kind of
solution, I will concentrate on a solution for Unix and Unix-like operating
systems (like Linux). Those are similar enough that that they will be treated
as variants rather than different operating systems. Other paradigms like
Microsoft Windows and vms will need other kinds of solutions, which will
not be researched here.

1

Chapter 2

Problem definition

Most organizations, be it your family or your workplace, start small. They
have few people who require little in the way of explicit communication
and procedures. Today, most organizations use computers extensively, and
those need maintainence. As long as you have a small number of hosts,
maintaining each as a single entity, troubleshooting, debugging, installing
and removing software on each machine by itself, is not too much work.

As the organization grows, so will the number of computers, and at some
point, maintaining all the diverging hosts will become a nightmare, the users
will be unhappy (since the hosts are broken in various ways: printing works
on one, the word processor on another, and so on). Or, huge amounts of
resources are spent on maintaining the hosts.

2.1 Packaging systems

What is a package system? It is a tool which helps the user1 to:

1. Keep system consistent across system boundaries such as hosts or ar-
chitectures.

2. Install and upgrade software.

3. Distribute software and configurations in a consistent, predictable
manner.

4. Keep track of installed software.

5. Make sure the installed software actually works.

All of this is about handling complexity and scalability, and this is the
hard problem at hand. Distributing a piece of software (as a tarball), and

1The user might not always be the end-user, it can also be the local system adminis-
trator or a software distributor.

3

unpacking it somewhere is easy. However, making it interact correctly with
other software and being able to remove or upgrade it later, without fear of
breaking other software makes the problem a lot harder.

Some of the dimensions in which we want scalability are:

1. Autonomous sites

2. Release levels

3. Regional differences (time zones, default language)

4. Package choices (conflicting packages, dependencies)

Chapter 3

Philosophy

When making something, one always faces choices on how to do it, weighing
the implications for and against the different design choices.

3.1 Good versus bad design

One can argue whether good and bad is relevant when it comes to design.
To a certain degree and in a certain context, it is. A quick hacked-together
solution is not good design if you want something that lasts and is easy
to for others to extend. As a software distribution system will be used by
and worked on by many different people. Those will of course wary in both
roles (installing and maintaining software, building packages, changing the
distribution system itself) as well as skill. This seems obvious, but when one
looks at the different systems out there, it is clear that many people wrote
code first and thought about the problem later, rather than the other way
around.

It is also important that the different design choices support each other.
If not, the user will be confused, the software will be slow and full of errors.

3.2 Who is the user

Users are different and have different goals, usually dictated by their role. A
system administrator is usually not interested in working on the packaging
system itself. He is more interested in making or installing pre-made pack-
ages. To a packager, installing pre-made packages is of little interest, he will
be interested in making good packages with as little hassle as possible. A
new user wants the system to be easy to get into while an experienced user
will value work-saving features. Note that there isn’t a necessary conflict
between those goals.

5

3.2.1 Operations

The number of operations a software distribution tool must support is sur-
prisingly small. Those operations aren’t atomic, but they are operations
needed in a full-blown software distribution system. The different options
and operations listed here are mostly intended as thought-starters rather
than being a comprehensive list of all the choices available to the designer
of a software distribution system.

Figure 3.1: The lifecycle of a package

1. Production Without the ability to produce packages, the rest of the
system is unusable. When deciding what the production step should
look like, there are some options available:

• Pure (pristine) source or patched source? The trend is certainly
towards having pristine tarballs from the distribution source, as
this makes it easy to check the integrity of those using tools such
as md5sum or sha1sum and using separate patches on top of this.

• Form of build scripts. Build scripts can be abstract, saying “put
this file there”. Abstract build scripts don’t have commands in
them, their function is decided by their name or position in the
build tree. Non-abstract, or real scripts can also be used. Exam-
ples are shell scripts or makefiles. Those list the commands to be
executed.

2. Distribution can be in source or binary forms, it can be over a network
connection or on CD or other physical media. The former is decided
by the software distribution system, the latter is usually not. There
are wide support for both source- and binary based distributions and
they give different abilities:

• Source-based distribution means you can turn off support you
don’t need, which can decrease the size needed by the system. In
most modern systems, this will not make any real difference, but
some people think it’s very much worth it.

• Binary distribution has the advantage of much easier reprodu-
cability (if you install the same set of binary packages, you will
always end up with the same setup.)

Note that source-based or binary-based is orthagonal to free soft-
ware/open source, a source based distribution can ship pre-compiled
objects which are linked together depending on the configuration. (An
example of this is when booting the Solaris kernel, it relinks itself.)

3. Initial installation of packages. One of the most important choices
when it comes to how to install packages, is the choice of complexity.
The simplest solution is to have a cpio or tarball which is just extracted
onto the system. It becomes a bit more complex if you add pre- and
post-installation and -removal scripts. Even more complex if you add
classes of files, so the system administrator can say “I don’t want
documentation installed”, or “Those architecture-independent files can
be accessed via NFS from that server”.

4. Maintainence including querying capabilities and upgrading of config-
uration files. In some cases, another setting is needed or the syntax
has changed. In those cases, you want to preserve the local modifi-
cation while including the upgrade. In some cases, it’s not possible
to automatically upgrade and the administrator must be told of the
problem so he can resolve it by hand.

5. Configuration of the software distribution system All systems have a
number of built-in default values, here called implicit configuration. In
addition, one usually has some kind of configuration file or tree where
those default values are overridden. Striking a balance on what should
be configurable and what shouldn’t be is important, both for speed,
stability and user friendliness.

In addition to the amount of configuration is the form of configuration.
It will be explored a little bit more in the next section, as part of
the user interface. It is important to note that there is a grey area
between configuration and customization of the distribution system, if
the configuration language has the needed expressive power.

Too much implicit configuration can be a problem, since the admin-
istrator then doesn’t understand how (or has to learn how) his con-
figuration interoperates with the default configuration. On the other
side, the administrator is usually interested in turning the minimum
number of knobs.

3.2.2 User experience paradigms

Designing user interfaces is a very hard task. An interface that is simple
and easy-to-use for one person might be useless for another person, since the
latter will not have the same connotations connected to the metaphors in
use. This is especially true for configuration languages. Some can be in the
form of production rules (like Makefiles). This is a very beautiful and very
simple concept, but it can take a while to get used to it. Other languages
will be a simple key = value form.

Many packages will need to have support scripts of some sort, for deciding
on values to put into configuration files, call other utilities to notify them of
the installed package and integrate the package properly into the rest of the
system. Most packagers aren’t really programmers, they just write those
support scripts as a by-product of the packaging. This means they need a
fairly simple way of programming. The simplest is the so-called “standard
execution point” or procedural programming. For bigger and more complex
packages, one needs support for structured programming.

3.3 Operational paradigms

There are several ways to go about in order to reach a certain goal. Push
isn’t better than pull, or the other way around. They are different and give
you different abilities, strengths, weaknesses, and options on how to design
the rest of the system. The goal is to choose a good set whose sum is as
close as possible to where one wants to end.

Some important paradigms are:

1. Push/pull

Figure 3.2: Pushing

Push means a central server knows the current state of each of the
clients and pushes out the needed information to the clients. One gets
fewer coordination points and just one machine to do backups of, but
at the same time, the system becomes vulnerable with a single point
of failure.

The server not only decides what changes should be pushed, but also
at what time they should be pushed, which could be an inconvenient
time for the client. In practice, the push server also needs to be able to
log in as the administrative user on each of the clients, making push
a possible security issue, even more so if the clients are in separate
administrative domains.

Multi-level hierarchies are also harder to implement using push, as the
central host will have a hard time knowing the state of all the clients
due to having the state pushed through (possibly several) intermedi-
aries.

Figure 3.3: Pulling

Pull means the clients pull down whatever information they need from
a server, they need a database of information to a lot lesser degree
than in a push system, as the client can look up information run-
time. A pull-based system is harder to get an overview of, as the state
information is spread over all the hosts. It is also harder to know if a
host is down or not updating properly, as it will just stop doing what
it is supposed to do.

Most systems will not be one of the other, even systems like rdist,
which are nominally push, will look to see if they actually need to
push a newer version of the file, rather than storing all the state on
the central server.

2. what to push/pull: operations or wanted state?

One can transfer either a set of operations or the wanted state one
wants the system to get to.

Pushing (or pulling) a set of operations is a lot simpler, both on the
client which just has to execute the operations and on the one decid-
ing what operations to send. However, when pushing operations, a
brute-force approach is often chosen, so instead of doing the minimum
amount of work, a lot of runtime computer power is wasted in order
to save human work.

Pushing state to the client means more work goes into figuring out

how to get from the current state to the wanted state, but less work
goes into actually getting there.

3. autonomous units, immune systems

A fairly recent trend in configuration management systems, spear-
headed by cfengine by Mark Burgess is the thought of the computer
system as an autonomous system with an immune system composed of
agents trying to ensure the system is in a wanted state. This is mostly
used with the wanted-state approach listed above.

Immune systems sounds like a very nice idea, the problem here is
specifying what is the correct state and how to react to “infections”.
It is also a hard task for the programmer of the system.

4. tool structure

Different operating systems have different styles in which most of the
tools are made. Some have large tools which can do everything, some
have small tools which only do one thing, but do it really well. The
tools interoperate through different methods: pipes and object invo-
cation (COM, CORBA) are among the options.

Operating system Tool size Interoperation method
Unix Small pipes
vms Large N/A1

Windows Large object invocation

5. Tool size

Smaller toolsize facilitates debugging and lower memory demands at
the cost of more processes and often speed.

Bigger tools can be better integrated, will often be faster in total, due
to said integration but will consume more memory, as all the functions
are loaded even if one just uses a subset.

6. Interoperation method

Pipes are a very simple concept, but they seem to scale amazingly well.
They are flexible, since one can add another process in the middle of
a pipeline. Pipes are usually combined with small tools, but they can
work fine with large tools as well. Among the disadvantages, we have
brittleness (it’s hard to detect if one of the steps in the pipeline fails)
and limited expressability as flow control is fairly limited.

Object invocation seems better for gluing applications together and
embedding applications in other applications rather than having appli-
cations work together. It makes complex interactions between different
modules fairly painless at the cost of higher general complexity.

1In vms, a switch would be added, or one would use temporary files.

3.4 Programming interfaces

Since no tool is complete by itself, most tools will be used together with other
tools. It will be embedded and called from other tools and extended with
new functionality. Some extensions are best done by plugins or extending
the program, while others are best done wrapping the software in another
program. This mean the different ways should all be supported, not just
one.

Some of the programming interfaces available to extend a system are:

1. Plugins

Support for plugins means custom code can decide how to handle
items such as file types, like the example on “don’t install documen-
tation” can be changed into “put all documentation into this other
(web-accessible) location”.

It can also be used for adding support for other distribution forms,
other formats and so on. Generally, plugins are used for extending
the abilities of a program rather than changing how the internal work
flows.

2. Hooks

Hooks are scripts, programs or library functions that are activated at
predefined points during the execution of another function or program.

Examples of this would be a package wanting to know when another
package is installed, since it would then need to reconfigure itself
(imagine an emacs add-on wanting notification about a new version of
emacs being installed) or SELinux (Security Enhanced Linux) wanting
to adjust the security contexts of newly installed files.

Also, the ability to run a program once when a software package has
completed installing would be a hook. An example would be regen-
erating the menu files for the installed window managers when a new
program is installed.

3. APIs

If the software distribution system is used as a part of another larger
system, it’s most useful to be able to drive the distribution system
programatically with rich error reporting functions. It also means the
system has a set of well-defined operations which are exposed to the
rest of the world and the inner workings properly hidden inside the
application.

3.5 Summary

As we can see, there are quite a number of design choices which affect the
basics of the system quite heavily. If those are ill-chosen with regards to the
wanted behavior of the system, the system will never be nice, smooth and
well-working, but make the system act inconsistenly and surprisingly with
missing functionality.

It is also important to note that some of the choices goes well with other
choices while other are bad fits, so the set of options listed here is neither
complete nor completely orthogonal.

As it goes for tools, “one size fits all” doesn’t fit here either. Perfect tools
are just a dream, but a combination of different tools fitting well together
comes fairly close. Even if somebody made a perfect tool today, it would not
fit the next time somebody came up with another requirement. Extensibility
is therefore a keyword, and it needs to be built in from the start.

Chapter 4

Existing solutions

4.1 Introduction

Most tools available today fall into one of two classes, distribution-oriented
or host/customization-oriented. Examples of the former are rpm and dpkg,
of the latter, cfengine and rdist. Most distribution-oriented tools work with
some sort of a database (binary or text-based) where they record all the
software they have installed. They have no concept of software outside
what they have installed themselves, which means locally compiled software
can never satisfy needed dependencies for distribution-distributed software.
The distribution-oriented tools are usually close-ended. Close-ended implies
the list of operations which can be formed is closed.

Host/customization-oriented tools, on the other hand usually work with
what’s on the file system. Most of them are file-oriented and many have no
concept of a “package”, and if they do, it’s mostly as a collection of files,
not as a full-blown package with dependencies, pre- and post-installation
and -removal scripts. In constrast to distribution-oriented tools, those tools
are usually open-ended. Even though pre- and post-installation scripts may
not be in the list of features supported by the tool, they can be provided by
the packager.

4.2 Processes vs tools

This chapter is about existing tools, but even though good tools are needed,
they are not enough. In order to have a good, well-scaling system, a lot
of processes are needed. As shown in Figure 3.1, one needs to gather the
software to be distributed, it needs to be customized, coherently packaged
according to a policy and put in a repository. A subdistributor can then pick
packages from different repositories, customize those and put them in their
own repository. At any point in the tree, end-users can use the repository
there as their repository. An infrastructure and processes for automatic

13

building of packages are needed if one has more than a very small number
of architectures. It is therefore important not to focus too much on tools
alone, but also make sure one has the needed infrastructure to fully utilize
the tools.

4.3 Existing tools

There are a lot of existing tools; I will describe some of the most used ones.

4.3.1 dpkg

Dpkg is Debian’s package manager and by itself, it is fairly low-level and
is therefore normally used together with at least apt1 and a frontend, like
Synaptic, dselect, aptitude or apt-get.

Figure 4.1: Debian’s stack of user tools and how they work together

Debian packages are .ar archives (as usually used by static libraries (.a
files)) with three components inside: a file containing the version number, a
gzipped tarball with the control information (package name, dependencies,
pre/post install/removal scripts) and finally a gzipped tarball with the files
contained in the package. This makes sure the package can be handled using
standard tools in case dpkg is unavailable or doesn’t work (due to internal
errors or missing libraries).

Dpkg consists of a lot of small programs. The end-user will usually just
use “dpkg”, which will then call out to dpkg-deb, dpkg-query and so on.
Some of those, like dpkg-query are useful to have available for the advanced
user, but won’t be needed in most cases.

For developers, dpkg has a large selection of specialized utilities to help
when building packages, most of them concentrate around building the pack-
age correctly and generating metadata used by the rest of the Debian in-
frastructure, but not by dpkg itself.

As the dpkg utilities are fairly low-level, there exists a number of helper
utilities to help abstract away the details and help manage patches to the

1advanced packaging tool, developed for Debian/dpkg and later ported to rpm

Figure 4.2: Debian’s developer tools and how the work together

source code. Those are especially useful for larger packages, and they facil-
itates adherence to Debian’s policy.

4.3.1.1 Characteristics

1. Unix philosophy. As shown in the diagrams, dpkg consists of multiple
smaller programs. The programs are cooperating through standard
mechanisms such as pipes.

2. Standard file formats (.ar, .gz, .tar). This expands on the previous
point. Rather than reinventing the wheel and making a new file format,
standard, well-known file formats are used. This makes it possible to
use standard tools as well, if that is wanted or needed.

3. Text/RFC822-based control files. Meta-information, such as pack-
age name, version, maintainer is stored in the format specified by
RFC822 [1]

4. Flexible with regards to source package layout The only requirement
is that the file debian/rules is a makefile. Many different tools are
available to help build the package in a smooth fashion.

5. Binary package distribution The packages distributed are binary while
a source package is usually also generated. The source package is used
by autobuilders for other architectures.

6. Modular base-line design. Functionality considered standard in other
packages are add-ons in dpkg, or handled at other levels, like fetching
and signing of packages.

4.3.2 RPM

rpm originally meant “RedHat Package Manager”, but was renamed to
“rpm Package Manager” in the tradition of recursive acronyms 2. It is used

2Recursive acronyms are quite common in the free software world, with examples such
as gnu (gnu’s not unix), php (php: Hypertext Preprocessor) and there’s even an example

by a large number of Linux distributions: RedHat/Fedora, SuSE, Mandrake,
Trustix and more. rpm by itself is a low-level tool, somewhat like dpkg.

It does not have a concept of a repository where to get dependencies
from, even though it has built-in support for fetching packages via ftp and
http. This, combined with the fact that there wasn’t any frontends with
a repository concept made the built-in support for dependencies much less
useful. The user had to fetch the dependencies himself as rpm told him
about them. This hand-tracking of dependencies was coined “rpm hell”.
Later, it has gotten support tools like urpmi, apt, yum and up2date which
handles the downloading and installation for the user.

rpm archives are segmented into two parts: one is a binary object with
the control information. The second part is a cpio archive with the package’s
files. The file format means rpm and other rpmlib-using tools are the only
tools able to handle rpm files.

The rpm command line tool is just one big program with its behaviour
adjusted by command line flags. It is also used for building packages, spec-
ified by a “spec file”. The spec file describes how the package should be
unpacked, patched, built and installed. It also specifies version numbers,
where to get the upstream source and any patches to apply. It also includes
any scripts related to the installation and removal of the package. The spec
file can also include macros, and a set of standard macros comes with rpm.

4.3.2.1 Characteristics

1. vms-alike philosophy. See 4. rpm is one command line binary with its
behavior dependent on switches. A more “unix-like” way is smaller
programs talking to each other through pipes, with each small program
tuned to the job.

2. Efficient, non-standard file formats. The format of the binary control
information field is not in any standard format. cpio, while a standard
format, is less common than tarballs. However, this gives possibilites
for optimizations and relaxes requirements on not breaking compati-
bility with standard tools.

3. Pristine source with stringent source layout. The source package has a
very well-specified layout. Spec files have a well-defined syntax, which
makes it easy for people who know rpm, but not the specific package
to make changes.

4. Binary package distribution. While rpm has support for source pack-
ages (called srpms), packages distributed to end computers contain
the binaries to install.

of two mutually recursive acronyms: the hurd, which stands for “hird of unix-replacing
Daemons”, with hird standing for “hurd of Interfaces Representing Depth”

5. Built-in auxilary utilities. rpm has many utilities built-in, which are
external in other package managers. Support for ftp and http down-
loads, signed packages and verification of installed packages are exam-
ples.

6. Good querying support. rpm stores a fair amount of meta-data about
the installed packages, like installation time, on what host the package
was built. All this information is available for querying, with a user-
specified format.

7. Librarified. rpmlib is a library other application than the rpm com-
mand line tool can link to in order to provide package management
services, including query support. This makes it relativetly easy to
build frontends with a richer set of semantics than what pipes and
return codes make possible.

4.3.3 Freebsd Ports

Freebsd, when installed, provides a small, generic “base system”. It does
not include much more than what’s needed for bootstrapping applications.
If you want to run a web server, have another shell and so on, you have
to install a port, from “the ports collection”. A similar system is used by
Netbsd (pkgsrc) and Openbsd. The gentoo Portage system is also inspired
by ports.

Ports is a tree of (at this writing) almost 12000 applications. The on-disk
format is a tree, organized first by section (“cad”, “graphics”, “web” and so
on) then by application name.

The application directory contains a makefile, some meta-data and zero
or more patches. Each makefile is really a small application which creates
packages that are handled by the pkg* commands. Using a configuration
file, the user building the package (“running the application”) can decide
whether to use or disable certain features, like IPv6 support.

As the packages are tarballs with meta-data files, they are very easily
manipulated using standard Unix tools. The meta-data files are all text
files and even though they aren’t according to RFC822 or other standard
format, they are easy to read and understand.

For development, Ports provide a framework which all ports use. They
don’t necessarily have to, but in practice everybody does. Development
consists of writing a makefile to download and build the sources. In many
cases, some patches are needed as well, so development consists of writing
those as well.

4.3.3.1 Characteristics

1. Unix philosophy. Ports leverage existing tools heavily. Some tools

used are make, sed, wget, md5sum and gcc.

2. Standard file formats. As standard tools are used for building pack-
ages, using non-standard file formats would be unnecessary work.

3. Text based control files. Unix has a tradition of having files as text
files, unless it is absolutely necessary to have them as binaries. With
the chosen tools, text-based control files comes naturally.

4. Pristine source with fairly stringent source layout. Like rpm, Ports
has a pristine source-policy, with external patch files. This helps not
losing patches when updating to a newer upstream version.

5. Source based packages. Most ports are distributed as source packages
and built on the machine where they are to be installed, but there
exists binary port repositories as well, and apart from customs, there’s
nothing stopping one from installing binary ports on machines.

4.4 Other tools

We have a plethora of other important tools, some of which could have been
examined as the ones above have been. They will only be briefly described
with an overview and an explanation of why they are not being examined
further.

4.4.1 cfengine

From the cfengine website[2]:

Cfengine, or the configuration engine is an autonomous agent and
a middle to high level policy language for building expert sys-
tems which administrate and configure large computer networks.
Cfengine uses the idea of classes and a primitive intelligence to
define and automate the configuration and maintenance of sys-
tem state, for small to huge configurations. Cfengine is designed
to be a part of a computer immune system, and can be thought
of as a gaming agent. It is ideal for cluster management and
has been adopted for use all over the world in small and huge
organizations alike.

Cfengine is not being examined further because it is not a closed-ended
system. It is more of a language and an open-ended system for building
a software distribution system, so comparing cfengine doesn’t make much
sense. Cfengine would be a strong candidate for making a new software
distribution system in order not to start completely from scratch.

4.4.2 rdist

rdist[3] is a program which uses push file distribution and with rudimentary
support for post-installation scripts. It is an open-ended system without a
package concept, though one can be emulated. One way is grouping files
per-package in different distfiles3 and distributing a different set depending
on what packages are to be installed on a host.

4.4.3 pkgadd (Solaris) / SAM (HP-UX) / SMIT (AIX)

Those are all tools for commercial unixes and are generally not too well
documented in what kind of package formats they use and how to build
packages for them. They do not come with source, which means examining
them with the intent of extending them would be hard. They are also tied
to their “native” Unix and therefore has limited interest given that we want
to scale across platforms.

4.4.4 stash

stash[4] is mainly used for managing a small number of packages in a person’s
home directory rather than a full system installation. It tries to autodetect
the type of package (autoconf configure script, IMakefile, perl’s Makefile.PL,
python’s setup.py and so on) but doesn’t seem to have any support for
automatic building of packages through some “receipe”.

It is not being examined further because it is geared towards manag-
ing programs in a user’s home directory rather than system-wide software
management.

4.4.5 Depot

Depot[5] organizes related but different software packages into categories
known as “collections”. It doesn’t have a dependency concept, so a collection
has to be self-sustained, or the user will have to track dependencies himself.
Depot is more of a method to organize software into manageable groups and
doesn’t have a mechanism to distribute packages. This makes it out-of-scope
for the purposes of this paper.

4.4.6 Variations/forks of other tools

Those tools listed here are either plain forks of software listed above, or
they are variations on the theme, and are therefore not examined in further
detail.

3The files that describes what files are to be distributed and where to.

4.4.6.1 OpenPKG

OpenPKG uses a forked rpm, and concentrates a lot more on the distribution
side and is more of a source distribution tree with source rpms than a
package tool.

4.4.6.2 Fink

Fink is a patched dpkg and apt for Mac OS X, with a separate package
repository from Debian.

4.4.6.3 Portage

Portage is the bsd ports taken to a full system level. It is used by the Gentoo
Linux distribution.

4.4.6.4 gnu Stow

Stow is a scaled-down version of depot, not requiring a database and not
having a collection concept. There are a bunch of forks/reimplementations
of it: StowES and XStow are two.

4.4.6.5 Store

Store was developed at what is now the Norwegian University of Science
and Technology. It is inspired by depot, but the codebase is fully separate.
It has not been developed for quite some time and is slowly being phased
out.

4.5 Summary

The following is a summary of key points on the three package systems
examined in detail.

Requirement dpkg rpm bsd Ports
File formats simple, standard custom, binary text-based,

standard
Philosophy
- push/pull pull pull pull
- operations/state both4 both4 both4

- tool structure small tools large, do-it-all
tool

small tools

4Files are state, pre- and postinstallation/removal scripts are operations

Requirement dpkg rpm bsd Ports
Operations support
- pristine source supported, but

not compulsory
compulsory compulsory

- patch system none native, but
externally
supported

native native

- recursive repository
support

no5 no native
repository
support

no

- upgrade support6 yes yes yes7

- configuration file
handling

postinst or asking
administrator

rename new or
old file

none8

- installation yes yes yes
- acquistion not natively9 yes yes
- querying yes yes yes
- verification not natively yes no
- signed packages not natively yes no
- multiple
architecture support

no yes N/A

Programming
interfaces
- plugins no no no
- hooks no yes10 no
- APIs yes, command

line
yes, library yes, command

line

rpm has good native support for a lot of extensions such as good query-
ing support and support for signed packages. Dpkg does not have native
support, but it’s supported through external tools. rpm is librarified, which
is a huge advantage if one wants to use it as a part of a bigger system. There
has been some discussion about librarifying dpkg, but work has not started
on it.

Scalability can be supported through recursive or hierarchical reposito-
ries where the computers do not have a custom configuration themselves,
but get their configuration from the repository. Given a low enough cost
for branching off a repository, having one repository per configuration is
doable and efficient. Some repositories might be used by as little as a single

5repositories supported with apt, externally
6support for upgrading packages, separate from removal and reinstalling
7upgrading ports can easily break package dependencies, especially for library packages
8due to policy choices; the admin is told what to do and has to do the changes himself
9apt or dselect acquires packages

10called triggers

host (an example being a single computer with a scanner or DVD writer in
a computer lab), but most repositories will be used by a larger number of
hosts, such as a complete lab.

A design like this blurs the difference between multiple different con-
figurations inside an organization and branching off another organization’s
repository for one’s own internal one. Handling different release levels can
be done with different repositories which can be partially overlapping (where
the version in multiple repositories is the same) where only the file describ-
ing the repository shows a different subset. The design is inspired by Tom
Lord’s Arch[6].

None of the tools has native support for recursive repositories of any
kind, but both dpkg and rpm can be wrapped by apt. With external tools,
emulating recursive mirrors is possible to do.

Chapter 5

Composition / Evaluation

This chapter describes how to solve the problems as described in the problem
definition. There are two “extreme” alternatives: write something from
scratch or build on one of the existing solutions. Starting from scratch gives
one a lot of possibilities, but it also means more work and a higher risk of
errors. Starting from a know code base means one can start working on
the needed features right away, but means one is tied to the current design,
which might get in the way of wanted result.

Dpkg has been in development for over ten years, rpm a bit shorter,
but it’s also fairly old. If one were to develop a new tool, it would not be
feasible to have equivalent functionality in significantly (one magnitude or
more) less time. In addition, the existing tools have been used and thereby
proven by a lot of users over time. A new tool would need time to be proven
in the same way. Because of this, investigating the existing solutions rather
than developing something from scratch is the most interesting approach.

5.1 Evaluation

Following is an evaluation of the different tools with regard to the require-
ments pointed out in the problem specification.

5.1.1 RPM

rpm doesn’t support any repositories by itself, but it is well-supported by
way of apt, yum or a number of similar tools. None of those support re-
cursive repositories, but as described, that can be emulated. The repository
tool would also be responsible for handling different release levels.

5.1.2 dpkg

Dpkg is well-integrated with existing tools such as apt. apt handles differ-
ent releases and mixing of those easily. Dpkg also has rich semantics when

23

it comes to dependencies and conflicts. This makes it a good candidate for
extending, even though it lacks in the programming interfaces department.

5.1.3 BSD Ports

bsd Ports lacks several important features, and while it could be a good
basis to build on, one would use a fair amount of resources to build an
infrastructure which matches rpm’s or dpkg’s. It has a strength that it is
cross-platform due to only depending on standardized tools like make.

5.2 Ranking

None of the systems support repositories by themselves, but both rpm and
dpkg does it through apt (or similar tools). rpm is already librarified and
supports a fair amount of extra functionality internally, which need external
tools for dpkg. Dpkg is more Unix-like with small tools and interfaces with
them. This means further development on dpkg is more likely to succeed,
and there is developer support already for some of the needed changes.

This gives us the following ranking:

1. dpkg

2. rpm

3. bsd Ports

5.3 Needed changes

For dpkg to satisfy the requirements laid out in 2, the following changes,
to dpkg itself, or related components, the following changes need to be
implemented. Note that not all the requirements in the problem definition
are touched, as dpkg is already a working software distribution system and
therefore has several of the requirements fulfilled already.

• Keep system consistent across system boundaries such as hosts or ar-
chitectures. Currently, dpkg has no support for this at all. It is re-
alized through combinations of tools such as pkgsync[7] with rdist[3]
or cfengine[2]. Those tools would need to be extended, or procedures
such as putting the pkgsync configuration in a file which is installed
by pkgsync itself would have to be developed. This fulfills 1 in 2.1.

• Recursive repository support will make managing autonomous sites,
regional differences a lot easier. This would be handled by apt, not
dpkg itself. A way to do it would be to have “meta-repositories” which
just pointed to other repositories for most of the files (in order to save

disk space on the repository). This solves the problems surrounding
2autonomous sites” and “regional differences (time zones, default lan-
guage)” in 2.1.

• Support for multiple architectures. Dpkg would have to be extended
to know about what architectures the installation supports, either na-
tively or through emulation. The syntax of the control file fields in
dpkg would also have to be extended, as they are currently unable
to differ between architecture-dependent and architecture-independent
dependencies. Some proposals on how to solve this has already been
made, see [8] [9].

While this isn’t part of the problem definition, it is supported by
other other packaging systems. It also solves some problems related
to moving from one architecture to another.

• plugin and hooks support. The dpkg maintainer has already talked
about where he sees dpkg moving[10], including triggers and libdpkg,
mostly in terms of what features are desireable rather than how they
should be implemented. This solves scalability problems related to
dependencies in “Package choices” in 2.1.

Chapter 6

Further work

When investigating possible solution, one excludes a certain amount of pos-
sible solutions and there are interesting paths one does not explore.

• Explore the relation between tools and processes. Tools are useless if
there are no processes and procedures that choose how they are to be
used.

• Explore open-ended tools further. Open-ended tools have mostly been
skipped in this article, but they are certainly worth a closer look as a
basis for writing a tool from scratch.

27

References

[1] David H. Crocker. Rfc 822 - standard for the format of arpa internet
text messages.

[2] Cfengine web site. http://www.cfengine.org/.

[3] Rdist web site. http://www.magnicomp.com/rdist/.

[4] Stash web site. http://www.wyrick.org/source/perl/stash/.

[5] Depot web site. http://andrew2.andrew.cmu.edu/depot/.

[6] Gnu arch web site. http://www.gnu.org/software/gnu-arch/.

[7] Steinar H. Gunderson. pkgsync. http://packages.debian.org/unstable/admin/pkgsync.

[8] Matt Taggart. Multiple architecture problem and proposed solution.
http://www.linuxbase.org/ taggart/multiarch.html, 06 2004.

[9] Tollef Fog Heen. How to handle multiarch on x86-64 (and other plat-
forms). http://err.no/debian/amd64-multiarch-3, 05 2004.

[10] Scott James Remnant. Where next for dpkg?
http://www.netsplit.com/blog/tech/debian/dpkg/where next for dpkg .html.

29

	Introduction
	Delimitations

	Problem definition
	Packaging systems

	Philosophy
	Good versus bad design
	Who is the user
	Operational paradigms
	Programming interfaces
	Summary

	Existing solutions
	Introduction
	Processes vs tools
	Existing tools
	Other tools
	Summary

	Composition / Evaluation
	Evaluation
	Ranking
	Needed changes

	Further work

