From ade8c56cbd02020fecbe1684f181250a466685eb Mon Sep 17 00:00:00 2001 From: Randy Dunlap Date: Thu, 25 Oct 2007 14:27:24 -0700 Subject: [PATCH] x86 bitops: fix code style issues Coding style cleanups: - change __inline__ to inline; - drop space in "* addr" parameters; - drop space between func. name and '(' The "volatile" keywords are correct according to email from one Linus Torvalds. [Several other arches need some of this also.] Signed-off-by: Randy Dunlap Signed-off-by: Linus Torvalds --- include/asm-x86/bitops_64.h | 52 ++++++++++++++++++------------------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/include/asm-x86/bitops_64.h b/include/asm-x86/bitops_64.h index bba26e03f3..766bcc0470 100644 --- a/include/asm-x86/bitops_64.h +++ b/include/asm-x86/bitops_64.h @@ -29,7 +29,7 @@ * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ -static __inline__ void set_bit(int nr, volatile void * addr) +static inline void set_bit(int nr, volatile void *addr) { __asm__ __volatile__( LOCK_PREFIX "btsl %1,%0" @@ -46,7 +46,7 @@ static __inline__ void set_bit(int nr, volatile void * addr) * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ -static __inline__ void __set_bit(int nr, volatile void * addr) +static inline void __set_bit(int nr, volatile void *addr) { __asm__ volatile( "btsl %1,%0" @@ -64,7 +64,7 @@ static __inline__ void __set_bit(int nr, volatile void * addr) * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ -static __inline__ void clear_bit(int nr, volatile void * addr) +static inline void clear_bit(int nr, volatile void *addr) { __asm__ __volatile__( LOCK_PREFIX "btrl %1,%0" @@ -86,7 +86,7 @@ static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *ad clear_bit(nr, addr); } -static __inline__ void __clear_bit(int nr, volatile void * addr) +static inline void __clear_bit(int nr, volatile void *addr) { __asm__ __volatile__( "btrl %1,%0" @@ -124,7 +124,7 @@ static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long * * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ -static __inline__ void __change_bit(int nr, volatile void * addr) +static inline void __change_bit(int nr, volatile void *addr) { __asm__ __volatile__( "btcl %1,%0" @@ -141,7 +141,7 @@ static __inline__ void __change_bit(int nr, volatile void * addr) * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ -static __inline__ void change_bit(int nr, volatile void * addr) +static inline void change_bit(int nr, volatile void *addr) { __asm__ __volatile__( LOCK_PREFIX "btcl %1,%0" @@ -157,7 +157,7 @@ static __inline__ void change_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -static __inline__ int test_and_set_bit(int nr, volatile void * addr) +static inline int test_and_set_bit(int nr, volatile void *addr) { int oldbit; @@ -175,7 +175,7 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr) * * This is the same as test_and_set_bit on x86. */ -static __inline__ int test_and_set_bit_lock(int nr, volatile void *addr) +static inline int test_and_set_bit_lock(int nr, volatile void *addr) { return test_and_set_bit(nr, addr); } @@ -189,7 +189,7 @@ static __inline__ int test_and_set_bit_lock(int nr, volatile void *addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -static __inline__ int __test_and_set_bit(int nr, volatile void * addr) +static inline int __test_and_set_bit(int nr, volatile void *addr) { int oldbit; @@ -208,7 +208,7 @@ static __inline__ int __test_and_set_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -static __inline__ int test_and_clear_bit(int nr, volatile void * addr) +static inline int test_and_clear_bit(int nr, volatile void *addr) { int oldbit; @@ -228,7 +228,7 @@ static __inline__ int test_and_clear_bit(int nr, volatile void * addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) +static inline int __test_and_clear_bit(int nr, volatile void *addr) { int oldbit; @@ -240,7 +240,7 @@ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) } /* WARNING: non atomic and it can be reordered! */ -static __inline__ int __test_and_change_bit(int nr, volatile void * addr) +static inline int __test_and_change_bit(int nr, volatile void *addr) { int oldbit; @@ -259,7 +259,7 @@ static __inline__ int __test_and_change_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -static __inline__ int test_and_change_bit(int nr, volatile void * addr) +static inline int test_and_change_bit(int nr, volatile void *addr) { int oldbit; @@ -276,15 +276,15 @@ static __inline__ int test_and_change_bit(int nr, volatile void * addr) * @nr: bit number to test * @addr: Address to start counting from */ -static int test_bit(int nr, const volatile void * addr); +static int test_bit(int nr, const volatile void *addr); #endif -static __inline__ int constant_test_bit(int nr, const volatile void * addr) +static inline int constant_test_bit(int nr, const volatile void *addr) { return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; } -static __inline__ int variable_test_bit(int nr, volatile const void * addr) +static inline int variable_test_bit(int nr, volatile const void *addr) { int oldbit; @@ -302,10 +302,10 @@ static __inline__ int variable_test_bit(int nr, volatile const void * addr) #undef ADDR -extern long find_first_zero_bit(const unsigned long * addr, unsigned long size); -extern long find_next_zero_bit (const unsigned long * addr, long size, long offset); -extern long find_first_bit(const unsigned long * addr, unsigned long size); -extern long find_next_bit(const unsigned long * addr, long size, long offset); +extern long find_first_zero_bit(const unsigned long *addr, unsigned long size); +extern long find_next_zero_bit(const unsigned long *addr, long size, long offset); +extern long find_first_bit(const unsigned long *addr, unsigned long size); +extern long find_next_bit(const unsigned long *addr, long size, long offset); /* return index of first bet set in val or max when no bit is set */ static inline long __scanbit(unsigned long val, unsigned long max) @@ -366,7 +366,7 @@ static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i, * * Undefined if no zero exists, so code should check against ~0UL first. */ -static __inline__ unsigned long ffz(unsigned long word) +static inline unsigned long ffz(unsigned long word) { __asm__("bsfq %1,%0" :"=r" (word) @@ -380,7 +380,7 @@ static __inline__ unsigned long ffz(unsigned long word) * * Undefined if no bit exists, so code should check against 0 first. */ -static __inline__ unsigned long __ffs(unsigned long word) +static inline unsigned long __ffs(unsigned long word) { __asm__("bsfq %1,%0" :"=r" (word) @@ -394,7 +394,7 @@ static __inline__ unsigned long __ffs(unsigned long word) * * Undefined if no zero exists, so code should check against ~0UL first. */ -static __inline__ unsigned long __fls(unsigned long word) +static inline unsigned long __fls(unsigned long word) { __asm__("bsrq %1,%0" :"=r" (word) @@ -414,7 +414,7 @@ static __inline__ unsigned long __fls(unsigned long word) * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ -static __inline__ int ffs(int x) +static inline int ffs(int x) { int r; @@ -430,7 +430,7 @@ static __inline__ int ffs(int x) * * This is defined the same way as fls. */ -static __inline__ int fls64(__u64 x) +static inline int fls64(__u64 x) { if (x == 0) return 0; @@ -443,7 +443,7 @@ static __inline__ int fls64(__u64 x) * * This is defined the same way as ffs. */ -static __inline__ int fls(int x) +static inline int fls(int x) { int r; -- 2.39.5