From: Gerrit Renker Date: Sun, 3 Dec 2006 16:52:41 +0000 (-0200) Subject: [DCCP] tfrc: Identify TFRC table limits and simplify code X-Git-Tag: v2.6.20-rc1~34^2~40^2~13^2~1^2~2 X-Git-Url: https://err.no/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=006042d7e1a0aae35c9dd9eb8ec71fa379679adb;p=linux-2.6 [DCCP] tfrc: Identify TFRC table limits and simplify code This * adds documentation about the lowest resolution that is possible within the bounds of the current lookup table * defines a constant TFRC_SMALLEST_P which defines this resolution * issues a warning if a given value of p is below resolution * combines two previously adjacent if-blocks of nearly identical structure into one This patch does not change the algorithm as such. Signed-off-by: Gerrit Renker Acked-by: Ian McDonald Signed-off-by: Arnaldo Carvalho de Melo --- diff --git a/net/dccp/ccids/lib/tfrc_equation.c b/net/dccp/ccids/lib/tfrc_equation.c index ef3233d45a..0a4a3d2feb 100644 --- a/net/dccp/ccids/lib/tfrc_equation.c +++ b/net/dccp/ccids/lib/tfrc_equation.c @@ -19,6 +19,7 @@ #define TFRC_CALC_X_ARRSIZE 500 #define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */ +#define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE) /* TFRC TCP Reno Throughput Equation Lookup Table for f(p) @@ -68,7 +69,9 @@ granularity for the practically more relevant case of small values of p (up to 5%), the second column is used; the first one ranges up to 100%. This split corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also - determines the smallest resolution. + determines the smallest resolution possible with this lookup table: + + TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE The entire table is generated by: for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) { @@ -79,7 +82,7 @@ With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1, lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%) lookup[M][0] = g(1000000) = 1000000 * f(100%) - lookup[0][1] = g(TFRC_CALC_X_SPLIT/(M+1)) = 1000000 * f(0.01%) + lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%) lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%) In summary, the two columns represent f(p) for the following ranges: @@ -616,15 +619,21 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p) return ~0U; } - if (p < TFRC_CALC_X_SPLIT) /* 0 <= p < 0.05 */ - index = (p / (TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE)) - 1; - else /* 0.05 <= p <= 1.00 */ - index = (p / (1000000 / TFRC_CALC_X_ARRSIZE)) - 1; + if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */ + if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */ + DCCP_WARN("Value of p (%d) below resolution. " + "Substituting %d\n", p, TFRC_SMALLEST_P); + index = 0; + } else /* 0.0001 <= p <= 0.05 */ + index = p/TFRC_SMALLEST_P - 1; + + f = tfrc_calc_x_lookup[index][1]; + + } else { /* 0.05 < p <= 1.00 */ + index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1; - if (p >= TFRC_CALC_X_SPLIT) f = tfrc_calc_x_lookup[index][0]; - else - f = tfrc_calc_x_lookup[index][1]; + } /* The following computes X = s/(R*f(p)) in bytes per second. Since f(p) * and R are both scaled by 1000000, we need to multiply by 1000000^2.