apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo;
- printk("CPU 0x%02X in proximity domain 0x%02X\n",
+ printk(KERN_DEBUG "CPU %02x in proximity domain %02x\n",
cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo);
}
if (num_memory_chunks >= MAXCHUNKS) {
- printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
+ printk(KERN_WARNING "Too many mem chunks in SRAT."
+ " Ignoring %lld MBytes at %llx\n",
size/(1024*1024), paddr);
return;
}
num_memory_chunks++;
- printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
+ printk(KERN_DEBUG "Memory range %08lx to %08lx (type %x)"
+ " in proximity domain %02x %s\n",
start_pfn, end_pfn,
memory_affinity->memory_type,
pxm,
* *possible* memory hotplug areas the same as normal RAM.
*/
if (memory_chunk->start_pfn >= max_pfn) {
- printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
+ printk(KERN_INFO "Ignoring SRAT pfns: %08lx - %08lx\n",
memory_chunk->start_pfn, memory_chunk->end_pfn);
return;
}
goto out_fail;
if (num_memory_chunks == 0) {
- printk("could not finy any ACPI SRAT memory areas.\n");
+ printk(KERN_WARNING
+ "could not finy any ACPI SRAT memory areas.\n");
goto out_fail;
}
for (i = 0; i < num_memory_chunks; i++)
node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
- printk("pxm bitmap: ");
+ printk(KERN_DEBUG "pxm bitmap: ");
for (i = 0; i < sizeof(pxm_bitmap); i++) {
- printk("%02X ", pxm_bitmap[i]);
+ printk(KERN_CONT "%02x ", pxm_bitmap[i]);
}
- printk("\n");
- printk("Number of logical nodes in system = %d\n", num_online_nodes());
- printk("Number of memory chunks in system = %d\n", num_memory_chunks);
+ printk(KERN_CONT "\n");
+ printk(KERN_DEBUG "Number of logical nodes in system = %d\n",
+ num_online_nodes());
+ printk(KERN_DEBUG "Number of memory chunks in system = %d\n",
+ num_memory_chunks);
for (i = 0; i < MAX_APICID; i++)
apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]);
for (j = 0; j < num_memory_chunks; j++){
struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
- printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
+ printk(KERN_DEBUG
+ "chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
node_read_chunk(chunk->nid, chunk);
e820_register_active_regions(chunk->nid, chunk->start_pfn,
}
return 1;
out_fail:
- printk("failed to get NUMA memory information from SRAT table\n");
+ printk(KERN_ERR "failed to get NUMA memory information from SRAT"
+ " table\n");
return 0;
}
{
unsigned long pfn;
- printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
+ printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
nid, start, end);
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
printk(KERN_DEBUG " ");
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
- printk(KERN_CONT "%ld ", pfn);
+ printk(KERN_CONT "%lx ", pfn);
}
printk(KERN_CONT "\n");
}
*/
int __init get_memcfg_numa_flat(void)
{
- printk("NUMA - single node, flat memory mode\n");
+ printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
node_start_pfn[0] = 0;
node_end_pfn[0] = max_pfn;
* The acpi/srat node info can show hot-add memroy zones
* where memory could be added but not currently present.
*/
- printk("node %d pfn: [%lx - %lx]\n",
+ printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
nid, node_start_pfn[nid], node_end_pfn[nid]);
if (node_start_pfn[nid] > max_pfn)
continue;
node_remap_size[nid] = size;
node_remap_offset[nid] = reserve_pages;
reserve_pages += size;
- printk("Reserving %ld pages of KVA for lmem_map of node %d at %llx\n",
+ printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
+ " node %d at %llx\n",
size, nid, node_kva_final>>PAGE_SHIFT);
/*
remove_active_range(nid, node_remap_start_pfn[nid],
node_remap_start_pfn[nid] + size);
}
- printk("Reserving total of %ld pages for numa KVA remap\n",
+ printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
reserve_pages);
return reserve_pages;
}
node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
ALIGN(sizeof(pg_data_t), PAGE_SIZE);
- printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
+ printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
(ulong) node_remap_start_vaddr[nid],
(ulong) node_remap_end_vaddr[nid]);
}
if (kva_start_pfn == -1UL)
panic("Can not get kva space\n");
- printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
+ printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
kva_start_pfn, max_low_pfn);
- printk("max_pfn = %ld\n", max_pfn);
+ printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
/* avoid clash with initrd */
reserve_early(kva_start_pfn<<PAGE_SHIFT,
#endif
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(max_low_pfn));
- printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
- min_low_pfn, max_low_pfn, highstart_pfn);
+ printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
+ max_low_pfn, highstart_pfn);
- printk("Low memory ends at vaddr %08lx\n",
+ printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
(ulong) pfn_to_kaddr(max_low_pfn));
for_each_online_node(nid) {
init_remap_allocator(nid);
allocate_pgdat(nid);
}
- printk("High memory starts at vaddr %08lx\n",
+ printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
(ulong) pfn_to_kaddr(highstart_pfn));
for_each_online_node(nid)
propagate_e820_map_node(nid);
zone_end_pfn = zone_start_pfn + zone->spanned_pages;
nid = zone_to_nid(zone);
- printk("Initializing %s for node %d (%08lx:%08lx)\n",
+ printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n",
zone->name, nid, zone_start_pfn, zone_end_pfn);
add_highpages_with_active_regions(nid, zone_start_pfn,