guest_set_pmd(lg, args->arg1, args->arg2);
break;
case LHCALL_SET_CLOCKEVENT:
- guest_set_clockevent(lg, args->arg1);
+ guest_set_clockevent(cpu, args->arg1);
break;
case LHCALL_TS:
/* This sets the TS flag, as we saw used in run_guest(). */
* infrastructure to set a callback at that time.
*
* 0 means "turn off the clock". */
-void guest_set_clockevent(struct lguest *lg, unsigned long delta)
+void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
{
ktime_t expires;
if (unlikely(delta == 0)) {
/* Clock event device is shutting down. */
- hrtimer_cancel(&lg->hrt);
+ hrtimer_cancel(&cpu->hrt);
return;
}
* all the time between now and the timer interrupt it asked for. This
* is almost always the right thing to do. */
expires = ktime_add_ns(ktime_get_real(), delta);
- hrtimer_start(&lg->hrt, expires, HRTIMER_MODE_ABS);
+ hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
}
/* This is the function called when the Guest's timer expires. */
static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
{
- struct lguest *lg = container_of(timer, struct lguest, hrt);
+ struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
/* Remember the first interrupt is the timer interrupt. */
- set_bit(0, lg->irqs_pending);
+ set_bit(0, cpu->lg->irqs_pending);
/* If the Guest is actually stopped, we need to wake it up. */
- if (lg->halted)
- wake_up_process(lg->tsk);
+ if (cpu->lg->halted)
+ wake_up_process(cpu->lg->tsk);
return HRTIMER_NORESTART;
}
/* This sets up the timer for this Guest. */
-void init_clockdev(struct lguest *lg)
+void init_clockdev(struct lg_cpu *cpu)
{
- hrtimer_init(&lg->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
- lg->hrt.function = clockdev_fn;
+ hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
+ cpu->hrt.function = clockdev_fn;
}
/* If a hypercall was asked for, this points to the arguments. */
struct hcall_args *hcall;
u32 next_hcall;
+
+ /* Virtual clock device */
+ struct hrtimer hrt;
};
/* The private info the thread maintains about the guest. */
struct lguest_arch arch;
- /* Virtual clock device */
- struct hrtimer hrt;
-
/* Pending virtual interrupts */
DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
};
const unsigned long *def);
void copy_traps(const struct lguest *lg, struct desc_struct *idt,
const unsigned long *def);
-void guest_set_clockevent(struct lguest *lg, unsigned long delta);
-void init_clockdev(struct lguest *lg);
+void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
+void init_clockdev(struct lg_cpu *cpu);
bool check_syscall_vector(struct lguest *lg);
int init_interrupts(void);
void free_interrupts(void);
cpu->id = id;
cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
cpu->lg->nr_cpus++;
+ init_clockdev(cpu);
return 0;
}
* address. */
lguest_arch_setup_regs(lg, args[3]);
- /* The timer for lguest's clock needs initialization. */
- init_clockdev(lg);
-
/* We keep a pointer to the Launcher task (ie. current task) for when
* other Guests want to wake this one (inter-Guest I/O). */
lg->tsk = current;
static int close(struct inode *inode, struct file *file)
{
struct lguest *lg = file->private_data;
+ unsigned int i;
/* If we never successfully initialized, there's nothing to clean up */
if (!lg)
/* We need the big lock, to protect from inter-guest I/O and other
* Launchers initializing guests. */
mutex_lock(&lguest_lock);
- /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
- hrtimer_cancel(&lg->hrt);
+ for (i = 0; i < lg->nr_cpus; i++)
+ /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
+ hrtimer_cancel(&lg->cpus[i].hrt);
/* Free up the shadow page tables for the Guest. */
free_guest_pagetable(lg);
/* Now all the memory cleanups are done, it's safe to release the