void __spu_update_sched_info(struct spu_context *ctx)
{
/*
- * 32-Bit assignment are atomic on powerpc, and we don't care about
- * memory ordering here because retriving the controlling thread is
- * per defintion racy.
+ * 32-Bit assignments are atomic on powerpc, and we don't care about
+ * memory ordering here because retrieving the controlling thread is
+ * per definition racy.
*/
ctx->tid = current->pid;
/*
* We do our own priority calculations, so we normally want
- * ->static_prio to start with. Unfortunately thies field
+ * ->static_prio to start with. Unfortunately this field
* contains junk for threads with a realtime scheduling
* policy so we have to look at ->prio in this case.
*/
* A lot of places that don't hold list_mutex poke into
* cpus_allowed, including grab_runnable_context which
* already holds the runq_lock. So abuse runq_lock
- * to protect this field aswell.
+ * to protect this field as well.
*/
spin_lock(&spu_prio->runq_lock);
ctx->cpus_allowed = current->cpus_allowed;
* Wake up the active spu_contexts.
*
* When the awakened processes see their "notify_active" flag is set,
- * they will call spu_switch_notify();
+ * they will call spu_switch_notify().
*/
for_each_online_node(node) {
struct spu *spu;
/*
* Look for a possible preemption candidate on the local node first.
* If there is no candidate look at the other nodes. This isn't
- * exactly fair, but so far the whole spu schedule tries to keep
+ * exactly fair, but so far the whole spu scheduler tries to keep
* a strong node affinity. We might want to fine-tune this in
* the future.
*/
/*
* Note that last_pid doesn't really make much sense for the
- * SPU loadavg (it even seems very odd on the CPU side..),
+ * SPU loadavg (it even seems very odd on the CPU side...),
* but we include it here to have a 100% compatible interface.
*/
seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",