* command. We will transfer some of the data (as requested by the drive) and
* will re-point interrupt handler to us. When data transfer is finished, we
* will act according to the algorithm described before
- * idetape_issue_packet_command.
+ * idetape_issue_pc.
*/
static ide_startstop_t idetape_pc_intr(ide_drive_t *drive)
{
*
* The handling will be done in three stages:
*
- * 1. idetape_issue_packet_command will send the packet command to the
+ * 1. idetape_issue_pc will send the packet command to the
* drive, and will set the interrupt handler to idetape_pc_intr.
*
* 2. On each interrupt, idetape_pc_intr will be called. This step
return ide_started;
}
-static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
+static ide_startstop_t idetape_issue_pc(ide_drive_t *drive, idetape_pc_t *pc)
{
ide_hwif_t *hwif = drive->hwif;
idetape_tape_t *tape = drive->driver_data;
*/
if (tape->failed_pc != NULL &&
tape->pc->c[0] == REQUEST_SENSE) {
- return idetape_issue_packet_command(drive, tape->failed_pc);
+ return idetape_issue_pc(drive, tape->failed_pc);
}
if (postponed_rq != NULL)
if (rq != postponed_rq) {
}
BUG();
out:
- return idetape_issue_packet_command(drive, pc);
+ return idetape_issue_pc(drive, pc);
}
/*
return (tape->blk_size * (blocks-rq.current_nr_sectors));
}
-/*
- * idetape_insert_pipeline_into_queue is used to start servicing the
- * pipeline stages, starting from tape->next_stage.
- */
-static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
+/* start servicing the pipeline stages, starting from tape->next_stage. */
+static void idetape_plug_pipeline(ide_drive_t *drive)
{
idetape_tape_t *tape = drive->driver_data;
spin_unlock_irqrestore(&tape->lock, flags);
} else {
spin_unlock_irqrestore(&tape->lock, flags);
- idetape_insert_pipeline_into_queue(drive);
+ idetape_plug_pipeline(drive);
if (idetape_pipeline_active(tape))
continue;
/*
tape->insert_time = jiffies;
tape->insert_size = 0;
tape->insert_speed = 0;
- idetape_insert_pipeline_into_queue(drive);
+ idetape_plug_pipeline(drive);
}
}
if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
unsigned long flags;
while (tape->next_stage || idetape_pipeline_active(tape)) {
- idetape_insert_pipeline_into_queue(drive);
+ idetape_plug_pipeline(drive);
spin_lock_irqsave(&tape->lock, flags);
if (idetape_pipeline_active(tape))
idetape_wait_for_request(drive, tape->active_data_rq);
tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
}
-static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
+static int idetape_init_read(ide_drive_t *drive, int max_stages)
{
idetape_tape_t *tape = drive->driver_data;
idetape_stage_t *new_stage;
tape->insert_time = jiffies;
tape->insert_size = 0;
tape->insert_speed = 0;
- idetape_insert_pipeline_into_queue(drive);
+ idetape_plug_pipeline(drive);
}
}
return 0;
* Wait for the next block to be available at the head
* of the pipeline
*/
- idetape_initiate_read(drive, tape->max_stages);
+ idetape_init_read(drive, tape->max_stages);
if (tape->first_stage == NULL) {
if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
return 0;
(count % tape->blk_size) == 0)
tape->user_bs_factor = count / tape->blk_size;
}
- if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
+ rc = idetape_init_read(drive, tape->max_stages);
+ if (rc < 0)
return rc;
if (count == 0)
return (0);