#include <linux/screen_info.h>
#include <linux/utsname.h>
#include <linux/pfn.h>
-
+#include <linux/cpu.h>
#include <asm/setup.h>
/*
extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
+static struct cpu cpu_devices[NR_CPUS];
+
extern void show_etrax_copyright(void); /* arch-vX/kernel/setup.c */
/* This mainly sets up the memory area, and can be really confusing.
* given by the macro __pa().
*
* In this DRAM, the kernel code and data is loaded, in the beginning.
- * It really starts at c0004000 to make room for some special pages -
+ * It really starts at c0004000 to make room for some special pages -
* the start address is text_start. The kernel data ends at _end. After
* this the ROM filesystem is appended (if there is any).
- *
+ *
* Between this address and dram_end, we have RAM pages usable to the
* boot code and the system.
*
*/
-void __init
-setup_arch(char **cmdline_p)
+void __init setup_arch(char **cmdline_p)
{
extern void init_etrax_debug(void);
unsigned long bootmap_size;
unsigned long start_pfn, max_pfn;
unsigned long memory_start;
- /* register an initial console printing routine for printk's */
+ /* register an initial console printing routine for printk's */
init_etrax_debug();
min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
- min_low_pfn,
+ min_low_pfn,
max_low_pfn);
/* And free all memory not belonging to the kernel (addr, size) */
extern int show_cpuinfo(struct seq_file *m, void *v);
-struct seq_operations cpuinfo_op = {
+const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
+static int __init topology_init(void)
+{
+ int i;
+
+ for_each_possible_cpu(i) {
+ return register_cpu(&cpu_devices[i], i);
+ }
+
+ return 0;
+}
+
+subsys_initcall(topology_init);