]> err.no Git - varnish/commitdiff
Import jemalloc
authortfheen <tfheen@d4fa192b-c00b-0410-8231-f00ffab90ce4>
Wed, 24 Sep 2008 12:41:27 +0000 (12:41 +0000)
committertfheen <tfheen@d4fa192b-c00b-0410-8231-f00ffab90ce4>
Wed, 24 Sep 2008 12:41:27 +0000 (12:41 +0000)
git-svn-id: svn+ssh://projects.linpro.no/svn/varnish/trunk@3215 d4fa192b-c00b-0410-8231-f00ffab90ce4

varnish-cache/lib/libjemalloc/Makefile [new file with mode: 0644]
varnish-cache/lib/libjemalloc/README [new file with mode: 0644]
varnish-cache/lib/libjemalloc/jemalloc_linux.c [new file with mode: 0644]
varnish-cache/lib/libjemalloc/malloc.3 [new file with mode: 0644]
varnish-cache/lib/libjemalloc/malloc.c [new file with mode: 0644]
varnish-cache/lib/libjemalloc/rb.h [new file with mode: 0644]

diff --git a/varnish-cache/lib/libjemalloc/Makefile b/varnish-cache/lib/libjemalloc/Makefile
new file mode 100644 (file)
index 0000000..49f4197
--- /dev/null
@@ -0,0 +1,23 @@
+CFLAGS := -O3 -g
+# See source code comments to avoid memory leaks when enabling MALLOC_MAG.
+#CPPFLAGS := -DMALLOC_PRODUCTION -DMALLOC_MAG
+CPPFLAGS := -DMALLOC_PRODUCTION
+
+all: libjemalloc.so.0 libjemalloc_mt.so.0
+
+jemalloc_linux_mt.o: jemalloc_linux.c
+       gcc $(CFLAGS) -c -DPIC -fPIC $(CPPFLAGS) -D__isthreaded=true -o $@ $+
+
+jemalloc_linux.o: jemalloc_linux.c
+       gcc $(CFLAGS) -c -DPIC -fPIC $(CPPFLAGS) -D__isthreaded=false -o $@ $+
+
+libjemalloc_mt.so.0: jemalloc_linux_mt.o
+       gcc -shared -lpthread -o $@ $+
+       ln -sf $@ libjemalloc_mt.so
+
+libjemalloc.so.0: jemalloc_linux.o
+       gcc -shared -lpthread -o $@ $+
+       ln -sf $@ libjemalloc.so
+
+clean:
+       rm -f *.o *.so.0 *.so
diff --git a/varnish-cache/lib/libjemalloc/README b/varnish-cache/lib/libjemalloc/README
new file mode 100644 (file)
index 0000000..5b80997
--- /dev/null
@@ -0,0 +1,55 @@
+This is a minimal-effort stand-alone jemalloc distribution for Linux.  The main
+rough spots are:
+
+* __isthreaded must be hard-coded, since the pthreads library really needs to
+  be involved in order to toggle it at run time.  Therefore, this distribution
+  builds two separate libraries:
+
+  + libjemalloc_mt.so.0 : Use for multi-threaded applications.
+  + libjemalloc.so.0 : Use for single-threaded applications.
+
+  Both libraries link against libpthread, though with a bit more code hacking,
+  this dependency could be removed for the single-threaded version.
+
+* MALLOC_MAG (thread-specific caching, using magazines) is disabled, because
+  special effort is required to avoid memory leaks when it is enabled.  To make
+  cleanup automatic, we would need help from the pthreads library.  If you
+  enable MALLOC_MAG, be sure to call _malloc_thread_cleanup() in each thread
+  just before it exits.
+
+* The code that determines the number of CPUs is sketchy.  The trouble is that
+  we must avoid any memory allocation during early initialization.
+
+In order to build:
+
+    make
+
+This generates two shared libraries, which you can either link against, or
+pre-load.
+
+Linking and running, where /path/to is the path to libjemalloc (-lpthread
+required even for libjemalloc.so):
+
+    gcc app.o -o app -L/path/to -ljemalloc_mt -lpthread
+    LD_LIBRARY_PATH=/path/to app
+
+Pre-loading:
+
+    LD_PRELOAD=/path/to/libjemalloc_mt.so.0 app
+
+jemalloc has a lot of run-time tuning options.  See the man page for details:
+
+    nroff -man malloc.3 | less
+
+In particular, take a look at the B, F, and N options.  If you enable
+MALLOC_MAG, look at the G and R options.
+
+If your application is crashing, or performance seems to be lacking, enable
+assertions and statistics gathering by removing MALLOC_PRODUCTION from CPPFLAGS
+in the Makefile.  In order to print a statistics summary at program exit, run
+your application like:
+
+    LD_PRELOAD=/path/to/libjemalloc_mt.so.0 MALLOC_OPTIONS=P app
+
+Please contact Jason Evans <jasone@canonware.com> with questions, comments, bug
+reports, etc.
diff --git a/varnish-cache/lib/libjemalloc/jemalloc_linux.c b/varnish-cache/lib/libjemalloc/jemalloc_linux.c
new file mode 100644 (file)
index 0000000..3b5d265
--- /dev/null
@@ -0,0 +1,5670 @@
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice(s), this list of conditions and the following disclaimer as
+ *    the first lines of this file unmodified other than the possible
+ *    addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice(s), this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems.  The following
+ * features are included for this purpose:
+ *
+ *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ *     contention and cache sloshing.
+ *
+ *   + Thread-specific caching is used if there are multiple threads, which
+ *     reduces the amount of locking.
+ *
+ *   + Cache line sharing between arenas is avoided for internal data
+ *     structures.
+ *
+ *   + Memory is managed in chunks and runs (chunks can be split into runs),
+ *     rather than as individual pages.  This provides a constant-time
+ *     mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained.  Allocations are broken into
+ * categories according to size class.  Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ *   |=======================================|
+ *   | Category | Subcategory      |    Size |
+ *   |=======================================|
+ *   | Small    | Tiny             |       2 |
+ *   |          |                  |       4 |
+ *   |          |                  |       8 |
+ *   |          |------------------+---------|
+ *   |          | Quantum-spaced   |      16 |
+ *   |          |                  |      32 |
+ *   |          |                  |      48 |
+ *   |          |                  |     ... |
+ *   |          |                  |      96 |
+ *   |          |                  |     112 |
+ *   |          |                  |     128 |
+ *   |          |------------------+---------|
+ *   |          | Cacheline-spaced |     192 |
+ *   |          |                  |     256 |
+ *   |          |                  |     320 |
+ *   |          |                  |     384 |
+ *   |          |                  |     448 |
+ *   |          |                  |     512 |
+ *   |          |------------------+---------|
+ *   |          | Sub-page         |     760 |
+ *   |          |                  |    1024 |
+ *   |          |                  |    1280 |
+ *   |          |                  |     ... |
+ *   |          |                  |    3328 |
+ *   |          |                  |    3584 |
+ *   |          |                  |    3840 |
+ *   |=======================================|
+ *   | Large                       |    4 kB |
+ *   |                             |    8 kB |
+ *   |                             |   12 kB |
+ *   |                             |     ... |
+ *   |                             | 1012 kB |
+ *   |                             | 1016 kB |
+ *   |                             | 1020 kB |
+ *   |=======================================|
+ *   | Huge                        |    1 MB |
+ *   |                             |    2 MB |
+ *   |                             |    3 MB |
+ *   |                             |     ... |
+ *   |=======================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ *   Small : Each size class is segregated into its own set of runs.  Each run
+ *           maintains a bitmap of which regions are free/allocated.
+ *
+ *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
+ *           in the associated arena chunk header maps.
+ *
+ *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ *          Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * Set to false if single-threaded.  Even better, rip out all of the code that
+ * doesn't get used if __isthreaded is false, so that libpthread isn't
+ * necessary.
+ */
+#ifndef __isthreaded
+#  define __isthreaded true
+#endif
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
+ * defaults the A and J runtime options to off.  These settings are appropriate
+ * for production systems.
+ */
+/* #define     MALLOC_PRODUCTION */
+
+#ifndef MALLOC_PRODUCTION
+   /*
+    * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+    * inline functions.
+    */
+#  define MALLOC_DEBUG
+
+   /* MALLOC_STATS enables statistics calculation. */
+#  define MALLOC_STATS
+#endif
+
+/*
+ * MALLOC_TINY enables support for tiny objects, which are smaller than one
+ * quantum.
+ */
+#define        MALLOC_TINY
+
+/*
+ * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
+ * objects.  This makes it possible to allocate/deallocate objects without any
+ * locking when the cache is in the steady state.
+ *
+ * If MALLOC_MAG is enabled, make sure that _malloc_thread_cleanup() is called
+ * by each thread just before it exits.
+ */
+/* #define     MALLOC_MAG */
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+#define        MALLOC_BALANCE
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS).  In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+/* #define     MALLOC_DSS */
+
+#define        _GNU_SOURCE /* For mremap(2). */
+#define        issetugid() 0
+#define        __DECONST(type, var)    ((type)(uintptr_t)(const void *)(var))
+
+/* __FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $"); */
+
+#include <sys/mman.h>
+#include <sys/param.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#include <sys/uio.h>
+
+#include <errno.h>
+#include <limits.h>
+#ifndef SIZE_T_MAX
+#  define SIZE_T_MAX   SIZE_MAX
+#endif
+#include <pthread.h>
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <strings.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <pthread.h>
+
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+   /* Disable inlining to make debugging easier. */
+#  define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define        STRERROR_BUF            64
+
+/*
+ * The const_size2bin table is sized according to PAGESIZE_2POW, but for
+ * correctness reasons, we never assume that
+ * (pagesize == (1U << * PAGESIZE_2POW)).
+ *
+ * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
+ */
+#ifdef __i386__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      2
+#  define CPU_SPINWAIT         __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#endif
+#ifdef __alpha__
+#  define PAGESIZE_2POW                13
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#  define NO_TLS
+#endif
+#ifdef __sparc64__
+#  define PAGESIZE_2POW                13
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#  define NO_TLS
+#endif
+#ifdef __amd64__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#  define CPU_SPINWAIT         __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         3
+#  define SIZEOF_PTR_2POW      2
+#  define NO_TLS
+#endif
+#ifdef __mips__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         3
+#  define SIZEOF_PTR_2POW      2
+#  define NO_TLS
+#endif
+#ifdef __powerpc__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      2
+#endif
+
+#define        QUANTUM                 ((size_t)(1U << QUANTUM_2POW))
+#define        QUANTUM_MASK            (QUANTUM - 1)
+
+#define        SIZEOF_PTR              (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+#  define SIZEOF_INT_2POW      2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+#  define NO_TLS
+#endif
+
+#ifdef NO_TLS
+   /* MALLOC_MAG requires TLS. */
+#  ifdef MALLOC_MAG
+#    undef MALLOC_MAG
+#  endif
+   /* MALLOC_BALANCE requires TLS. */
+#  ifdef MALLOC_BALANCE
+#    undef MALLOC_BALANCE
+#  endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define        CHUNK_2POW_DEFAULT      20
+
+/* Maximum number of dirty pages per arena. */
+#define        DIRTY_MAX_DEFAULT       (1U << 9)
+
+/*
+ * Maximum size of L1 cache line.  This is used to avoid cache line aliasing.
+ * In addition, this controls the spacing of cacheline-spaced size classes.
+ */
+#define        CACHELINE_2POW          6
+#define        CACHELINE               ((size_t)(1U << CACHELINE_2POW))
+#define        CACHELINE_MASK          (CACHELINE - 1)
+
+/*
+ * Subpages are an artificially designated partitioning of pages.  Their only
+ * purpose is to support subpage-spaced size classes.
+ *
+ * There must be at least 4 subpages per page, due to the way size classes are
+ * handled.
+ */
+#define        SUBPAGE_2POW            8
+#define        SUBPAGE                 ((size_t)(1U << SUBPAGE_2POW))
+#define        SUBPAGE_MASK            (SUBPAGE - 1)
+
+#ifdef MALLOC_TINY
+   /* Smallest size class to support. */
+#  define TINY_MIN_2POW                1
+#endif
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2.  Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define        QSPACE_MAX_2POW_DEFAULT 7
+
+/*
+ * Maximum size class that is a multiple of the cacheline, but not (necessarily)
+ * a power of 2.  Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define        CSPACE_MAX_2POW_DEFAULT 9
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints.  The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant).  This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define        RUN_BFP                 12
+/*                                    \/   Implicit binary fixed point. */
+#define        RUN_MAX_OVRHD           0x0000003dU
+#define        RUN_MAX_OVRHD_RELAX     0x00001800U
+
+/* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
+#define        RUN_MAX_SMALL   (12 * pagesize)
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU.  If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+#  define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock.  Backing off past a certain point
+ * can actually waste time.
+ */
+#define        SPIN_LIMIT_2POW         11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define        BLOCK_COST_2POW         4
+
+#ifdef MALLOC_MAG
+   /*
+    * Default magazine size, in bytes.  max_rounds is calculated to make
+    * optimal use of the space, leaving just enough room for the magazine
+    * header.
+    */
+#  define MAG_SIZE_2POW_DEFAULT        9
+#endif
+
+#ifdef MALLOC_BALANCE
+   /*
+    * We use an exponential moving average to track recent lock contention,
+    * where the size of the history window is N, and alpha=2/(N+1).
+    *
+    * Due to integer math rounding, very small values here can cause
+    * substantial degradation in accuracy, thus making the moving average decay
+    * faster than it would with precise calculation.
+    */
+#  define BALANCE_ALPHA_INV_2POW       9
+
+   /*
+    * Threshold value for the exponential moving contention average at which to
+    * re-assign a thread.
+    */
+#  define BALANCE_THRESHOLD_DEFAULT    (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+typedef pthread_mutex_t malloc_mutex_t;
+typedef pthread_mutex_t malloc_spinlock_t;
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+/* Used to avoid initialization races. */
+static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+       /*
+        * Number of allocation requests that corresponded to the size of this
+        * bin.
+        */
+       uint64_t        nrequests;
+
+#ifdef MALLOC_MAG
+       /* Number of magazine reloads from this bin. */
+       uint64_t        nmags;
+#endif
+
+       /* Total number of runs created for this bin's size class. */
+       uint64_t        nruns;
+
+       /*
+        * Total number of runs reused by extracting them from the runs tree for
+        * this bin's size class.
+        */
+       uint64_t        reruns;
+
+       /* High-water mark for this bin. */
+       unsigned long   highruns;
+
+       /* Current number of runs in this bin. */
+       unsigned long   curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+       /* Number of bytes currently mapped. */
+       size_t          mapped;
+
+       /*
+        * Total number of purge sweeps, total number of madvise calls made,
+        * and total pages purged in order to keep dirty unused memory under
+        * control.
+        */
+       uint64_t        npurge;
+       uint64_t        nmadvise;
+       uint64_t        purged;
+
+       /* Per-size-category statistics. */
+       size_t          allocated_small;
+       uint64_t        nmalloc_small;
+       uint64_t        ndalloc_small;
+
+       size_t          allocated_large;
+       uint64_t        nmalloc_large;
+       uint64_t        ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+       /* Number of times this arena reassigned a thread due to contention. */
+       uint64_t        nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+       /* Number of chunks that were allocated. */
+       uint64_t        nchunks;
+
+       /* High-water mark for number of chunks allocated. */
+       unsigned long   highchunks;
+
+       /*
+        * Current number of chunks allocated.  This value isn't maintained for
+        * any other purpose, so keep track of it in order to be able to set
+        * highchunks.
+        */
+       unsigned long   curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+#ifdef MALLOC_DSS
+       /* Linkage for the size/address-ordered tree. */
+       rb_node(extent_node_t) link_szad;
+#endif
+
+       /* Linkage for the address-ordered tree. */
+       rb_node(extent_node_t) link_ad;
+
+       /* Pointer to the extent that this tree node is responsible for. */
+       void    *addr;
+
+       /* Total region size. */
+       size_t  size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+       /*
+        * Linkage for run trees.  There are two disjoint uses:
+        *
+        * 1) arena_t's runs_avail tree.
+        * 2) arena_run_t conceptually uses this linkage for in-use non-full
+        *    runs, rather than directly embedding linkage.
+        */
+       rb_node(arena_chunk_map_t)      link;
+
+       /*
+        * Run address (or size) and various flags are stored together.  The bit
+        * layout looks like (assuming 32-bit system):
+        *
+        *   ???????? ???????? ????---- ---kdzla
+        *
+        * ? : Unallocated: Run address for first/last pages, unset for internal
+        *                  pages.
+        *     Small: Run address.
+        *     Large: Run size for first page, unset for trailing pages.
+        * - : Unused.
+        * k : key?
+        * d : dirty?
+        * z : zeroed?
+        * l : large?
+        * a : allocated?
+        *
+        * Following are example bit patterns for the three types of runs.
+        *
+        * r : run address
+        * s : run size
+        * x : don't care
+        * - : 0
+        * [dzla] : bit set
+        *
+        *   Unallocated:
+        *     ssssssss ssssssss ssss---- --------
+        *     xxxxxxxx xxxxxxxx xxxx---- ----d---
+        *     ssssssss ssssssss ssss---- -----z--
+        *
+        *   Small:
+        *     rrrrrrrr rrrrrrrr rrrr---- -------a
+        *     rrrrrrrr rrrrrrrr rrrr---- -------a
+        *     rrrrrrrr rrrrrrrr rrrr---- -------a
+        *
+        *   Large:
+        *     ssssssss ssssssss ssss---- ------la
+        *     -------- -------- -------- ------la
+        *     -------- -------- -------- ------la
+        */
+       size_t                          bits;
+#define        CHUNK_MAP_KEY           ((size_t)0x10U)
+#define        CHUNK_MAP_DIRTY         ((size_t)0x08U)
+#define        CHUNK_MAP_ZEROED        ((size_t)0x04U)
+#define        CHUNK_MAP_LARGE         ((size_t)0x02U)
+#define        CHUNK_MAP_ALLOCATED     ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+       /* Arena that owns the chunk. */
+       arena_t         *arena;
+
+       /* Linkage for the arena's chunks_dirty tree. */
+       rb_node(arena_chunk_t) link_dirty;
+
+       /* Number of dirty pages. */
+       size_t          ndirty;
+
+       /* Map of pages within chunk that keeps track of free/large/small. */
+       arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+       uint32_t        magic;
+#  define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+       /* Bin this run is associated with. */
+       arena_bin_t     *bin;
+
+       /* Index of first element that might have a free region. */
+       unsigned        regs_minelm;
+
+       /* Number of free regions in run. */
+       unsigned        nfree;
+
+       /* Bitmask of in-use regions (0: in use, 1: free). */
+       unsigned        regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+       /*
+        * Current run being used to service allocations of this bin's size
+        * class.
+        */
+       arena_run_t     *runcur;
+
+       /*
+        * Tree of non-full runs.  This tree is used when looking for an
+        * existing run when runcur is no longer usable.  We choose the
+        * non-full run that is lowest in memory; this policy tends to keep
+        * objects packed well, and it can also help reduce the number of
+        * almost-empty chunks.
+        */
+       arena_run_tree_t runs;
+
+       /* Size of regions in a run for this bin's size class. */
+       size_t          reg_size;
+
+       /* Total size of a run for this bin's size class. */
+       size_t          run_size;
+
+       /* Total number of regions in a run for this bin's size class. */
+       uint32_t        nregs;
+
+       /* Number of elements in a run's regs_mask for this bin's size class. */
+       uint32_t        regs_mask_nelms;
+
+       /* Offset of first region in a run for this bin's size class. */
+       uint32_t        reg0_offset;
+
+#ifdef MALLOC_STATS
+       /* Bin statistics. */
+       malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+       uint32_t                magic;
+#  define ARENA_MAGIC 0x947d3d24
+#endif
+
+       /* All operations on this arena require that lock be locked. */
+       pthread_mutex_t         lock;
+
+#ifdef MALLOC_STATS
+       arena_stats_t           stats;
+#endif
+
+       /* Tree of dirty-page-containing chunks this arena manages. */
+       arena_chunk_tree_t      chunks_dirty;
+
+       /*
+        * In order to avoid rapid chunk allocation/deallocation when an arena
+        * oscillates right on the cusp of needing a new chunk, cache the most
+        * recently freed chunk.  The spare is left in the arena's chunk trees
+        * until it is deleted.
+        *
+        * There is one spare chunk per arena, rather than one spare total, in
+        * order to avoid interactions between multiple threads that could make
+        * a single spare inadequate.
+        */
+       arena_chunk_t           *spare;
+
+       /*
+        * Current count of pages within unused runs that are potentially
+        * dirty, and for which madvise(... MADV_DONTNEED) has not been called.
+        * By tracking this, we can institute a limit on how much dirty unused
+        * memory is mapped for each arena.
+        */
+       size_t                  ndirty;
+
+       /*
+        * Size/address-ordered tree of this arena's available runs.  This tree
+        * is used for first-best-fit run allocation.
+        */
+       arena_avail_tree_t      runs_avail;
+
+#ifdef MALLOC_BALANCE
+       /*
+        * The arena load balancing machinery needs to keep track of how much
+        * lock contention there is.  This value is exponentially averaged.
+        */
+       uint32_t                contention;
+#endif
+
+       /*
+        * bins is used to store rings of free regions of the following sizes,
+        * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+        *
+        *   bins[i] | size |
+        *   --------+------+
+        *        0  |    2 |
+        *        1  |    4 |
+        *        2  |    8 |
+        *   --------+------+
+        *        3  |   16 |
+        *        4  |   32 |
+        *        5  |   48 |
+        *        6  |   64 |
+        *           :      :
+        *           :      :
+        *       33  |  496 |
+        *       34  |  512 |
+        *   --------+------+
+        *       35  | 1024 |
+        *       36  | 2048 |
+        *   --------+------+
+        */
+       arena_bin_t             bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Magazine data structures.
+ */
+
+#ifdef MALLOC_MAG
+typedef struct mag_s mag_t;
+struct mag_s {
+       size_t          binind; /* Index of associated bin. */
+       size_t          nrounds;
+       void            *rounds[1]; /* Dynamically sized. */
+};
+
+/*
+ * Magazines are lazily allocated, but once created, they remain until the
+ * associated mag_rack is destroyed.
+ */
+typedef struct bin_mags_s bin_mags_t;
+struct bin_mags_s {
+       mag_t   *curmag;
+       mag_t   *sparemag;
+};
+
+typedef struct mag_rack_s mag_rack_t;
+struct mag_rack_s {
+       bin_mags_t      bin_mags[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned                ncpus;
+
+/* VM page size. */
+static size_t          pagesize;
+static size_t          pagesize_mask;
+static size_t          pagesize_2pow;
+
+/* Various bin-related settings. */
+#ifdef MALLOC_TINY             /* Number of (2^n)-spaced tiny bins. */
+#  define              ntbins  ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
+#else
+#  define              ntbins  0
+#endif
+static unsigned                nqbins; /* Number of quantum-spaced bins. */
+static unsigned                ncbins; /* Number of cacheline-spaced bins. */
+static unsigned                nsbins; /* Number of subpage-spaced bins. */
+static unsigned                nbins;
+#ifdef MALLOC_TINY
+#  define              tspace_max      ((size_t)(QUANTUM >> 1))
+#endif
+#define                        qspace_min      QUANTUM
+static size_t          qspace_max;
+static size_t          cspace_min;
+static size_t          cspace_max;
+static size_t          sspace_min;
+static size_t          sspace_max;
+#define                        bin_maxclass    sspace_max
+
+static uint8_t const   *size2bin;
+/*
+ * const_size2bin is a static constant lookup table that in the common case can
+ * be used as-is for size2bin.  For dynamically linked programs, this avoids
+ * a page of memory overhead per process.
+ */
+#define        S2B_1(i)        i,
+#define        S2B_2(i)        S2B_1(i) S2B_1(i)
+#define        S2B_4(i)        S2B_2(i) S2B_2(i)
+#define        S2B_8(i)        S2B_4(i) S2B_4(i)
+#define        S2B_16(i)       S2B_8(i) S2B_8(i)
+#define        S2B_32(i)       S2B_16(i) S2B_16(i)
+#define        S2B_64(i)       S2B_32(i) S2B_32(i)
+#define        S2B_128(i)      S2B_64(i) S2B_64(i)
+#define        S2B_256(i)      S2B_128(i) S2B_128(i)
+static const uint8_t   const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
+       S2B_1(0xffU)            /*    0 */
+#if (QUANTUM_2POW == 4)
+/* 64-bit system ************************/
+#  ifdef MALLOC_TINY
+       S2B_2(0)                /*    2 */
+       S2B_2(1)                /*    4 */
+       S2B_4(2)                /*    8 */
+       S2B_8(3)                /*   16 */
+#    define S2B_QMIN 3
+#  else
+       S2B_16(0)               /*   16 */
+#    define S2B_QMIN 0
+#  endif
+       S2B_16(S2B_QMIN + 1)    /*   32 */
+       S2B_16(S2B_QMIN + 2)    /*   48 */
+       S2B_16(S2B_QMIN + 3)    /*   64 */
+       S2B_16(S2B_QMIN + 4)    /*   80 */
+       S2B_16(S2B_QMIN + 5)    /*   96 */
+       S2B_16(S2B_QMIN + 6)    /*  112 */
+       S2B_16(S2B_QMIN + 7)    /*  128 */
+#  define S2B_CMIN (S2B_QMIN + 8)
+#else
+/* 32-bit system ************************/
+#  ifdef MALLOC_TINY
+       S2B_2(0)                /*    2 */
+       S2B_2(1)                /*    4 */
+       S2B_4(2)                /*    8 */
+#    define S2B_QMIN 2
+#  else
+       S2B_8(0)                /*    8 */
+#    define S2B_QMIN 0
+#  endif
+       S2B_8(S2B_QMIN + 1)     /*   16 */
+       S2B_8(S2B_QMIN + 2)     /*   24 */
+       S2B_8(S2B_QMIN + 3)     /*   32 */
+       S2B_8(S2B_QMIN + 4)     /*   40 */
+       S2B_8(S2B_QMIN + 5)     /*   48 */
+       S2B_8(S2B_QMIN + 6)     /*   56 */
+       S2B_8(S2B_QMIN + 7)     /*   64 */
+       S2B_8(S2B_QMIN + 8)     /*   72 */
+       S2B_8(S2B_QMIN + 9)     /*   80 */
+       S2B_8(S2B_QMIN + 10)    /*   88 */
+       S2B_8(S2B_QMIN + 11)    /*   96 */
+       S2B_8(S2B_QMIN + 12)    /*  104 */
+       S2B_8(S2B_QMIN + 13)    /*  112 */
+       S2B_8(S2B_QMIN + 14)    /*  120 */
+       S2B_8(S2B_QMIN + 15)    /*  128 */
+#  define S2B_CMIN (S2B_QMIN + 16)
+#endif
+/****************************************/
+       S2B_64(S2B_CMIN + 0)    /*  192 */
+       S2B_64(S2B_CMIN + 1)    /*  256 */
+       S2B_64(S2B_CMIN + 2)    /*  320 */
+       S2B_64(S2B_CMIN + 3)    /*  384 */
+       S2B_64(S2B_CMIN + 4)    /*  448 */
+       S2B_64(S2B_CMIN + 5)    /*  512 */
+#  define S2B_SMIN (S2B_CMIN + 6)
+       S2B_256(S2B_SMIN + 0)   /*  768 */
+       S2B_256(S2B_SMIN + 1)   /* 1024 */
+       S2B_256(S2B_SMIN + 2)   /* 1280 */
+       S2B_256(S2B_SMIN + 3)   /* 1536 */
+       S2B_256(S2B_SMIN + 4)   /* 1792 */
+       S2B_256(S2B_SMIN + 5)   /* 2048 */
+       S2B_256(S2B_SMIN + 6)   /* 2304 */
+       S2B_256(S2B_SMIN + 7)   /* 2560 */
+       S2B_256(S2B_SMIN + 8)   /* 2816 */
+       S2B_256(S2B_SMIN + 9)   /* 3072 */
+       S2B_256(S2B_SMIN + 10)  /* 3328 */
+       S2B_256(S2B_SMIN + 11)  /* 3584 */
+       S2B_256(S2B_SMIN + 12)  /* 3840 */
+#if (PAGESIZE_2POW == 13)
+       S2B_256(S2B_SMIN + 13)  /* 4096 */
+       S2B_256(S2B_SMIN + 14)  /* 4352 */
+       S2B_256(S2B_SMIN + 15)  /* 4608 */
+       S2B_256(S2B_SMIN + 16)  /* 4864 */
+       S2B_256(S2B_SMIN + 17)  /* 5120 */
+       S2B_256(S2B_SMIN + 18)  /* 5376 */
+       S2B_256(S2B_SMIN + 19)  /* 5632 */
+       S2B_256(S2B_SMIN + 20)  /* 5888 */
+       S2B_256(S2B_SMIN + 21)  /* 6144 */
+       S2B_256(S2B_SMIN + 22)  /* 6400 */
+       S2B_256(S2B_SMIN + 23)  /* 6656 */
+       S2B_256(S2B_SMIN + 24)  /* 6912 */
+       S2B_256(S2B_SMIN + 25)  /* 7168 */
+       S2B_256(S2B_SMIN + 26)  /* 7424 */
+       S2B_256(S2B_SMIN + 27)  /* 7680 */
+       S2B_256(S2B_SMIN + 28)  /* 7936 */
+#endif
+};
+#undef S2B_1
+#undef S2B_2
+#undef S2B_4
+#undef S2B_8
+#undef S2B_16
+#undef S2B_32
+#undef S2B_64
+#undef S2B_128
+#undef S2B_256
+#undef S2B_QMIN
+#undef S2B_CMIN
+#undef S2B_SMIN
+
+#ifdef MALLOC_MAG
+static size_t          max_rounds;
+#endif
+
+/* Various chunk-related settings. */
+static size_t          chunksize;
+static size_t          chunksize_mask; /* (chunksize - 1). */
+static size_t          chunk_npages;
+static size_t          arena_chunk_header_npages;
+static size_t          arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t  huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t   huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls.  This avoids malloc races among threads, though it
+ * does not protect against races with threads that call sbrk() directly.
+ */
+static malloc_mutex_t  dss_mtx;
+/* Base address of the DSS. */
+static void            *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void            *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void            *dss_max;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering).  These are used when allocating chunks, in an attempt to re-use
+ * address space.  Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_t   dss_chunks_szad;
+static extent_tree_t   dss_chunks_ad;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t                huge_nmalloc;
+static uint64_t                huge_ndalloc;
+static size_t          huge_allocated;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations.  These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void            *base_pages;
+static void            *base_next_addr;
+static void            *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t   *base_nodes;
+static malloc_mutex_t  base_mtx;
+#ifdef MALLOC_STATS
+static size_t          base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests.  Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t         **arenas;
+static unsigned                narenas;
+#ifndef NO_TLS
+#  ifdef MALLOC_BALANCE
+static unsigned                narenas_2pow;
+#  else
+static unsigned                next_arena;
+#  endif
+#endif
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+static __thread arena_t        *arenas_map;
+#endif
+
+#ifdef MALLOC_MAG
+/*
+ * Map of thread-specific magazine racks, used for thread-specific object
+ * caching.
+ */
+static __thread mag_rack_t     *mag_rack;
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t   stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char     *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool    opt_abort = true;
+static bool    opt_junk = true;
+#else
+static bool    opt_abort = false;
+static bool    opt_junk = false;
+#endif
+#ifdef MALLOC_DSS
+static bool    opt_dss = true;
+static bool    opt_mmap = true;
+#endif
+#ifdef MALLOC_MAG
+static bool    opt_mag = true;
+static size_t  opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
+#endif
+static size_t  opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t        opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool    opt_print_stats = false;
+static size_t  opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
+static size_t  opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
+static size_t  opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static bool    opt_utrace = false;
+static bool    opt_sysv = false;
+static bool    opt_xmalloc = false;
+static bool    opt_zero = false;
+static int     opt_narenas_lshift = 0;
+
+typedef struct {
+       void    *p;
+       size_t  s;
+       void    *r;
+} malloc_utrace_t;
+
+#ifdef MALLOC_STATS
+#define        UTRACE(a, b, c)                                                 \
+       if (opt_utrace) {                                               \
+               malloc_utrace_t ut;                                     \
+               ut.p = (a);                                             \
+               ut.s = (b);                                             \
+               ut.r = (c);                                             \
+               utrace(&ut, sizeof(ut));                                \
+       }
+#else
+#define        UTRACE(a, b, c)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static bool    malloc_mutex_init(malloc_mutex_t *mutex);
+static bool    malloc_spin_init(pthread_mutex_t *lock);
+static void    wrtmessage(const char *p1, const char *p2, const char *p3,
+               const char *p4);
+#ifdef MALLOC_STATS
+static void    malloc_printf(const char *format, ...);
+#endif
+static char    *umax2s(uintmax_t x, char *s);
+#ifdef MALLOC_DSS
+static bool    base_pages_alloc_dss(size_t minsize);
+#endif
+static bool    base_pages_alloc_mmap(size_t minsize);
+static bool    base_pages_alloc(size_t minsize);
+static void    *base_alloc(size_t size);
+static void    *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void    base_node_dealloc(extent_node_t *node);
+#ifdef MALLOC_STATS
+static void    stats_print(arena_t *arena);
+#endif
+static void    *pages_map(void *addr, size_t size);
+static void    pages_unmap(void *addr, size_t size);
+#ifdef MALLOC_DSS
+static void    *chunk_alloc_dss(size_t size);
+static void    *chunk_recycle_dss(size_t size, bool zero);
+#endif
+static void    *chunk_alloc_mmap(size_t size);
+static void    *chunk_alloc(size_t size, bool zero);
+#ifdef MALLOC_DSS
+static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
+static bool    chunk_dealloc_dss(void *chunk, size_t size);
+#endif
+static void    chunk_dealloc_mmap(void *chunk, size_t size);
+static void    chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void    arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+    bool large, bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void    arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
+    bool zero);
+static void    arena_purge(arena_t *arena);
+static void    arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void    arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+    arena_run_t *run, size_t oldsize, size_t newsize);
+static void    arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+    arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void    *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t  arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void    arena_lock_balance_hard(arena_t *arena);
+#endif
+#ifdef MALLOC_MAG
+static void    mag_load(mag_t *mag);
+#endif
+static void    *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void    *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+    size_t alloc_size);
+static size_t  arena_salloc(const void *ptr);
+#ifdef MALLOC_MAG
+static void    mag_unload(mag_t *mag);
+#endif
+static void    arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr);
+static void    arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t size, size_t oldsize);
+static bool    arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t size, size_t oldsize);
+static bool    arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void    *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool    arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+#ifdef MALLOC_MAG
+static mag_t   *mag_create(arena_t *arena, size_t binind);
+static void    mag_destroy(mag_t *mag);
+static mag_rack_t *mag_rack_create(arena_t *arena);
+static void    mag_rack_destroy(mag_rack_t *rack);
+#endif
+static void    *huge_malloc(size_t size, bool zero);
+static void    *huge_palloc(size_t alignment, size_t size);
+static void    *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void    huge_dalloc(void *ptr);
+static void    malloc_print_stats(void);
+#ifdef MALLOC_DEBUG
+static void    size2bin_validate(void);
+#endif
+static bool    size2bin_init(void);
+static bool    size2bin_init_hard(void);
+static unsigned        malloc_ncpus(void);
+static bool    malloc_init_hard(void);
+void           _malloc_prefork(void);
+void           _malloc_postfork(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+
+       write(STDERR_FILENO, p1, strlen(p1));
+       write(STDERR_FILENO, p2, strlen(p2));
+       write(STDERR_FILENO, p3, strlen(p3));
+       write(STDERR_FILENO, p4, strlen(p4));
+}
+
+#define        _malloc_message malloc_message
+void   (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+           const char *p4) = wrtmessage;
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries.  umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited to
+ * MALLOC_STATS code.
+ */
+#define        UMAX2S_BUFSIZE  21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+       unsigned i;
+
+       i = UMAX2S_BUFSIZE - 1;
+       s[i] = '\0';
+       do {
+               i--;
+               s[i] = "0123456789"[x % 10];
+               x /= 10;
+       } while (x > 0);
+
+       return (&s[i]);
+}
+
+/*
+ * Define a custom assert() in order to reduce the chances of deadlock during
+ * assertion failure.
+ */
+#ifdef MALLOC_DEBUG
+#  define assert(e) do {                                               \
+       if (!(e)) {                                                     \
+               char line_buf[UMAX2S_BUFSIZE];                          \
+               _malloc_message(__FILE__, ":", umax2s(__LINE__,         \
+                   line_buf), ": Failed assertion: ");                 \
+               _malloc_message("\"", #e, "\"\n", "");                  \
+               abort();                                                \
+       }                                                               \
+} while (0)
+#else
+#define assert(e)
+#endif
+
+#ifdef MALLOC_STATS
+static int
+utrace(const void *addr, size_t len)
+{
+       malloc_utrace_t *ut = (malloc_utrace_t *)addr;
+
+       assert(len == sizeof(malloc_utrace_t));
+
+       if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
+               malloc_printf("%d x USER malloc_init()\n", getpid());
+       else if (ut->p == NULL && ut->r != NULL) {
+               malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
+                   ut->s);
+       } else if (ut->p != NULL && ut->r != NULL) {
+               malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
+                   ut->r, ut->p, ut->s);
+       } else
+               malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
+
+       return (0);
+}
+#endif
+
+static inline const char *
+_getprogname(void)
+{
+
+       return ("<jemalloc>");
+}
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+       char buf[4096];
+       va_list ap;
+
+       va_start(ap, format);
+       vsnprintf(buf, sizeof(buf), format, ap);
+       va_end(ap);
+       _malloc_message(buf, "", "", "");
+}
+#endif
+
+/******************************************************************************/
+/*
+ * Begin mutex.
+ */
+
+static bool
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+       pthread_mutexattr_t attr;
+
+       if (pthread_mutexattr_init(&attr) != 0)
+               return (true);
+       pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+       if (pthread_mutex_init(mutex, &attr) != 0) {
+               pthread_mutexattr_destroy(&attr);
+               return (true);
+       }
+       pthread_mutexattr_destroy(&attr);
+
+       return (false);
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+       if (__isthreaded)
+               pthread_mutex_lock(mutex);
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+       if (__isthreaded)
+               pthread_mutex_unlock(mutex);
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock.  Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+       if (pthread_mutex_init(lock, NULL) != 0)
+               return (true);
+
+       return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+       unsigned ret = 0;
+
+       if (__isthreaded) {
+               if (pthread_mutex_trylock(lock) != 0) {
+                       unsigned i;
+                       volatile unsigned j;
+
+                       /* Exponentially back off. */
+                       for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+                               for (j = 0; j < (1U << i); j++) {
+                                       ret++;
+                                       CPU_SPINWAIT;
+                               }
+
+                               if (pthread_mutex_trylock(lock) == 0)
+                                       return (ret);
+                       }
+
+                       /*
+                        * Spinning failed.  Block until the lock becomes
+                        * available, in order to avoid indefinite priority
+                        * inversion.
+                        */
+                       pthread_mutex_lock(lock);
+                       assert((ret << BLOCK_COST_2POW) != 0);
+                       return (ret << BLOCK_COST_2POW);
+               }
+       }
+
+       return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+       if (__isthreaded)
+               pthread_mutex_unlock(lock);
+}
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define        CHUNK_ADDR2BASE(a)                                              \
+       ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define        CHUNK_ADDR2OFFSET(a)                                            \
+       ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define        CHUNK_CEILING(s)                                                \
+       (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest quantum multiple that is >= a. */
+#define        QUANTUM_CEILING(a)                                              \
+       (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define        CACHELINE_CEILING(s)                                            \
+       (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
+
+/* Return the smallest subpage multiple that is >= s. */
+#define        SUBPAGE_CEILING(s)                                              \
+       (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define        PAGE_CEILING(s)                                                 \
+       (((s) + pagesize_mask) & ~pagesize_mask)
+
+#ifdef MALLOC_TINY
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+       x--;
+       x |= x >> 1;
+       x |= x >> 2;
+       x |= x >> 4;
+       x |= x >> 8;
+       x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+       x |= x >> 32;
+#endif
+       x++;
+       return (x);
+}
+#endif
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ *   prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ *   a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ *   c == Odd number (relatively prime to 2^n).
+ *   m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position.  For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc.  For this reason, we prefer to use the upper
+ * bits.
+ */
+#  define PRN_DEFINE(suffix, var, a, c)                                        \
+static inline void                                                     \
+sprn_##suffix(uint32_t seed)                                           \
+{                                                                      \
+       var = seed;                                                     \
+}                                                                      \
+                                                                       \
+static inline uint32_t                                                 \
+prn_##suffix(uint32_t lg_range)                                                \
+{                                                                      \
+       uint32_t ret, x;                                                \
+                                                                       \
+       assert(lg_range > 0);                                           \
+       assert(lg_range <= 32);                                         \
+                                                                       \
+       x = (var * (a)) + (c);                                          \
+       var = x;                                                        \
+       ret = x >> (32 - lg_range);                                     \
+                                                                       \
+       return (ret);                                                   \
+}
+#  define SPRN(suffix, seed)   sprn_##suffix(seed)
+#  define PRN(suffix, lg_range)        prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+       /*
+        * Do special DSS allocation here, since base allocations don't need to
+        * be chunk-aligned.
+        */
+       malloc_mutex_lock(&dss_mtx);
+       if (dss_prev != (void *)-1) {
+               intptr_t incr;
+               size_t csize = CHUNK_CEILING(minsize);
+
+               do {
+                       /* Get the current end of the DSS. */
+                       dss_max = sbrk(0);
+
+                       /*
+                        * Calculate how much padding is necessary to
+                        * chunk-align the end of the DSS.  Don't worry about
+                        * dss_max not being chunk-aligned though.
+                        */
+                       incr = (intptr_t)chunksize
+                           - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+                       assert(incr >= 0);
+                       if ((size_t)incr < minsize)
+                               incr += csize;
+
+                       dss_prev = sbrk(incr);
+                       if (dss_prev == dss_max) {
+                               /* Success. */
+                               dss_max = (void *)((intptr_t)dss_prev + incr);
+                               base_pages = dss_prev;
+                               base_next_addr = base_pages;
+                               base_past_addr = dss_max;
+#ifdef MALLOC_STATS
+                               base_mapped += incr;
+#endif
+                               malloc_mutex_unlock(&dss_mtx);
+                               return (false);
+                       }
+               } while (dss_prev != (void *)-1);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (true);
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+       size_t csize;
+
+       assert(minsize != 0);
+       csize = PAGE_CEILING(minsize);
+       base_pages = pages_map(NULL, csize);
+       if (base_pages == NULL)
+               return (true);
+       base_next_addr = base_pages;
+       base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+       base_mapped += csize;
+#endif
+
+       return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               if (base_pages_alloc_dss(minsize) == false)
+                       return (false);
+       }
+
+       if (opt_mmap && minsize != 0)
+#endif
+       {
+               if (base_pages_alloc_mmap(minsize) == false)
+                       return (false);
+       }
+
+       return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+       void *ret;
+       size_t csize;
+
+       /* Round size up to nearest multiple of the cacheline size. */
+       csize = CACHELINE_CEILING(size);
+
+       malloc_mutex_lock(&base_mtx);
+       /* Make sure there's enough space for the allocation. */
+       if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+               if (base_pages_alloc(csize)) {
+                       malloc_mutex_unlock(&base_mtx);
+                       return (NULL);
+               }
+       }
+       /* Allocate. */
+       ret = base_next_addr;
+       base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+       malloc_mutex_unlock(&base_mtx);
+
+       return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+       void *ret;
+
+       ret = base_alloc(number * size);
+       memset(ret, 0, number * size);
+
+       return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+       extent_node_t *ret;
+
+       malloc_mutex_lock(&base_mtx);
+       if (base_nodes != NULL) {
+               ret = base_nodes;
+               base_nodes = *(extent_node_t **)ret;
+               malloc_mutex_unlock(&base_mtx);
+       } else {
+               malloc_mutex_unlock(&base_mtx);
+               ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+       }
+
+       return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+       malloc_mutex_lock(&base_mtx);
+       *(extent_node_t **)node = base_nodes;
+       base_nodes = node;
+       malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+       unsigned i, gap_start;
+
+       malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+           " %llu madvise%s, %llu page%s purged\n",
+           arena->ndirty, arena->ndirty == 1 ? "" : "s",
+           arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+           arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+           arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+
+       malloc_printf("            allocated      nmalloc      ndalloc\n");
+       malloc_printf("small:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_small, arena->stats.nmalloc_small,
+           arena->stats.ndalloc_small);
+       malloc_printf("large:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_large, arena->stats.nmalloc_large,
+           arena->stats.ndalloc_large);
+       malloc_printf("total:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_small + arena->stats.allocated_large,
+           arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+           arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+       malloc_printf("mapped:  %12zu\n", arena->stats.mapped);
+
+#ifdef MALLOC_MAG
+       if (__isthreaded && opt_mag) {
+               malloc_printf("bins:     bin   size regs pgs      mags   "
+                   "newruns    reruns maxruns curruns\n");
+       } else {
+#endif
+               malloc_printf("bins:     bin   size regs pgs  requests   "
+                   "newruns    reruns maxruns curruns\n");
+#ifdef MALLOC_MAG
+       }
+#endif
+       for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
+               if (arena->bins[i].stats.nruns == 0) {
+                       if (gap_start == UINT_MAX)
+                               gap_start = i;
+               } else {
+                       if (gap_start != UINT_MAX) {
+                               if (i > gap_start + 1) {
+                                       /* Gap of more than one size class. */
+                                       malloc_printf("[%u..%u]\n",
+                                           gap_start, i - 1);
+                               } else {
+                                       /* Gap of one size class. */
+                                       malloc_printf("[%u]\n", gap_start);
+                               }
+                               gap_start = UINT_MAX;
+                       }
+                       malloc_printf(
+                           "%13u %1s %4u %4u %3u %9llu %9llu"
+                           " %9llu %7lu %7lu\n",
+                           i,
+                           i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
+                           i < ntbins + nqbins + ncbins ? "C" : "S",
+                           arena->bins[i].reg_size,
+                           arena->bins[i].nregs,
+                           arena->bins[i].run_size >> pagesize_2pow,
+#ifdef MALLOC_MAG
+                           (__isthreaded && opt_mag) ?
+                           arena->bins[i].stats.nmags :
+#endif
+                           arena->bins[i].stats.nrequests,
+                           arena->bins[i].stats.nruns,
+                           arena->bins[i].stats.reruns,
+                           arena->bins[i].stats.highruns,
+                           arena->bins[i].stats.curruns);
+               }
+       }
+       if (gap_start != UINT_MAX) {
+               if (i > gap_start + 1) {
+                       /* Gap of more than one size class. */
+                       malloc_printf("[%u..%u]\n", gap_start, i - 1);
+               } else {
+                       /* Gap of one size class. */
+                       malloc_printf("[%u]\n", gap_start);
+               }
+       }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+#ifdef MALLOC_DSS
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+       int ret;
+       size_t a_size = a->size;
+       size_t b_size = b->size;
+
+       ret = (a_size > b_size) - (a_size < b_size);
+       if (ret == 0) {
+               uintptr_t a_addr = (uintptr_t)a->addr;
+               uintptr_t b_addr = (uintptr_t)b->addr;
+
+               ret = (a_addr > b_addr) - (a_addr < b_addr);
+       }
+
+       return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
+    link_szad, extent_szad_comp)
+#endif
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+       uintptr_t a_addr = (uintptr_t)a->addr;
+       uintptr_t b_addr = (uintptr_t)b->addr;
+
+       return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+    extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+static void *
+pages_map(void *addr, size_t size)
+{
+       void *ret;
+
+       /*
+        * We don't use MAP_FIXED here, because it can cause the *replacement*
+        * of existing mappings, and we only want to create new mappings.
+        */
+       ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+           -1, 0);
+       assert(ret != NULL);
+
+       if (ret == MAP_FAILED)
+               ret = NULL;
+       else if (addr != NULL && ret != addr) {
+               /*
+                * We succeeded in mapping memory, but not in the right place.
+                */
+               if (munmap(ret, size) == -1) {
+                       char buf[STRERROR_BUF];
+
+                       strerror_r(errno, buf, sizeof(buf));
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in munmap(): ", buf, "\n");
+                       if (opt_abort)
+                               abort();
+               }
+               ret = NULL;
+       }
+
+       assert(ret == NULL || (addr == NULL && ret != addr)
+           || (addr != NULL && ret == addr));
+       return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+       if (munmap(addr, size) == -1) {
+               char buf[STRERROR_BUF];
+
+               strerror_r(errno, buf, sizeof(buf));
+               _malloc_message(_getprogname(),
+                   ": (malloc) Error in munmap(): ", buf, "\n");
+               if (opt_abort)
+                       abort();
+       }
+}
+
+#ifdef MALLOC_DSS
+static void *
+chunk_alloc_dss(size_t size)
+{
+
+       /*
+        * sbrk() uses a signed increment argument, so take care not to
+        * interpret a huge allocation request as a negative increment.
+        */
+       if ((intptr_t)size < 0)
+               return (NULL);
+
+       malloc_mutex_lock(&dss_mtx);
+       if (dss_prev != (void *)-1) {
+               intptr_t incr;
+
+               /*
+                * The loop is necessary to recover from races with other
+                * threads that are using the DSS for something other than
+                * malloc.
+                */
+               do {
+                       void *ret;
+
+                       /* Get the current end of the DSS. */
+                       dss_max = sbrk(0);
+
+                       /*
+                        * Calculate how much padding is necessary to
+                        * chunk-align the end of the DSS.
+                        */
+                       incr = (intptr_t)size
+                           - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+                       if (incr == (intptr_t)size)
+                               ret = dss_max;
+                       else {
+                               ret = (void *)((intptr_t)dss_max + incr);
+                               incr += size;
+                       }
+
+                       dss_prev = sbrk(incr);
+                       if (dss_prev == dss_max) {
+                               /* Success. */
+                               dss_max = (void *)((intptr_t)dss_prev + incr);
+                               malloc_mutex_unlock(&dss_mtx);
+                               return (ret);
+                       }
+               } while (dss_prev != (void *)-1);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (NULL);
+}
+
+static void *
+chunk_recycle_dss(size_t size, bool zero)
+{
+       extent_node_t *node, key;
+
+       key.addr = NULL;
+       key.size = size;
+       malloc_mutex_lock(&dss_mtx);
+       node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
+       if (node != NULL) {
+               void *ret = node->addr;
+
+               /* Remove node from the tree. */
+               extent_tree_szad_remove(&dss_chunks_szad, node);
+               if (node->size == size) {
+                       extent_tree_ad_remove(&dss_chunks_ad, node);
+                       base_node_dealloc(node);
+               } else {
+                       /*
+                        * Insert the remainder of node's address range as a
+                        * smaller chunk.  Its position within dss_chunks_ad
+                        * does not change.
+                        */
+                       assert(node->size > size);
+                       node->addr = (void *)((uintptr_t)node->addr + size);
+                       node->size -= size;
+                       extent_tree_szad_insert(&dss_chunks_szad, node);
+               }
+               malloc_mutex_unlock(&dss_mtx);
+
+               if (zero)
+                       memset(ret, 0, size);
+               return (ret);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (NULL);
+}
+#endif
+
+static void *
+chunk_alloc_mmap(size_t size)
+{
+       void *ret;
+       size_t offset;
+
+       /*
+        * Ideally, there would be a way to specify alignment to mmap() (like
+        * NetBSD has), but in the absence of such a feature, we have to work
+        * hard to efficiently create aligned mappings.  The reliable, but
+        * expensive method is to create a mapping that is over-sized, then
+        * trim the excess.  However, that always results in at least one call
+        * to pages_unmap().
+        *
+        * A more optimistic approach is to try mapping precisely the right
+        * amount, then try to append another mapping if alignment is off.  In
+        * practice, this works out well as long as the application is not
+        * interleaving mappings via direct mmap() calls.  If we do run into a
+        * situation where there is an interleaved mapping and we are unable to
+        * extend an unaligned mapping, our best option is to momentarily
+        * revert to the reliable-but-expensive method.  This will tend to
+        * leave a gap in the memory map that is too small to cause later
+        * problems for the optimistic method.
+        */
+
+       ret = pages_map(NULL, size);
+       if (ret == NULL)
+               return (NULL);
+
+       offset = CHUNK_ADDR2OFFSET(ret);
+       if (offset != 0) {
+               /* Try to extend chunk boundary. */
+               if (pages_map((void *)((uintptr_t)ret + size),
+                   chunksize - offset) == NULL) {
+                       /*
+                        * Extension failed.  Clean up, then revert to the
+                        * reliable-but-expensive method.
+                        */
+                       pages_unmap(ret, size);
+
+                       /* Beware size_t wrap-around. */
+                       if (size + chunksize <= size)
+                               return NULL;
+
+                       ret = pages_map(NULL, size + chunksize);
+                       if (ret == NULL)
+                               return (NULL);
+
+                       /* Clean up unneeded leading/trailing space. */
+                       offset = CHUNK_ADDR2OFFSET(ret);
+                       if (offset != 0) {
+                               /* Leading space. */
+                               pages_unmap(ret, chunksize - offset);
+
+                               ret = (void *)((uintptr_t)ret +
+                                   (chunksize - offset));
+
+                               /* Trailing space. */
+                               pages_unmap((void *)((uintptr_t)ret + size),
+                                   offset);
+                       } else {
+                               /* Trailing space only. */
+                               pages_unmap((void *)((uintptr_t)ret + size),
+                                   chunksize);
+                       }
+               } else {
+                       /* Clean up unneeded leading space. */
+                       pages_unmap(ret, chunksize - offset);
+                       ret = (void *)((uintptr_t)ret + (chunksize - offset));
+               }
+       }
+
+       return (ret);
+}
+
+static void *
+chunk_alloc(size_t size, bool zero)
+{
+       void *ret;
+
+       assert(size != 0);
+       assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               ret = chunk_recycle_dss(size, zero);
+               if (ret != NULL) {
+                       goto RETURN;
+               }
+
+               ret = chunk_alloc_dss(size);
+               if (ret != NULL)
+                       goto RETURN;
+       }
+
+       if (opt_mmap)
+#endif
+       {
+               ret = chunk_alloc_mmap(size);
+               if (ret != NULL)
+                       goto RETURN;
+       }
+
+       /* All strategies for allocation failed. */
+       ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+       if (ret != NULL) {
+               stats_chunks.nchunks += (size / chunksize);
+               stats_chunks.curchunks += (size / chunksize);
+       }
+       if (stats_chunks.curchunks > stats_chunks.highchunks)
+               stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+       assert(CHUNK_ADDR2BASE(ret) == ret);
+       return (ret);
+}
+
+#ifdef MALLOC_DSS
+static extent_node_t *
+chunk_dealloc_dss_record(void *chunk, size_t size)
+{
+       extent_node_t *node, *prev, key;
+
+       key.addr = (void *)((uintptr_t)chunk + size);
+       node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
+       /* Try to coalesce forward. */
+       if (node != NULL && node->addr == key.addr) {
+               /*
+                * Coalesce chunk with the following address range.  This does
+                * not change the position within dss_chunks_ad, so only
+                * remove/insert from/into dss_chunks_szad.
+                */
+               extent_tree_szad_remove(&dss_chunks_szad, node);
+               node->addr = chunk;
+               node->size += size;
+               extent_tree_szad_insert(&dss_chunks_szad, node);
+       } else {
+               /*
+                * Coalescing forward failed, so insert a new node.  Drop
+                * dss_mtx during node allocation, since it is possible that a
+                * new base chunk will be allocated.
+                */
+               malloc_mutex_unlock(&dss_mtx);
+               node = base_node_alloc();
+               malloc_mutex_lock(&dss_mtx);
+               if (node == NULL)
+                       return (NULL);
+               node->addr = chunk;
+               node->size = size;
+               extent_tree_ad_insert(&dss_chunks_ad, node);
+               extent_tree_szad_insert(&dss_chunks_szad, node);
+       }
+
+       /* Try to coalesce backward. */
+       prev = extent_tree_ad_prev(&dss_chunks_ad, node);
+       if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+           chunk) {
+               /*
+                * Coalesce chunk with the previous address range.  This does
+                * not change the position within dss_chunks_ad, so only
+                * remove/insert node from/into dss_chunks_szad.
+                */
+               extent_tree_szad_remove(&dss_chunks_szad, prev);
+               extent_tree_ad_remove(&dss_chunks_ad, prev);
+
+               extent_tree_szad_remove(&dss_chunks_szad, node);
+               node->addr = prev->addr;
+               node->size += prev->size;
+               extent_tree_szad_insert(&dss_chunks_szad, node);
+
+               base_node_dealloc(prev);
+       }
+
+       return (node);
+}
+
+static bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+
+       malloc_mutex_lock(&dss_mtx);
+       if ((uintptr_t)chunk >= (uintptr_t)dss_base
+           && (uintptr_t)chunk < (uintptr_t)dss_max) {
+               extent_node_t *node;
+
+               /* Try to coalesce with other unused chunks. */
+               node = chunk_dealloc_dss_record(chunk, size);
+               if (node != NULL) {
+                       chunk = node->addr;
+                       size = node->size;
+               }
+
+               /* Get the current end of the DSS. */
+               dss_max = sbrk(0);
+
+               /*
+                * Try to shrink the DSS if this chunk is at the end of the
+                * DSS.  The sbrk() call here is subject to a race condition
+                * with threads that use brk(2) or sbrk(2) directly, but the
+                * alternative would be to leak memory for the sake of poorly
+                * designed multi-threaded programs.
+                */
+               if ((void *)((uintptr_t)chunk + size) == dss_max
+                   && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
+                       /* Success. */
+                       dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
+
+                       if (node != NULL) {
+                               extent_tree_szad_remove(&dss_chunks_szad, node);
+                               extent_tree_ad_remove(&dss_chunks_ad, node);
+                               base_node_dealloc(node);
+                       }
+                       malloc_mutex_unlock(&dss_mtx);
+               } else {
+                       malloc_mutex_unlock(&dss_mtx);
+                       madvise(chunk, size, MADV_DONTNEED);
+               }
+
+               return (false);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (true);
+}
+#endif
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+       pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+       assert(chunk != NULL);
+       assert(CHUNK_ADDR2BASE(chunk) == chunk);
+       assert(size != 0);
+       assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+       stats_chunks.curchunks -= (size / chunksize);
+#endif
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               if (chunk_dealloc_dss(chunk, size) == false)
+                       return;
+       }
+
+       if (opt_mmap)
+#endif
+               chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+       arena_t *ret;
+
+       /*
+        * We can only use TLS if this is a PIC library, since for the static
+        * library version, libc's malloc is used by TLS allocation, which
+        * introduces a bootstrapping issue.
+        */
+#ifndef NO_TLS
+       if (__isthreaded == false) {
+           /* Avoid the overhead of TLS for single-threaded operation. */
+           return (arenas[0]);
+       }
+
+       ret = arenas_map;
+       if (ret == NULL) {
+               ret = choose_arena_hard();
+               assert(ret != NULL);
+       }
+#else
+       if (__isthreaded && narenas > 1) {
+               unsigned long ind;
+
+               /*
+                * Hash pthread_self() to one of the arenas.  There is a prime
+                * number of arenas, so this has a reasonable chance of
+                * working.  Even so, the hashing can be easily thwarted by
+                * inconvenient pthread_self() values.  Without specific
+                * knowledge of how pthread_self() calculates values, we can't
+                * easily do much better than this.
+                */
+               ind = (unsigned long) pthread_self() % narenas;
+
+               /*
+                * Optimistially assume that arenas[ind] has been initialized.
+                * At worst, we find out that some other thread has already
+                * done so, after acquiring the lock in preparation.  Note that
+                * this lazy locking also has the effect of lazily forcing
+                * cache coherency; without the lock acquisition, there's no
+                * guarantee that modification of arenas[ind] by another thread
+                * would be seen on this CPU for an arbitrary amount of time.
+                *
+                * In general, this approach to modifying a synchronized value
+                * isn't a good idea, but in this case we only ever modify the
+                * value once, so things work out well.
+                */
+               ret = arenas[ind];
+               if (ret == NULL) {
+                       /*
+                        * Avoid races with another thread that may have already
+                        * initialized arenas[ind].
+                        */
+                       malloc_spin_lock(&arenas_lock);
+                       if (arenas[ind] == NULL)
+                               ret = arenas_extend((unsigned)ind);
+                       else
+                               ret = arenas[ind];
+                       malloc_spin_unlock(&arenas_lock);
+               }
+       } else
+               ret = arenas[0];
+#endif
+
+       assert(ret != NULL);
+       return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+       arena_t *ret;
+
+       assert(__isthreaded);
+
+#ifdef MALLOC_BALANCE
+       /* Seed the PRNG used for arena load balancing. */
+       SPRN(balance, (uint32_t)(uintptr_t)(pthread_self()));
+#endif
+
+       if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+               unsigned ind;
+
+               ind = PRN(balance, narenas_2pow);
+               if ((ret = arenas[ind]) == NULL) {
+                       malloc_spin_lock(&arenas_lock);
+                       if ((ret = arenas[ind]) == NULL)
+                               ret = arenas_extend(ind);
+                       malloc_spin_unlock(&arenas_lock);
+               }
+#else
+               malloc_spin_lock(&arenas_lock);
+               if ((ret = arenas[next_arena]) == NULL)
+                       ret = arenas_extend(next_arena);
+               next_arena = (next_arena + 1) % narenas;
+               malloc_spin_unlock(&arenas_lock);
+#endif
+       } else
+               ret = arenas[0];
+
+       arenas_map = ret;
+
+       return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+       uintptr_t a_chunk = (uintptr_t)a;
+       uintptr_t b_chunk = (uintptr_t)b;
+
+       assert(a != NULL);
+       assert(b != NULL);
+
+       return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+    arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+       uintptr_t a_mapelm = (uintptr_t)a;
+       uintptr_t b_mapelm = (uintptr_t)b;
+
+       assert(a != NULL);
+       assert(b != NULL);
+
+       return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
+    link, arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+       int ret;
+       size_t a_size = a->bits & ~pagesize_mask;
+       size_t b_size = b->bits & ~pagesize_mask;
+
+       ret = (a_size > b_size) - (a_size < b_size);
+       if (ret == 0) {
+               uintptr_t a_mapelm, b_mapelm;
+
+               if ((a->bits & CHUNK_MAP_KEY) == 0)
+                       a_mapelm = (uintptr_t)a;
+               else {
+                       /*
+                        * Treat keys as though they are lower than anything
+                        * else.
+                        */
+                       a_mapelm = 0;
+               }
+               b_mapelm = (uintptr_t)b;
+
+               ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+       }
+
+       return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_avail_tree_, arena_avail_tree_t,
+    arena_chunk_map_t, link, arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+       void *ret;
+       unsigned i, mask, bit, regind;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(run->regs_minelm < bin->regs_mask_nelms);
+
+       /*
+        * Move the first check outside the loop, so that run->regs_minelm can
+        * be updated unconditionally, without the possibility of updating it
+        * multiple times.
+        */
+       i = run->regs_minelm;
+       mask = run->regs_mask[i];
+       if (mask != 0) {
+               /* Usable allocation found. */
+               bit = ffs((int)mask) - 1;
+
+               regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+               assert(regind < bin->nregs);
+               ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+                   + (bin->reg_size * regind));
+
+               /* Clear bit. */
+               mask ^= (1U << bit);
+               run->regs_mask[i] = mask;
+
+               return (ret);
+       }
+
+       for (i++; i < bin->regs_mask_nelms; i++) {
+               mask = run->regs_mask[i];
+               if (mask != 0) {
+                       /* Usable allocation found. */
+                       bit = ffs((int)mask) - 1;
+
+                       regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+                       assert(regind < bin->nregs);
+                       ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+                           + (bin->reg_size * regind));
+
+                       /* Clear bit. */
+                       mask ^= (1U << bit);
+                       run->regs_mask[i] = mask;
+
+                       /*
+                        * Make a note that nothing before this element
+                        * contains a free region.
+                        */
+                       run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+                       return (ret);
+               }
+       }
+       /* Not reached. */
+       assert(0);
+       return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+       unsigned diff, regind, elm, bit;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+
+       /*
+        * Avoid doing division with a variable divisor if possible.  Using
+        * actual division here can reduce allocator throughput by over 20%!
+        */
+       diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+       if ((size & (size - 1)) == 0) {
+               /*
+                * log2_table allows fast division of a power of two in the
+                * [1..128] range.
+                *
+                * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+                */
+               static const unsigned char log2_table[] = {
+                   0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+               };
+
+               if (size <= 128)
+                       regind = (diff >> log2_table[size - 1]);
+               else if (size <= 32768)
+                       regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+               else
+                       regind = diff / size;
+       } else if (size < qspace_max) {
+               /*
+                * To divide by a number D that is not a power of two we
+                * multiply by (2^21 / D) and then right shift by 21 positions.
+                *
+                *   X / D
+                *
+                * becomes
+                *
+                *   (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
+                *       >> SIZE_INV_SHIFT
+                *
+                * We can omit the first three elements, because we never
+                * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
+                * two, which are handled above.
+                */
+#define        SIZE_INV_SHIFT 21
+#define        QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
+               static const unsigned qsize_invs[] = {
+                   QSIZE_INV(3),
+                   QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
+#if (QUANTUM_2POW < 4)
+                   ,
+                   QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
+                   QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
+#endif
+               };
+               assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
+                   >= (1U << QSPACE_MAX_2POW_DEFAULT));
+
+               if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
+                   QUANTUM_2POW)) {
+                       regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
+                       regind >>= SIZE_INV_SHIFT;
+               } else
+                       regind = diff / size;
+#undef QSIZE_INV
+       } else if (size < cspace_max) {
+#define        CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
+               static const unsigned csize_invs[] = {
+                   CSIZE_INV(3),
+                   CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
+               };
+               assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
+                   3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
+
+               if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
+                   CACHELINE_2POW)) {
+                       regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
+                           diff;
+                       regind >>= SIZE_INV_SHIFT;
+               } else
+                       regind = diff / size;
+#undef CSIZE_INV
+       } else {
+#define        SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
+               static const unsigned ssize_invs[] = {
+                   SSIZE_INV(3),
+                   SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
+                   SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
+                   SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
+#if (PAGESIZE_2POW == 13)
+                   ,
+                   SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
+                   SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
+                   SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
+                   SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
+#endif
+               };
+               assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
+                   >= (1U << PAGESIZE_2POW));
+
+               if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
+                   SUBPAGE_2POW)) {
+                       regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
+                       regind >>= SIZE_INV_SHIFT;
+               } else
+                       regind = diff / size;
+#undef SSIZE_INV
+       }
+#undef SIZE_INV_SHIFT
+       assert(diff == regind * size);
+       assert(regind < bin->nregs);
+
+       elm = regind >> (SIZEOF_INT_2POW + 3);
+       if (elm < run->regs_minelm)
+               run->regs_minelm = elm;
+       bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+       assert((run->regs_mask[elm] & (1U << bit)) == 0);
+       run->regs_mask[elm] |= (1U << bit);
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+    bool zero)
+{
+       arena_chunk_t *chunk;
+       size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+       old_ndirty = chunk->ndirty;
+       run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+           >> pagesize_2pow);
+       total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+           pagesize_2pow;
+       need_pages = (size >> pagesize_2pow);
+       assert(need_pages > 0);
+       assert(need_pages <= total_pages);
+       rem_pages = total_pages - need_pages;
+
+       arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+       /* Keep track of trailing unused pages for later use. */
+       if (rem_pages > 0) {
+               chunk->map[run_ind+need_pages].bits = (rem_pages <<
+                   pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+                   pagesize_mask);
+               chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+                   pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+                   pagesize_mask);
+               arena_avail_tree_insert(&arena->runs_avail,
+                   &chunk->map[run_ind+need_pages]);
+       }
+
+       for (i = 0; i < need_pages; i++) {
+               /* Zero if necessary. */
+               if (zero) {
+                       if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+                           == 0) {
+                               memset((void *)((uintptr_t)chunk + ((run_ind
+                                   + i) << pagesize_2pow)), 0, pagesize);
+                               /* CHUNK_MAP_ZEROED is cleared below. */
+                       }
+               }
+
+               /* Update dirty page accounting. */
+               if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+                       chunk->ndirty--;
+                       arena->ndirty--;
+                       /* CHUNK_MAP_DIRTY is cleared below. */
+               }
+
+               /* Initialize the chunk map. */
+               if (large) {
+                       chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+                           | CHUNK_MAP_ALLOCATED;
+               } else {
+                       chunk->map[run_ind + i].bits = (size_t)run
+                           | CHUNK_MAP_ALLOCATED;
+               }
+       }
+
+       /*
+        * Set the run size only in the first element for large runs.  This is
+        * primarily a debugging aid, since the lack of size info for trailing
+        * pages only matters if the application tries to operate on an
+        * interior pointer.
+        */
+       if (large)
+               chunk->map[run_ind].bits |= size;
+
+       if (chunk->ndirty == 0 && old_ndirty > 0)
+               arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+       arena_chunk_t *chunk;
+       size_t i;
+
+       if (arena->spare != NULL) {
+               chunk = arena->spare;
+               arena->spare = NULL;
+       } else {
+               chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
+               if (chunk == NULL)
+                       return (NULL);
+#ifdef MALLOC_STATS
+               arena->stats.mapped += chunksize;
+#endif
+
+               chunk->arena = arena;
+
+               /*
+                * Claim that no pages are in use, since the header is merely
+                * overhead.
+                */
+               chunk->ndirty = 0;
+
+               /*
+                * Initialize the map to contain one maximal free untouched run.
+                */
+               for (i = 0; i < arena_chunk_header_npages; i++)
+                       chunk->map[i].bits = 0;
+               chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
+               for (i++; i < chunk_npages-1; i++) {
+                       chunk->map[i].bits = CHUNK_MAP_ZEROED;
+               }
+               chunk->map[chunk_npages-1].bits = arena_maxclass |
+                   CHUNK_MAP_ZEROED;
+       }
+
+       /* Insert the run into the runs_avail tree. */
+       arena_avail_tree_insert(&arena->runs_avail,
+           &chunk->map[arena_chunk_header_npages]);
+
+       return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+       if (arena->spare != NULL) {
+               if (arena->spare->ndirty > 0) {
+                       arena_chunk_tree_dirty_remove(
+                           &chunk->arena->chunks_dirty, arena->spare);
+                       arena->ndirty -= arena->spare->ndirty;
+               }
+               chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+               arena->stats.mapped -= chunksize;
+#endif
+       }
+
+       /*
+        * Remove run from runs_avail, regardless of whether this chunk
+        * will be cached, so that the arena does not use it.  Dirty page
+        * flushing only uses the chunks_dirty tree, so leaving this chunk in
+        * the chunks_* trees is sufficient for that purpose.
+        */
+       arena_avail_tree_remove(&arena->runs_avail,
+           &chunk->map[arena_chunk_header_npages]);
+
+       arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
+{
+       arena_chunk_t *chunk;
+       arena_run_t *run;
+       arena_chunk_map_t *mapelm, key;
+
+       assert(size <= arena_maxclass);
+       assert((size & pagesize_mask) == 0);
+
+       /* Search the arena's chunks for the lowest best fit. */
+       key.bits = size | CHUNK_MAP_KEY;
+       mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+       if (mapelm != NULL) {
+               arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
+               size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
+                   / sizeof(arena_chunk_map_t);
+
+               run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+                   << pagesize_2pow));
+               arena_run_split(arena, run, size, large, zero);
+               return (run);
+       }
+
+       /*
+        * No usable runs.  Create a new chunk from which to allocate the run.
+        */
+       chunk = arena_chunk_alloc(arena);
+       if (chunk == NULL)
+               return (NULL);
+       run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+           pagesize_2pow));
+       /* Update page map. */
+       arena_run_split(arena, run, size, large, zero);
+       return (run);
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+       arena_chunk_t *chunk;
+       size_t i, npages;
+#ifdef MALLOC_DEBUG
+       size_t ndirty = 0;
+
+       rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+           chunk) {
+               ndirty += chunk->ndirty;
+       } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+       assert(ndirty == arena->ndirty);
+#endif
+       assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+       arena->stats.npurge++;
+#endif
+
+       /*
+        * Iterate downward through chunks until enough dirty memory has been
+        * purged.  Terminate as soon as possible in order to minimize the
+        * number of system calls, even if a chunk has only been partially
+        * purged.
+        */
+       while (arena->ndirty > (opt_dirty_max >> 1)) {
+               chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+               assert(chunk != NULL);
+
+               for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+                       assert(i >= arena_chunk_header_npages);
+
+                       if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+                               chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+                               /* Find adjacent dirty run(s). */
+                               for (npages = 1; i > arena_chunk_header_npages
+                                   && (chunk->map[i - 1].bits &
+                                   CHUNK_MAP_DIRTY); npages++) {
+                                       i--;
+                                       chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+                               }
+                               chunk->ndirty -= npages;
+                               arena->ndirty -= npages;
+
+                               madvise((void *)((uintptr_t)chunk + (i <<
+                                   pagesize_2pow)), (npages << pagesize_2pow),
+                                   MADV_DONTNEED);
+#ifdef MALLOC_STATS
+                               arena->stats.nmadvise++;
+                               arena->stats.purged += npages;
+#endif
+                               if (arena->ndirty <= (opt_dirty_max >> 1))
+                                       break;
+                       }
+               }
+
+               if (chunk->ndirty == 0) {
+                       arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+                           chunk);
+               }
+       }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+       arena_chunk_t *chunk;
+       size_t size, run_ind, run_pages;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+       run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+           >> pagesize_2pow);
+       assert(run_ind >= arena_chunk_header_npages);
+       assert(run_ind < chunk_npages);
+       if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+               size = chunk->map[run_ind].bits & ~pagesize_mask;
+       else
+               size = run->bin->run_size;
+       run_pages = (size >> pagesize_2pow);
+
+       /* Mark pages as unallocated in the chunk map. */
+       if (dirty) {
+               size_t i;
+
+               for (i = 0; i < run_pages; i++) {
+                       assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+                           == 0);
+                       chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+               }
+
+               if (chunk->ndirty == 0) {
+                       arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+                           chunk);
+               }
+               chunk->ndirty += run_pages;
+               arena->ndirty += run_pages;
+       } else {
+               size_t i;
+
+               for (i = 0; i < run_pages; i++) {
+                       chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+                           CHUNK_MAP_ALLOCATED);
+               }
+       }
+       chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+           pagesize_mask);
+       chunk->map[run_ind+run_pages-1].bits = size |
+           (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+       /* Try to coalesce forward. */
+       if (run_ind + run_pages < chunk_npages &&
+           (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+               size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+                   ~pagesize_mask;
+
+               /*
+                * Remove successor from runs_avail; the coalesced run is
+                * inserted later.
+                */
+               arena_avail_tree_remove(&arena->runs_avail,
+                   &chunk->map[run_ind+run_pages]);
+
+               size += nrun_size;
+               run_pages = size >> pagesize_2pow;
+
+               assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+                   == nrun_size);
+               chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+                   pagesize_mask);
+               chunk->map[run_ind+run_pages-1].bits = size |
+                   (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+       }
+
+       /* Try to coalesce backward. */
+       if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+           CHUNK_MAP_ALLOCATED) == 0) {
+               size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+               run_ind -= prun_size >> pagesize_2pow;
+
+               /*
+                * Remove predecessor from runs_avail; the coalesced run is
+                * inserted later.
+                */
+               arena_avail_tree_remove(&arena->runs_avail,
+                   &chunk->map[run_ind]);
+
+               size += prun_size;
+               run_pages = size >> pagesize_2pow;
+
+               assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
+                   prun_size);
+               chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+                   pagesize_mask);
+               chunk->map[run_ind+run_pages-1].bits = size |
+                   (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+       }
+
+       /* Insert into runs_avail, now that coalescing is complete. */
+       arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+       /* Deallocate chunk if it is now completely unused. */
+       if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+           CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+               arena_chunk_dealloc(arena, chunk);
+
+       /* Enforce opt_dirty_max. */
+       if (arena->ndirty > opt_dirty_max)
+               arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+    size_t oldsize, size_t newsize)
+{
+       size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+       size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+       assert(oldsize > newsize);
+
+       /*
+        * Update the chunk map so that arena_run_dalloc() can treat the
+        * leading run as separately allocated.
+        */
+       chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+           CHUNK_MAP_ALLOCATED;
+       chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+           CHUNK_MAP_ALLOCATED;
+
+       arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+    size_t oldsize, size_t newsize, bool dirty)
+{
+       size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+       size_t npages = newsize >> pagesize_2pow;
+
+       assert(oldsize > newsize);
+
+       /*
+        * Update the chunk map so that arena_run_dalloc() can treat the
+        * trailing run as separately allocated.
+        */
+       chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+           CHUNK_MAP_ALLOCATED;
+       chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+           | CHUNK_MAP_ALLOCATED;
+
+       arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+           dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+       arena_chunk_map_t *mapelm;
+       arena_run_t *run;
+       unsigned i, remainder;
+
+       /* Look for a usable run. */
+       mapelm = arena_run_tree_first(&bin->runs);
+       if (mapelm != NULL) {
+               /* run is guaranteed to have available space. */
+               arena_run_tree_remove(&bin->runs, mapelm);
+               run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+               bin->stats.reruns++;
+#endif
+               return (run);
+       }
+       /* No existing runs have any space available. */
+
+       /* Allocate a new run. */
+       run = arena_run_alloc(arena, bin->run_size, false, false);
+       if (run == NULL)
+               return (NULL);
+
+       /* Initialize run internals. */
+       run->bin = bin;
+
+       for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+               run->regs_mask[i] = UINT_MAX;
+       remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+       if (remainder == 0)
+               run->regs_mask[i] = UINT_MAX;
+       else {
+               /* The last element has spare bits that need to be unset. */
+               run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+                   - remainder));
+       }
+
+       run->regs_minelm = 0;
+
+       run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+       run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+       bin->stats.nruns++;
+       bin->stats.curruns++;
+       if (bin->stats.curruns > bin->stats.highruns)
+               bin->stats.highruns = bin->stats.curruns;
+#endif
+       return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+       void *ret;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(run->nfree > 0);
+
+       ret = arena_run_reg_alloc(run, bin);
+       assert(ret != NULL);
+       run->nfree--;
+
+       return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+       bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+       if (bin->runcur == NULL)
+               return (NULL);
+       assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+       assert(bin->runcur->nfree > 0);
+
+       return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ *   *) bin->run_size >= min_run_size
+ *   *) bin->run_size <= arena_maxclass
+ *   *) bin->run_size <= RUN_MAX_SMALL
+ *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+       size_t try_run_size, good_run_size;
+       unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+       unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+       assert(min_run_size >= pagesize);
+       assert(min_run_size <= arena_maxclass);
+       assert(min_run_size <= RUN_MAX_SMALL);
+
+       /*
+        * Calculate known-valid settings before entering the run_size
+        * expansion loop, so that the first part of the loop always copies
+        * valid settings.
+        *
+        * The do..while loop iteratively reduces the number of regions until
+        * the run header and the regions no longer overlap.  A closed formula
+        * would be quite messy, since there is an interdependency between the
+        * header's mask length and the number of regions.
+        */
+       try_run_size = min_run_size;
+       try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+           + 1; /* Counter-act try_nregs-- in loop. */
+       do {
+               try_nregs--;
+               try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+                   ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+               try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+       } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+           > try_reg0_offset);
+
+       /* run_size expansion loop. */
+       do {
+               /*
+                * Copy valid settings before trying more aggressive settings.
+                */
+               good_run_size = try_run_size;
+               good_nregs = try_nregs;
+               good_mask_nelms = try_mask_nelms;
+               good_reg0_offset = try_reg0_offset;
+
+               /* Try more aggressive settings. */
+               try_run_size += pagesize;
+               try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+                   bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+               do {
+                       try_nregs--;
+                       try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+                           ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+                           1 : 0);
+                       try_reg0_offset = try_run_size - (try_nregs *
+                           bin->reg_size);
+               } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+                   (try_mask_nelms - 1)) > try_reg0_offset);
+       } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+           && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+           && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+       assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+           <= good_reg0_offset);
+       assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+       /* Copy final settings. */
+       bin->run_size = good_run_size;
+       bin->nregs = good_nregs;
+       bin->regs_mask_nelms = good_mask_nelms;
+       bin->reg0_offset = good_reg0_offset;
+
+       return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+       unsigned contention;
+
+       contention = malloc_spin_lock(&arena->lock);
+       if (narenas > 1) {
+               /*
+                * Calculate the exponentially averaged contention for this
+                * arena.  Due to integer math always rounding down, this value
+                * decays somewhat faster than normal.
+                */
+               arena->contention = (((uint64_t)arena->contention
+                   * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+                   + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+               if (arena->contention >= opt_balance_threshold)
+                       arena_lock_balance_hard(arena);
+       }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+       uint32_t ind;
+
+       arena->contention = 0;
+#ifdef MALLOC_STATS
+       arena->stats.nbalance++;
+#endif
+       ind = PRN(balance, narenas_2pow);
+       if (arenas[ind] != NULL)
+               arenas_map = arenas[ind];
+       else {
+               malloc_spin_lock(&arenas_lock);
+               if (arenas[ind] != NULL)
+                       arenas_map = arenas[ind];
+               else
+                       arenas_map = arenas_extend(ind);
+               malloc_spin_unlock(&arenas_lock);
+       }
+}
+#endif
+
+#ifdef MALLOC_MAG
+static inline void *
+mag_alloc(mag_t *mag)
+{
+
+       if (mag->nrounds == 0)
+               return (NULL);
+       mag->nrounds--;
+
+       return (mag->rounds[mag->nrounds]);
+}
+
+static void
+mag_load(mag_t *mag)
+{
+       arena_t *arena;
+       arena_bin_t *bin;
+       arena_run_t *run;
+       void *round;
+       size_t i;
+
+       arena = choose_arena();
+       bin = &arena->bins[mag->binind];
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       for (i = mag->nrounds; i < max_rounds; i++) {
+               if ((run = bin->runcur) != NULL && run->nfree > 0)
+                       round = arena_bin_malloc_easy(arena, bin, run);
+               else
+                       round = arena_bin_malloc_hard(arena, bin);
+               if (round == NULL)
+                       break;
+               mag->rounds[i] = round;
+       }
+#ifdef MALLOC_STATS
+       bin->stats.nmags++;
+       arena->stats.nmalloc_small += (i - mag->nrounds);
+       arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+       mag->nrounds = i;
+}
+
+static inline void *
+mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
+{
+       void *ret;
+       bin_mags_t *bin_mags;
+       mag_t *mag;
+       size_t binind;
+
+       binind = size2bin[size];
+       assert(binind < nbins);
+       bin_mags = &rack->bin_mags[binind];
+
+       mag = bin_mags->curmag;
+       if (mag == NULL) {
+               /* Create an initial magazine for this size class. */
+               assert(bin_mags->sparemag == NULL);
+               mag = mag_create(choose_arena(), binind);
+               if (mag == NULL)
+                       return (NULL);
+               bin_mags->curmag = mag;
+               mag_load(mag);
+       }
+
+       ret = mag_alloc(mag);
+       if (ret == NULL) {
+               if (bin_mags->sparemag != NULL) {
+                       if (bin_mags->sparemag->nrounds > 0) {
+                               /* Swap magazines. */
+                               bin_mags->curmag = bin_mags->sparemag;
+                               bin_mags->sparemag = mag;
+                               mag = bin_mags->curmag;
+                       } else {
+                               /* Reload the current magazine. */
+                               mag_load(mag);
+                       }
+               } else {
+                       /* Create a second magazine. */
+                       mag = mag_create(choose_arena(), binind);
+                       if (mag == NULL)
+                               return (NULL);
+                       mag_load(mag);
+                       bin_mags->sparemag = bin_mags->curmag;
+                       bin_mags->curmag = mag;
+               }
+               ret = mag_alloc(mag);
+               if (ret == NULL)
+                       return (NULL);
+       }
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+       } else
+               memset(ret, 0, size);
+
+       return (ret);
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+       void *ret;
+       arena_bin_t *bin;
+       arena_run_t *run;
+       size_t binind;
+
+       binind = size2bin[size];
+       assert(binind < nbins);
+       bin = &arena->bins[binind];
+       size = bin->reg_size;
+
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       if ((run = bin->runcur) != NULL && run->nfree > 0)
+               ret = arena_bin_malloc_easy(arena, bin, run);
+       else
+               ret = arena_bin_malloc_hard(arena, bin);
+
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+
+#ifdef MALLOC_STATS
+       bin->stats.nrequests++;
+       arena->stats.nmalloc_small++;
+       arena->stats.allocated_small += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+       } else
+               memset(ret, 0, size);
+
+       return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+       void *ret;
+
+       /* Large allocation. */
+       size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       ret = (void *)arena_run_alloc(arena, size, true, zero);
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+#ifdef MALLOC_STATS
+       arena->stats.nmalloc_large++;
+       arena->stats.allocated_large += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+       }
+
+       return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+       assert(arena != NULL);
+       assert(arena->magic == ARENA_MAGIC);
+       assert(size != 0);
+       assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+       if (size <= bin_maxclass) {
+#ifdef MALLOC_MAG
+               if (__isthreaded && opt_mag) {
+                       mag_rack_t *rack = mag_rack;
+                       if (rack == NULL) {
+                               rack = mag_rack_create(arena);
+                               if (rack == NULL)
+                                       return (NULL);
+                               mag_rack = rack;
+                       }
+                       return (mag_rack_alloc(rack, size, zero));
+               } else
+#endif
+                       return (arena_malloc_small(arena, size, zero));
+       } else
+               return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+       assert(size != 0);
+
+       if (size <= arena_maxclass)
+               return (arena_malloc(choose_arena(), size, false));
+       else
+               return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+       if (size <= arena_maxclass)
+               return (arena_malloc(choose_arena(), size, true));
+       else
+               return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+       void *ret;
+       size_t offset;
+       arena_chunk_t *chunk;
+
+       assert((size & pagesize_mask) == 0);
+       assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+       offset = (uintptr_t)ret & (alignment - 1);
+       assert((offset & pagesize_mask) == 0);
+       assert(offset < alloc_size);
+       if (offset == 0)
+               arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
+       else {
+               size_t leadsize, trailsize;
+
+               leadsize = alignment - offset;
+               if (leadsize > 0) {
+                       arena_run_trim_head(arena, chunk, ret, alloc_size,
+                           alloc_size - leadsize);
+                       ret = (void *)((uintptr_t)ret + leadsize);
+               }
+
+               trailsize = alloc_size - leadsize - size;
+               if (trailsize != 0) {
+                       /* Trim trailing space. */
+                       assert(trailsize < alloc_size);
+                       arena_run_trim_tail(arena, chunk, ret, size + trailsize,
+                           size, false);
+               }
+       }
+
+#ifdef MALLOC_STATS
+       arena->stats.nmalloc_large++;
+       arena->stats.allocated_large += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (opt_junk)
+               memset(ret, 0xa5, size);
+       else if (opt_zero)
+               memset(ret, 0, size);
+       return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+       void *ret;
+       size_t ceil_size;
+
+       /*
+        * Round size up to the nearest multiple of alignment.
+        *
+        * This done, we can take advantage of the fact that for each small
+        * size class, every object is aligned at the smallest power of two
+        * that is non-zero in the base two representation of the size.  For
+        * example:
+        *
+        *   Size |   Base 2 | Minimum alignment
+        *   -----+----------+------------------
+        *     96 |  1100000 |  32
+        *    144 | 10100000 |  32
+        *    192 | 11000000 |  64
+        *
+        * Depending on runtime settings, it is possible that arena_malloc()
+        * will further round up to a power of two, but that never causes
+        * correctness issues.
+        */
+       ceil_size = (size + (alignment - 1)) & (-alignment);
+       /*
+        * (ceil_size < size) protects against the combination of maximal
+        * alignment and size greater than maximal alignment.
+        */
+       if (ceil_size < size) {
+               /* size_t overflow. */
+               return (NULL);
+       }
+
+       if (ceil_size <= pagesize || (alignment <= pagesize
+           && ceil_size <= arena_maxclass))
+               ret = arena_malloc(choose_arena(), ceil_size, false);
+       else {
+               size_t run_size;
+
+               /*
+                * We can't achieve subpage alignment, so round up alignment
+                * permanently; it makes later calculations simpler.
+                */
+               alignment = PAGE_CEILING(alignment);
+               ceil_size = PAGE_CEILING(size);
+               /*
+                * (ceil_size < size) protects against very large sizes within
+                * pagesize of SIZE_T_MAX.
+                *
+                * (ceil_size + alignment < ceil_size) protects against the
+                * combination of maximal alignment and ceil_size large enough
+                * to cause overflow.  This is similar to the first overflow
+                * check above, but it needs to be repeated due to the new
+                * ceil_size value, which may now be *equal* to maximal
+                * alignment, whereas before we only detected overflow if the
+                * original size was *greater* than maximal alignment.
+                */
+               if (ceil_size < size || ceil_size + alignment < ceil_size) {
+                       /* size_t overflow. */
+                       return (NULL);
+               }
+
+               /*
+                * Calculate the size of the over-size run that arena_palloc()
+                * would need to allocate in order to guarantee the alignment.
+                */
+               if (ceil_size >= alignment)
+                       run_size = ceil_size + alignment - pagesize;
+               else {
+                       /*
+                        * It is possible that (alignment << 1) will cause
+                        * overflow, but it doesn't matter because we also
+                        * subtract pagesize, which in the case of overflow
+                        * leaves us with a very large run_size.  That causes
+                        * the first conditional below to fail, which means
+                        * that the bogus run_size value never gets used for
+                        * anything important.
+                        */
+                       run_size = (alignment << 1) - pagesize;
+               }
+
+               if (run_size <= arena_maxclass) {
+                       ret = arena_palloc(choose_arena(), alignment, ceil_size,
+                           run_size);
+               } else if (alignment <= chunksize)
+                       ret = huge_malloc(ceil_size, false);
+               else
+                       ret = huge_palloc(alignment, ceil_size);
+       }
+
+       assert(((uintptr_t)ret & (alignment - 1)) == 0);
+       return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+       size_t ret;
+       arena_chunk_t *chunk;
+       size_t pageind, mapbits;
+
+       assert(ptr != NULL);
+       assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapbits = chunk->map[pageind].bits;
+       assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+       if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+               arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+               assert(run->magic == ARENA_RUN_MAGIC);
+               ret = run->bin->reg_size;
+       } else {
+               ret = mapbits & ~pagesize_mask;
+               assert(ret != 0);
+       }
+
+       return (ret);
+}
+
+static inline size_t
+isalloc(const void *ptr)
+{
+       size_t ret;
+       arena_chunk_t *chunk;
+
+       assert(ptr != NULL);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr) {
+               /* Region. */
+               assert(chunk->arena->magic == ARENA_MAGIC);
+
+               ret = arena_salloc(ptr);
+       } else {
+               extent_node_t *node, key;
+
+               /* Chunk (huge allocation). */
+
+               malloc_mutex_lock(&huge_mtx);
+
+               /* Extract from tree of huge allocations. */
+               key.addr = __DECONST(void *, ptr);
+               node = extent_tree_ad_search(&huge, &key);
+               assert(node != NULL);
+
+               ret = node->size;
+
+               malloc_mutex_unlock(&huge_mtx);
+       }
+
+       return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    arena_chunk_map_t *mapelm)
+{
+       arena_run_t *run;
+       arena_bin_t *bin;
+       size_t size;
+
+       run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+       assert(run->magic == ARENA_RUN_MAGIC);
+       bin = run->bin;
+       size = bin->reg_size;
+
+       if (opt_junk)
+               memset(ptr, 0x5a, size);
+
+       arena_run_reg_dalloc(run, bin, ptr, size);
+       run->nfree++;
+
+       if (run->nfree == bin->nregs) {
+               /* Deallocate run. */
+               if (run == bin->runcur)
+                       bin->runcur = NULL;
+               else if (bin->nregs != 1) {
+                       size_t run_pageind = (((uintptr_t)run -
+                           (uintptr_t)chunk)) >> pagesize_2pow;
+                       arena_chunk_map_t *run_mapelm =
+                           &chunk->map[run_pageind];
+                       /*
+                        * This block's conditional is necessary because if the
+                        * run only contains one region, then it never gets
+                        * inserted into the non-full runs tree.
+                        */
+                       arena_run_tree_remove(&bin->runs, run_mapelm);
+               }
+#ifdef MALLOC_DEBUG
+               run->magic = 0;
+#endif
+               arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+               bin->stats.curruns--;
+#endif
+       } else if (run->nfree == 1 && run != bin->runcur) {
+               /*
+                * Make sure that bin->runcur always refers to the lowest
+                * non-full run, if one exists.
+                */
+               if (bin->runcur == NULL)
+                       bin->runcur = run;
+               else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+                       /* Switch runcur. */
+                       if (bin->runcur->nfree > 0) {
+                               arena_chunk_t *runcur_chunk =
+                                   CHUNK_ADDR2BASE(bin->runcur);
+                               size_t runcur_pageind =
+                                   (((uintptr_t)bin->runcur -
+                                   (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+                               arena_chunk_map_t *runcur_mapelm =
+                                   &runcur_chunk->map[runcur_pageind];
+
+                               /* Insert runcur. */
+                               arena_run_tree_insert(&bin->runs,
+                                   runcur_mapelm);
+                       }
+                       bin->runcur = run;
+               } else {
+                       size_t run_pageind = (((uintptr_t)run -
+                           (uintptr_t)chunk)) >> pagesize_2pow;
+                       arena_chunk_map_t *run_mapelm =
+                           &chunk->map[run_pageind];
+
+                       assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+                           NULL);
+                       arena_run_tree_insert(&bin->runs, run_mapelm);
+               }
+       }
+#ifdef MALLOC_STATS
+       arena->stats.allocated_small -= size;
+       arena->stats.ndalloc_small++;
+#endif
+}
+
+#ifdef MALLOC_MAG
+static void
+mag_unload(mag_t *mag)
+{
+       arena_chunk_t *chunk;
+       arena_t *arena;
+       void *round;
+       size_t i, ndeferred, nrounds;
+
+       for (ndeferred = mag->nrounds; ndeferred > 0;) {
+               nrounds = ndeferred;
+               /* Lock the arena associated with the first round. */
+               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
+               arena = chunk->arena;
+#ifdef MALLOC_BALANCE
+               arena_lock_balance(arena);
+#else
+               malloc_spin_lock(&arena->lock);
+#endif
+               /* Deallocate every round that belongs to the locked arena. */
+               for (i = ndeferred = 0; i < nrounds; i++) {
+                       round = mag->rounds[i];
+                       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
+                       if (chunk->arena == arena) {
+                               size_t pageind = (((uintptr_t)round -
+                                   (uintptr_t)chunk) >> pagesize_2pow);
+                               arena_chunk_map_t *mapelm =
+                                   &chunk->map[pageind];
+                               arena_dalloc_small(arena, chunk, round, mapelm);
+                       } else {
+                               /*
+                                * This round was allocated via a different
+                                * arena than the one that is currently locked.
+                                * Stash the round, so that it can be handled
+                                * in a future pass.
+                                */
+                               mag->rounds[ndeferred] = round;
+                               ndeferred++;
+                       }
+               }
+               malloc_spin_unlock(&arena->lock);
+       }
+
+       mag->nrounds = 0;
+}
+
+static inline void
+mag_rack_dalloc(mag_rack_t *rack, void *ptr)
+{
+       arena_t *arena;
+       arena_chunk_t *chunk;
+       arena_run_t *run;
+       arena_bin_t *bin;
+       bin_mags_t *bin_mags;
+       mag_t *mag;
+       size_t pageind, binind;
+       arena_chunk_map_t *mapelm;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       arena = chunk->arena;
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+       run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+       assert(run->magic == ARENA_RUN_MAGIC);
+       bin = run->bin;
+       binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
+           sizeof(arena_bin_t);
+       assert(binind < nbins);
+
+       if (opt_junk)
+               memset(ptr, 0x5a, arena->bins[binind].reg_size);
+
+       bin_mags = &rack->bin_mags[binind];
+       mag = bin_mags->curmag;
+       if (mag == NULL) {
+               /* Create an initial magazine for this size class. */
+               assert(bin_mags->sparemag == NULL);
+               mag = mag_create(choose_arena(), binind);
+               if (mag == NULL) {
+                       malloc_spin_lock(&arena->lock);
+                       arena_dalloc_small(arena, chunk, ptr, mapelm);
+                       malloc_spin_unlock(&arena->lock);
+                       return;
+               }
+               bin_mags->curmag = mag;
+       }
+
+       if (mag->nrounds == max_rounds) {
+               if (bin_mags->sparemag != NULL) {
+                       if (bin_mags->sparemag->nrounds < max_rounds) {
+                               /* Swap magazines. */
+                               bin_mags->curmag = bin_mags->sparemag;
+                               bin_mags->sparemag = mag;
+                               mag = bin_mags->curmag;
+                       } else {
+                               /* Unload the current magazine. */
+                               mag_unload(mag);
+                       }
+               } else {
+                       /* Create a second magazine. */
+                       mag = mag_create(choose_arena(), binind);
+                       if (mag == NULL) {
+                               mag = rack->bin_mags[binind].curmag;
+                               mag_unload(mag);
+                       } else {
+                               bin_mags->sparemag = bin_mags->curmag;
+                               bin_mags->curmag = mag;
+                       }
+               }
+               assert(mag->nrounds < max_rounds);
+       }
+       mag->rounds[mag->nrounds] = ptr;
+       mag->nrounds++;
+}
+#endif
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+       /* Large allocation. */
+       malloc_spin_lock(&arena->lock);
+
+#ifndef MALLOC_STATS
+       if (opt_junk)
+#endif
+       {
+               size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+                   pagesize_2pow;
+               size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_STATS
+               if (opt_junk)
+#endif
+                       memset(ptr, 0x5a, size);
+#ifdef MALLOC_STATS
+               arena->stats.allocated_large -= size;
+#endif
+       }
+#ifdef MALLOC_STATS
+       arena->stats.ndalloc_large++;
+#endif
+
+       arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+       malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+       size_t pageind;
+       arena_chunk_map_t *mapelm;
+
+       assert(arena != NULL);
+       assert(arena->magic == ARENA_MAGIC);
+       assert(chunk->arena == arena);
+       assert(ptr != NULL);
+       assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+       assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+       if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+               /* Small allocation. */
+#ifdef MALLOC_MAG
+               if (__isthreaded && opt_mag) {
+                       mag_rack_t *rack = mag_rack;
+                       if (rack == NULL) {
+                               rack = mag_rack_create(arena);
+                               if (rack == NULL) {
+                                       malloc_spin_lock(&arena->lock);
+                                       arena_dalloc_small(arena, chunk, ptr,
+                                           mapelm);
+                                       malloc_spin_unlock(&arena->lock);
+                               }
+                               mag_rack = rack;
+                       }
+                       mag_rack_dalloc(rack, ptr);
+               } else {
+#endif
+                       malloc_spin_lock(&arena->lock);
+                       arena_dalloc_small(arena, chunk, ptr, mapelm);
+                       malloc_spin_unlock(&arena->lock);
+#ifdef MALLOC_MAG
+               }
+#endif
+       } else
+               arena_dalloc_large(arena, chunk, ptr);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+       arena_chunk_t *chunk;
+
+       assert(ptr != NULL);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr)
+               arena_dalloc(chunk->arena, chunk, ptr);
+       else
+               huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t size, size_t oldsize)
+{
+
+       assert(size < oldsize);
+
+       /*
+        * Shrink the run, and make trailing pages available for other
+        * allocations.
+        */
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+           true);
+#ifdef MALLOC_STATS
+       arena->stats.allocated_large -= oldsize - size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t size, size_t oldsize)
+{
+       size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+       size_t npages = oldsize >> pagesize_2pow;
+
+       assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+       /* Try to extend the run. */
+       assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+           & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+           ~pagesize_mask) >= size - oldsize) {
+               /*
+                * The next run is available and sufficiently large.  Split the
+                * following run, then merge the first part with the existing
+                * allocation.
+                */
+               arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+                   ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+                   false);
+
+               chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+                   CHUNK_MAP_ALLOCATED;
+               chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+                   CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+               arena->stats.allocated_large += size - oldsize;
+#endif
+               malloc_spin_unlock(&arena->lock);
+               return (false);
+       }
+       malloc_spin_unlock(&arena->lock);
+
+       return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying.  This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+       size_t psize;
+
+       psize = PAGE_CEILING(size);
+       if (psize == oldsize) {
+               /* Same size class. */
+               if (opt_junk && size < oldsize) {
+                       memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+                           size);
+               }
+               return (false);
+       } else {
+               arena_chunk_t *chunk;
+               arena_t *arena;
+
+               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+               arena = chunk->arena;
+               assert(arena->magic == ARENA_MAGIC);
+
+               if (psize < oldsize) {
+                       /* Fill before shrinking in order avoid a race. */
+                       if (opt_junk) {
+                               memset((void *)((uintptr_t)ptr + size), 0x5a,
+                                   oldsize - size);
+                       }
+                       arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+                           oldsize);
+                       return (false);
+               } else {
+                       bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+                           psize, oldsize);
+                       if (ret == false && opt_zero) {
+                               memset((void *)((uintptr_t)ptr + oldsize), 0,
+                                   size - oldsize);
+                       }
+                       return (ret);
+               }
+       }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+       void *ret;
+       size_t copysize;
+
+       /* Try to avoid moving the allocation. */
+       if (size <= bin_maxclass) {
+               if (oldsize <= bin_maxclass && size2bin[size] ==
+                   size2bin[oldsize])
+                       goto IN_PLACE;
+       } else {
+               if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+                       assert(size > bin_maxclass);
+                       if (arena_ralloc_large(ptr, size, oldsize) == false)
+                               return (ptr);
+               }
+       }
+
+       /*
+        * If we get here, then size and oldsize are different enough that we
+        * need to move the object.  In that case, fall back to allocating new
+        * space and copying.
+        */
+       ret = arena_malloc(choose_arena(), size, false);
+       if (ret == NULL)
+               return (NULL);
+
+       /* Junk/zero-filling were already done by arena_malloc(). */
+       copysize = (size < oldsize) ? size : oldsize;
+       memcpy(ret, ptr, copysize);
+       idalloc(ptr);
+       return (ret);
+IN_PLACE:
+       if (opt_junk && size < oldsize)
+               memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+       else if (opt_zero && size > oldsize)
+               memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+       return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+       size_t oldsize;
+
+       assert(ptr != NULL);
+       assert(size != 0);
+
+       oldsize = isalloc(ptr);
+
+       if (size <= arena_maxclass)
+               return (arena_ralloc(ptr, size, oldsize));
+       else
+               return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+       unsigned i;
+       arena_bin_t *bin;
+       size_t prev_run_size;
+
+       if (malloc_spin_init(&arena->lock))
+               return (true);
+
+#ifdef MALLOC_STATS
+       memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+       /* Initialize chunks. */
+       arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+       arena->spare = NULL;
+
+       arena->ndirty = 0;
+
+       arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+       arena->contention = 0;
+#endif
+
+       /* Initialize bins. */
+       prev_run_size = pagesize;
+
+       i = 0;
+#ifdef MALLOC_TINY
+       /* (2^n)-spaced tiny bins. */
+       for (; i < ntbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+#endif
+
+       /* Quantum-spaced bins. */
+       for (; i < ntbins + nqbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+       /* Cacheline-spaced bins. */
+       for (; i < ntbins + nqbins + ncbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
+                   CACHELINE_2POW);
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+       /* Subpage-spaced bins. */
+       for (; i < nbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
+                   << SUBPAGE_2POW);
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+#ifdef MALLOC_DEBUG
+       arena->magic = ARENA_MAGIC;
+#endif
+
+       return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+       arena_t *ret;
+
+       /* Allocate enough space for trailing bins. */
+       ret = (arena_t *)base_alloc(sizeof(arena_t)
+           + (sizeof(arena_bin_t) * (nbins - 1)));
+       if (ret != NULL && arena_new(ret) == false) {
+               arenas[ind] = ret;
+               return (ret);
+       }
+       /* Only reached if there is an OOM error. */
+
+       /*
+        * OOM here is quite inconvenient to propagate, since dealing with it
+        * would require a check for failure in the fast path.  Instead, punt
+        * by using arenas[0].  In practice, this is an extremely unlikely
+        * failure.
+        */
+       _malloc_message(_getprogname(),
+           ": (malloc) Error initializing arena\n", "", "");
+       if (opt_abort)
+               abort();
+
+       return (arenas[0]);
+}
+
+#ifdef MALLOC_MAG
+static mag_t *
+mag_create(arena_t *arena, size_t binind)
+{
+       mag_t *ret;
+
+       if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+           bin_maxclass) {
+               ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
+                   * (max_rounds - 1)), false);
+       } else {
+               ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
+                   1)));
+       }
+       if (ret == NULL)
+               return (NULL);
+       ret->binind = binind;
+       ret->nrounds = 0;
+
+       return (ret);
+}
+
+static void
+mag_destroy(mag_t *mag)
+{
+       arena_t *arena;
+       arena_chunk_t *chunk;
+       size_t pageind;
+       arena_chunk_map_t *mapelm;
+
+       chunk = CHUNK_ADDR2BASE(mag);
+       arena = chunk->arena;
+       pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+
+       assert(mag->nrounds == 0);
+       if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+           bin_maxclass) {
+               malloc_spin_lock(&arena->lock);
+               arena_dalloc_small(arena, chunk, mag, mapelm);
+               malloc_spin_unlock(&arena->lock);
+       } else
+               idalloc(mag);
+}
+
+static mag_rack_t *
+mag_rack_create(arena_t *arena)
+{
+
+       assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
+           bin_maxclass);
+       return (arena_malloc_small(arena, sizeof(mag_rack_t) +
+           (sizeof(bin_mags_t) * (nbins - 1)), true));
+}
+
+static void
+mag_rack_destroy(mag_rack_t *rack)
+{
+       arena_t *arena;
+       arena_chunk_t *chunk;
+       bin_mags_t *bin_mags;
+       size_t i, pageind;
+       arena_chunk_map_t *mapelm;
+
+       for (i = 0; i < nbins; i++) {
+               bin_mags = &rack->bin_mags[i];
+               if (bin_mags->curmag != NULL) {
+                       assert(bin_mags->curmag->binind == i);
+                       mag_unload(bin_mags->curmag);
+                       mag_destroy(bin_mags->curmag);
+               }
+               if (bin_mags->sparemag != NULL) {
+                       assert(bin_mags->sparemag->binind == i);
+                       mag_unload(bin_mags->sparemag);
+                       mag_destroy(bin_mags->sparemag);
+               }
+       }
+
+       chunk = CHUNK_ADDR2BASE(rack);
+       arena = chunk->arena;
+       pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+
+       malloc_spin_lock(&arena->lock);
+       arena_dalloc_small(arena, chunk, rack, mapelm);
+       malloc_spin_unlock(&arena->lock);
+}
+#endif
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+       void *ret;
+       size_t csize;
+       extent_node_t *node;
+
+       /* Allocate one or more contiguous chunks for this request. */
+
+       csize = CHUNK_CEILING(size);
+       if (csize == 0) {
+               /* size is large enough to cause size_t wrap-around. */
+               return (NULL);
+       }
+
+       /* Allocate an extent node with which to track the chunk. */
+       node = base_node_alloc();
+       if (node == NULL)
+               return (NULL);
+
+       ret = chunk_alloc(csize, zero);
+       if (ret == NULL) {
+               base_node_dealloc(node);
+               return (NULL);
+       }
+
+       /* Insert node into huge. */
+       node->addr = ret;
+       node->size = csize;
+
+       malloc_mutex_lock(&huge_mtx);
+       extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+       huge_nmalloc++;
+       huge_allocated += csize;
+#endif
+       malloc_mutex_unlock(&huge_mtx);
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, csize);
+               else if (opt_zero)
+                       memset(ret, 0, csize);
+       }
+
+       return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+       void *ret;
+       size_t alloc_size, chunk_size, offset;
+       extent_node_t *node;
+
+       /*
+        * This allocation requires alignment that is even larger than chunk
+        * alignment.  This means that huge_malloc() isn't good enough.
+        *
+        * Allocate almost twice as many chunks as are demanded by the size or
+        * alignment, in order to assure the alignment can be achieved, then
+        * unmap leading and trailing chunks.
+        */
+       assert(alignment >= chunksize);
+
+       chunk_size = CHUNK_CEILING(size);
+
+       if (size >= alignment)
+               alloc_size = chunk_size + alignment - chunksize;
+       else
+               alloc_size = (alignment << 1) - chunksize;
+
+       /* Allocate an extent node with which to track the chunk. */
+       node = base_node_alloc();
+       if (node == NULL)
+               return (NULL);
+
+       ret = chunk_alloc(alloc_size, false);
+       if (ret == NULL) {
+               base_node_dealloc(node);
+               return (NULL);
+       }
+
+       offset = (uintptr_t)ret & (alignment - 1);
+       assert((offset & chunksize_mask) == 0);
+       assert(offset < alloc_size);
+       if (offset == 0) {
+               /* Trim trailing space. */
+               chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+                   - chunk_size);
+       } else {
+               size_t trailsize;
+
+               /* Trim leading space. */
+               chunk_dealloc(ret, alignment - offset);
+
+               ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+               trailsize = alloc_size - (alignment - offset) - chunk_size;
+               if (trailsize != 0) {
+                   /* Trim trailing space. */
+                   assert(trailsize < alloc_size);
+                   chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+                       trailsize);
+               }
+       }
+
+       /* Insert node into huge. */
+       node->addr = ret;
+       node->size = chunk_size;
+
+       malloc_mutex_lock(&huge_mtx);
+       extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+       huge_nmalloc++;
+       huge_allocated += chunk_size;
+#endif
+       malloc_mutex_unlock(&huge_mtx);
+
+       if (opt_junk)
+               memset(ret, 0xa5, chunk_size);
+       else if (opt_zero)
+               memset(ret, 0, chunk_size);
+
+       return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+       void *ret;
+       size_t copysize;
+
+       /* Avoid moving the allocation if the size class would not change. */
+       if (oldsize > arena_maxclass &&
+           CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+               if (opt_junk && size < oldsize) {
+                       memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+                           - size);
+               } else if (opt_zero && size > oldsize) {
+                       memset((void *)((uintptr_t)ptr + oldsize), 0, size
+                           - oldsize);
+               }
+               return (ptr);
+       }
+
+       /*
+        * If we get here, then size and oldsize are different enough that we
+        * need to use a different size class.  In that case, fall back to
+        * allocating new space and copying.
+        */
+       ret = huge_malloc(size, false);
+       if (ret == NULL)
+               return (NULL);
+
+       copysize = (size < oldsize) ? size : oldsize;
+       memcpy(ret, ptr, copysize);
+       idalloc(ptr);
+       return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+       extent_node_t *node, key;
+
+       malloc_mutex_lock(&huge_mtx);
+
+       /* Extract from tree of huge allocations. */
+       key.addr = ptr;
+       node = extent_tree_ad_search(&huge, &key);
+       assert(node != NULL);
+       assert(node->addr == ptr);
+       extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+       huge_ndalloc++;
+       huge_allocated -= node->size;
+#endif
+
+       malloc_mutex_unlock(&huge_mtx);
+
+       /* Unmap chunk. */
+#ifdef MALLOC_DSS
+       if (opt_dss && opt_junk)
+               memset(node->addr, 0x5a, node->size);
+#endif
+       chunk_dealloc(node->addr, node->size);
+
+       base_node_dealloc(node);
+}
+
+static void
+malloc_print_stats(void)
+{
+
+       if (opt_print_stats) {
+               char s[UMAX2S_BUFSIZE];
+               _malloc_message("___ Begin malloc statistics ___\n", "", "",
+                   "");
+               _malloc_message("Assertions ",
+#ifdef NDEBUG
+                   "disabled",
+#else
+                   "enabled",
+#endif
+                   "\n", "");
+               _malloc_message("Boolean MALLOC_OPTIONS: ",
+                   opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+               _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+#ifdef MALLOC_MAG
+               _malloc_message(opt_mag ? "G" : "g", "", "", "");
+#endif
+               _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#ifdef MALLOC_DSS
+               _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+               _malloc_message(opt_utrace ? "PU" : "Pu",
+                   opt_sysv ? "V" : "v",
+                   opt_xmalloc ? "X" : "x",
+                   opt_zero ? "Z\n" : "z\n");
+
+               _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+               _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_BALANCE
+               _malloc_message("Arena balance threshold: ",
+                   umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+               _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+                   "\n", "");
+               _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
+               _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
+                   s), "\n", "");
+#ifdef MALLOC_TINY
+               _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
+                   TINY_MIN_2POW), s), "..", "");
+               _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
+#endif
+               _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
+                   s), "..", "");
+               _malloc_message(umax2s(qspace_max, s), "]\n", "", "");
+               _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
+                   s), "..", "");
+               _malloc_message(umax2s(cspace_max, s), "]\n", "", "");
+               _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
+                   s), "..", "");
+               _malloc_message(umax2s(sspace_max, s), "]\n", "", "");
+#ifdef MALLOC_MAG
+               _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
+                   "\n", "");
+#endif
+               _malloc_message("Max dirty pages per arena: ",
+                   umax2s(opt_dirty_max, s), "\n", "");
+
+               _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+               _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+               {
+                       size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+                       uint64_t nbalance = 0;
+#endif
+                       unsigned i;
+                       arena_t *arena;
+
+                       /* Calculate and print allocated/mapped stats. */
+
+                       /* arenas. */
+                       for (i = 0, allocated = 0; i < narenas; i++) {
+                               if (arenas[i] != NULL) {
+                                       malloc_spin_lock(&arenas[i]->lock);
+                                       allocated +=
+                                           arenas[i]->stats.allocated_small;
+                                       allocated +=
+                                           arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+                                       nbalance += arenas[i]->stats.nbalance;
+#endif
+                                       malloc_spin_unlock(&arenas[i]->lock);
+                               }
+                       }
+
+                       /* huge/base. */
+                       malloc_mutex_lock(&huge_mtx);
+                       allocated += huge_allocated;
+                       mapped = stats_chunks.curchunks * chunksize;
+                       malloc_mutex_unlock(&huge_mtx);
+
+                       malloc_mutex_lock(&base_mtx);
+                       mapped += base_mapped;
+                       malloc_mutex_unlock(&base_mtx);
+
+                       malloc_printf("Allocated: %zu, mapped: %zu\n",
+                           allocated, mapped);
+
+#ifdef MALLOC_BALANCE
+                       malloc_printf("Arena balance reassignments: %llu\n",
+                           nbalance);
+#endif
+
+                       /* Print chunk stats. */
+                       {
+                               chunk_stats_t chunks_stats;
+
+                               malloc_mutex_lock(&huge_mtx);
+                               chunks_stats = stats_chunks;
+                               malloc_mutex_unlock(&huge_mtx);
+
+                               malloc_printf("chunks: nchunks   "
+                                   "highchunks    curchunks\n");
+                               malloc_printf("  %13llu%13lu%13lu\n",
+                                   chunks_stats.nchunks,
+                                   chunks_stats.highchunks,
+                                   chunks_stats.curchunks);
+                       }
+
+                       /* Print chunk stats. */
+                       malloc_printf(
+                           "huge: nmalloc      ndalloc    allocated\n");
+                       malloc_printf(" %12llu %12llu %12zu\n",
+                           huge_nmalloc, huge_ndalloc, huge_allocated);
+
+                       /* Print stats for each arena. */
+                       for (i = 0; i < narenas; i++) {
+                               arena = arenas[i];
+                               if (arena != NULL) {
+                                       malloc_printf(
+                                           "\narenas[%u]:\n", i);
+                                       malloc_spin_lock(&arena->lock);
+                                       stats_print(arena);
+                                       malloc_spin_unlock(&arena->lock);
+                               }
+                       }
+               }
+#endif /* #ifdef MALLOC_STATS */
+               _malloc_message("--- End malloc statistics ---\n", "", "", "");
+       }
+}
+
+#ifdef MALLOC_DEBUG
+static void
+size2bin_validate(void)
+{
+       size_t i, size, binind;
+
+       assert(size2bin[0] == 0xffU);
+       i = 1;
+#  ifdef MALLOC_TINY
+       /* Tiny. */
+       for (; i < (1U << TINY_MIN_2POW); i++) {
+               size = pow2_ceil(1U << TINY_MIN_2POW);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               assert(size2bin[i] == binind);
+       }
+       for (; i < qspace_min; i++) {
+               size = pow2_ceil(i);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               assert(size2bin[i] == binind);
+       }
+#  endif
+       /* Quantum-spaced. */
+       for (; i <= qspace_max; i++) {
+               size = QUANTUM_CEILING(i);
+               binind = ntbins + (size >> QUANTUM_2POW) - 1;
+               assert(size2bin[i] == binind);
+       }
+       /* Cacheline-spaced. */
+       for (; i <= cspace_max; i++) {
+               size = CACHELINE_CEILING(i);
+               binind = ntbins + nqbins + ((size - cspace_min) >>
+                   CACHELINE_2POW);
+               assert(size2bin[i] == binind);
+       }
+       /* Sub-page. */
+       for (; i <= sspace_max; i++) {
+               size = SUBPAGE_CEILING(i);
+               binind = ntbins + nqbins + ncbins + ((size - sspace_min)
+                   >> SUBPAGE_2POW);
+               assert(size2bin[i] == binind);
+       }
+}
+#endif
+
+static bool
+size2bin_init(void)
+{
+
+       if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+           || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
+               return (size2bin_init_hard());
+
+       size2bin = const_size2bin;
+#ifdef MALLOC_DEBUG
+       assert(sizeof(const_size2bin) == bin_maxclass + 1);
+       size2bin_validate();
+#endif
+       return (false);
+}
+
+static bool
+size2bin_init_hard(void)
+{
+       size_t i, size, binind;
+       uint8_t *custom_size2bin;
+
+       assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+           || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
+
+       custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
+       if (custom_size2bin == NULL)
+               return (true);
+
+       custom_size2bin[0] = 0xffU;
+       i = 1;
+#ifdef MALLOC_TINY
+       /* Tiny. */
+       for (; i < (1U << TINY_MIN_2POW); i++) {
+               size = pow2_ceil(1U << TINY_MIN_2POW);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               custom_size2bin[i] = binind;
+       }
+       for (; i < qspace_min; i++) {
+               size = pow2_ceil(i);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               custom_size2bin[i] = binind;
+       }
+#endif
+       /* Quantum-spaced. */
+       for (; i <= qspace_max; i++) {
+               size = QUANTUM_CEILING(i);
+               binind = ntbins + (size >> QUANTUM_2POW) - 1;
+               custom_size2bin[i] = binind;
+       }
+       /* Cacheline-spaced. */
+       for (; i <= cspace_max; i++) {
+               size = CACHELINE_CEILING(i);
+               binind = ntbins + nqbins + ((size - cspace_min) >>
+                   CACHELINE_2POW);
+               custom_size2bin[i] = binind;
+       }
+       /* Sub-page. */
+       for (; i <= sspace_max; i++) {
+               size = SUBPAGE_CEILING(i);
+               binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
+                   SUBPAGE_2POW);
+               custom_size2bin[i] = binind;
+       }
+
+       size2bin = custom_size2bin;
+#ifdef MALLOC_DEBUG
+       size2bin_validate();
+#endif
+       return (false);
+}
+
+static unsigned
+malloc_ncpus(void)
+{
+       unsigned ret;
+       int fd, nread, column;
+       char buf[1];
+       static const char matchstr[] = "processor\t:";
+
+       /*
+        * sysconf(3) would be the preferred method for determining the number
+        * of CPUs, but it uses malloc internally, which causes untennable
+        * recursion during malloc initialization.
+        */
+       fd = open("/proc/cpuinfo", O_RDONLY);
+       if (fd == -1)
+               return (1); /* Error. */
+       /*
+        * Count the number of occurrences of matchstr at the beginnings of
+        * lines.  This treats hyperthreaded CPUs as multiple processors.
+        */
+       column = 0;
+       ret = 0;
+       while (true) {
+               nread = read(fd, &buf, sizeof(buf));
+               if (nread <= 0)
+                       break; /* EOF or error. */
+
+               if (buf[0] == '\n')
+                       column = 0;
+               else if (column != -1) {
+                       if (buf[0] == matchstr[column]) {
+                               column++;
+                               if (column == sizeof(matchstr) - 1) {
+                                       column = -1;
+                                       ret++;
+                               }
+                       } else
+                               column = -1;
+               }
+       }
+       if (ret == 0)
+               ret = 1; /* Something went wrong in the parser. */
+       close(fd);
+
+       return (ret);
+}
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+static inline bool
+malloc_init(void)
+{
+
+       if (malloc_initialized == false)
+               return (malloc_init_hard());
+
+       return (false);
+}
+
+static bool
+malloc_init_hard(void)
+{
+       unsigned i;
+       int linklen;
+       char buf[PATH_MAX + 1];
+       const char *opts;
+
+       malloc_mutex_lock(&init_lock);
+       if (malloc_initialized) {
+               /*
+                * Another thread initialized the allocator before this one
+                * acquired init_lock.
+                */
+               malloc_mutex_unlock(&init_lock);
+               return (false);
+       }
+
+       /* Get number of CPUs. */
+       ncpus = malloc_ncpus();
+
+       /* Get page size. */
+       {
+               long result;
+
+               result = sysconf(_SC_PAGESIZE);
+               assert(result != -1);
+               pagesize = (unsigned)result;
+
+               /*
+                * We assume that pagesize is a power of 2 when calculating
+                * pagesize_mask and pagesize_2pow.
+                */
+               assert(((result - 1) & result) == 0);
+               pagesize_mask = result - 1;
+               pagesize_2pow = ffs((int)result) - 1;
+       }
+
+       for (i = 0; i < 3; i++) {
+               unsigned j;
+
+               /* Get runtime configuration. */
+               switch (i) {
+               case 0:
+                       if ((linklen = readlink("/etc/malloc.conf", buf,
+                                               sizeof(buf) - 1)) != -1) {
+                               /*
+                                * Use the contents of the "/etc/malloc.conf"
+                                * symbolic link's name.
+                                */
+                               buf[linklen] = '\0';
+                               opts = buf;
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               case 1:
+                       if (issetugid() == 0 && (opts =
+                           getenv("MALLOC_OPTIONS")) != NULL) {
+                               /*
+                                * Do nothing; opts is already initialized to
+                                * the value of the MALLOC_OPTIONS environment
+                                * variable.
+                                */
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               case 2:
+                       if (_malloc_options != NULL) {
+                               /*
+                                * Use options that were compiled into the
+                                * program.
+                                */
+                               opts = _malloc_options;
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               default:
+                       /* NOTREACHED */
+                       assert(false);
+               }
+
+               for (j = 0; opts[j] != '\0'; j++) {
+                       unsigned k, nreps;
+                       bool nseen;
+
+                       /* Parse repetition count, if any. */
+                       for (nreps = 0, nseen = false;; j++, nseen = true) {
+                               switch (opts[j]) {
+                                       case '0': case '1': case '2': case '3':
+                                       case '4': case '5': case '6': case '7':
+                                       case '8': case '9':
+                                               nreps *= 10;
+                                               nreps += opts[j] - '0';
+                                               break;
+                                       default:
+                                               goto MALLOC_OUT;
+                               }
+                       }
+MALLOC_OUT:
+                       if (nseen == false)
+                               nreps = 1;
+
+                       for (k = 0; k < nreps; k++) {
+                               switch (opts[j]) {
+                               case 'a':
+                                       opt_abort = false;
+                                       break;
+                               case 'A':
+                                       opt_abort = true;
+                                       break;
+                               case 'b':
+#ifdef MALLOC_BALANCE
+                                       opt_balance_threshold >>= 1;
+#endif
+                                       break;
+                               case 'B':
+#ifdef MALLOC_BALANCE
+                                       if (opt_balance_threshold == 0)
+                                               opt_balance_threshold = 1;
+                                       else if ((opt_balance_threshold << 1)
+                                           > opt_balance_threshold)
+                                               opt_balance_threshold <<= 1;
+#endif
+                                       break;
+                               case 'c':
+                                       if (opt_cspace_max_2pow - 1 >
+                                           opt_qspace_max_2pow &&
+                                           opt_cspace_max_2pow >
+                                           CACHELINE_2POW)
+                                               opt_cspace_max_2pow--;
+                                       break;
+                               case 'C':
+                                       if (opt_cspace_max_2pow < pagesize_2pow
+                                           - 1)
+                                               opt_cspace_max_2pow++;
+                                       break;
+                               case 'd':
+#ifdef MALLOC_DSS
+                                       opt_dss = false;
+#endif
+                                       break;
+                               case 'D':
+#ifdef MALLOC_DSS
+                                       opt_dss = true;
+#endif
+                                       break;
+                               case 'f':
+                                       opt_dirty_max >>= 1;
+                                       break;
+                               case 'F':
+                                       if (opt_dirty_max == 0)
+                                               opt_dirty_max = 1;
+                                       else if ((opt_dirty_max << 1) != 0)
+                                               opt_dirty_max <<= 1;
+                                       break;
+#ifdef MALLOC_MAG
+                               case 'g':
+                                       opt_mag = false;
+                                       break;
+                               case 'G':
+                                       opt_mag = true;
+                                       break;
+#endif
+                               case 'j':
+                                       opt_junk = false;
+                                       break;
+                               case 'J':
+                                       opt_junk = true;
+                                       break;
+                               case 'k':
+                                       /*
+                                        * Chunks always require at least one
+                                        * header page, so chunks can never be
+                                        * smaller than two pages.
+                                        */
+                                       if (opt_chunk_2pow > pagesize_2pow + 1)
+                                               opt_chunk_2pow--;
+                                       break;
+                               case 'K':
+                                       if (opt_chunk_2pow + 1 <
+                                           (sizeof(size_t) << 3))
+                                               opt_chunk_2pow++;
+                                       break;
+                               case 'm':
+#ifdef MALLOC_DSS
+                                       opt_mmap = false;
+#endif
+                                       break;
+                               case 'M':
+#ifdef MALLOC_DSS
+                                       opt_mmap = true;
+#endif
+                                       break;
+                               case 'n':
+                                       opt_narenas_lshift--;
+                                       break;
+                               case 'N':
+                                       opt_narenas_lshift++;
+                                       break;
+                               case 'p':
+                                       opt_print_stats = false;
+                                       break;
+                               case 'P':
+                                       opt_print_stats = true;
+                                       break;
+                               case 'q':
+                                       if (opt_qspace_max_2pow > QUANTUM_2POW)
+                                               opt_qspace_max_2pow--;
+                                       break;
+                               case 'Q':
+                                       if (opt_qspace_max_2pow + 1 <
+                                           opt_cspace_max_2pow)
+                                               opt_qspace_max_2pow++;
+                                       break;
+#ifdef MALLOC_MAG
+                               case 'R':
+                                       if (opt_mag_size_2pow + 1 < (8U <<
+                                           SIZEOF_PTR_2POW))
+                                               opt_mag_size_2pow++;
+                                       break;
+                               case 'r':
+                                       /*
+                                        * Make sure there's always at least
+                                        * one round per magazine.
+                                        */
+                                       if ((1U << (opt_mag_size_2pow-1)) >=
+                                           sizeof(mag_t))
+                                               opt_mag_size_2pow--;
+                                       break;
+#endif
+                               case 'u':
+                                       opt_utrace = false;
+                                       break;
+                               case 'U':
+                                       opt_utrace = true;
+                                       break;
+                               case 'v':
+                                       opt_sysv = false;
+                                       break;
+                               case 'V':
+                                       opt_sysv = true;
+                                       break;
+                               case 'x':
+                                       opt_xmalloc = false;
+                                       break;
+                               case 'X':
+                                       opt_xmalloc = true;
+                                       break;
+                               case 'z':
+                                       opt_zero = false;
+                                       break;
+                               case 'Z':
+                                       opt_zero = true;
+                                       break;
+                               default: {
+                                       char cbuf[2];
+
+                                       cbuf[0] = opts[j];
+                                       cbuf[1] = '\0';
+                                       _malloc_message(_getprogname(),
+                                           ": (malloc) Unsupported character "
+                                           "in malloc options: '", cbuf,
+                                           "'\n");
+                               }
+                               }
+                       }
+               }
+       }
+
+#ifdef MALLOC_DSS
+       /* Make sure that there is some method for acquiring memory. */
+       if (opt_dss == false && opt_mmap == false)
+               opt_mmap = true;
+#endif
+
+       /* Take care to call atexit() only once. */
+       if (opt_print_stats) {
+               /* Print statistics at exit. */
+               atexit(malloc_print_stats);
+       }
+
+       /* Register fork handlers. */
+       pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
+
+#ifdef MALLOC_MAG
+       /*
+        * Calculate the actual number of rounds per magazine, taking into
+        * account header overhead.
+        */
+       max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
+           (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
+#endif
+
+       /* Set variables according to the value of opt_[qc]space_max_2pow. */
+       qspace_max = (1U << opt_qspace_max_2pow);
+       cspace_min = CACHELINE_CEILING(qspace_max);
+       if (cspace_min == qspace_max)
+               cspace_min += CACHELINE;
+       cspace_max = (1U << opt_cspace_max_2pow);
+       sspace_min = SUBPAGE_CEILING(cspace_max);
+       if (sspace_min == cspace_max)
+               sspace_min += SUBPAGE;
+       assert(sspace_min < pagesize);
+       sspace_max = pagesize - SUBPAGE;
+
+#ifdef MALLOC_TINY
+       assert(QUANTUM_2POW >= TINY_MIN_2POW);
+#endif
+       assert(ntbins <= QUANTUM_2POW);
+       nqbins = qspace_max >> QUANTUM_2POW;
+       ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
+       nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
+       nbins = ntbins + nqbins + ncbins + nsbins;
+
+       if (size2bin_init()) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+
+       /* Set variables according to the value of opt_chunk_2pow. */
+       chunksize = (1LU << opt_chunk_2pow);
+       chunksize_mask = chunksize - 1;
+       chunk_npages = (chunksize >> pagesize_2pow);
+       {
+               size_t header_size;
+
+               /*
+                * Compute the header size such that it is large enough to
+                * contain the page map.
+                */
+               header_size = sizeof(arena_chunk_t) +
+                   (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+               arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+                   ((header_size & pagesize_mask) != 0);
+       }
+       arena_maxclass = chunksize - (arena_chunk_header_npages <<
+           pagesize_2pow);
+
+       UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+       memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+       /* Various sanity checks that regard configuration. */
+       assert(chunksize >= pagesize);
+
+       /* Initialize chunks data. */
+       if (malloc_mutex_init(&huge_mtx)) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+       extent_tree_ad_new(&huge);
+#ifdef MALLOC_DSS
+       if (malloc_mutex_init(&dss_mtx)) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+       dss_base = sbrk(0);
+       dss_prev = dss_base;
+       dss_max = dss_base;
+       extent_tree_szad_new(&dss_chunks_szad);
+       extent_tree_ad_new(&dss_chunks_ad);
+#endif
+#ifdef MALLOC_STATS
+       huge_nmalloc = 0;
+       huge_ndalloc = 0;
+       huge_allocated = 0;
+#endif
+
+       /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+       base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+       /*
+        * Allocate a base chunk here, since it doesn't actually have to be
+        * chunk-aligned.  Doing this before allocating any other chunks allows
+        * the use of space that would otherwise be wasted.
+        */
+       if (opt_dss)
+               base_pages_alloc(0);
+#endif
+       base_nodes = NULL;
+       if (malloc_mutex_init(&base_mtx)) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+
+       if (ncpus > 1) {
+               /*
+                * For SMP systems, create twice as many arenas as there are
+                * CPUs by default.
+                */
+               opt_narenas_lshift++;
+       }
+
+       /* Determine how many arenas to use. */
+       narenas = ncpus;
+       if (opt_narenas_lshift > 0) {
+               if ((narenas << opt_narenas_lshift) > narenas)
+                       narenas <<= opt_narenas_lshift;
+               /*
+                * Make sure not to exceed the limits of what base_alloc() can
+                * handle.
+                */
+               if (narenas * sizeof(arena_t *) > chunksize)
+                       narenas = chunksize / sizeof(arena_t *);
+       } else if (opt_narenas_lshift < 0) {
+               if ((narenas >> -opt_narenas_lshift) < narenas)
+                       narenas >>= -opt_narenas_lshift;
+               /* Make sure there is at least one arena. */
+               if (narenas == 0)
+                       narenas = 1;
+       }
+#ifdef MALLOC_BALANCE
+       assert(narenas != 0);
+       for (narenas_2pow = 0;
+            (narenas >> (narenas_2pow + 1)) != 0;
+            narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+       if (narenas > 1) {
+               static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+                   23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+                   89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+                   151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+                   223, 227, 229, 233, 239, 241, 251, 257, 263};
+               unsigned nprimes, parenas;
+
+               /*
+                * Pick a prime number of hash arenas that is more than narenas
+                * so that direct hashing of pthread_self() pointers tends to
+                * spread allocations evenly among the arenas.
+                */
+               assert((narenas & 1) == 0); /* narenas must be even. */
+               nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+               parenas = primes[nprimes - 1]; /* In case not enough primes. */
+               for (i = 1; i < nprimes; i++) {
+                       if (primes[i] > narenas) {
+                               parenas = primes[i];
+                               break;
+                       }
+               }
+               narenas = parenas;
+       }
+#endif
+
+#ifndef NO_TLS
+#  ifndef MALLOC_BALANCE
+       next_arena = 0;
+#  endif
+#endif
+
+       /* Allocate and initialize arenas. */
+       arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+       if (arenas == NULL) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+       /*
+        * Zero the array.  In practice, this should always be pre-zeroed,
+        * since it was just mmap()ed, but let's be sure.
+        */
+       memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+       /*
+        * Initialize one arena here.  The rest are lazily created in
+        * choose_arena_hard().
+        */
+       arenas_extend(0);
+       if (arenas[0] == NULL) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+#ifndef NO_TLS
+       /*
+        * Assign the initial arena to the initial thread, in order to avoid
+        * spurious creation of an extra arena if the application switches to
+        * threaded mode.
+        */
+       arenas_map = arenas[0];
+#endif
+       /*
+        * Seed here for the initial thread, since choose_arena_hard() is only
+        * called for other threads.  The seed value doesn't really matter.
+        */
+#ifdef MALLOC_BALANCE
+       SPRN(balance, 42);
+#endif
+
+       malloc_spin_init(&arenas_lock);
+
+       malloc_initialized = true;
+       malloc_mutex_unlock(&init_lock);
+       return (false);
+}
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+void *
+malloc(size_t size)
+{
+       void *ret;
+
+       if (malloc_init()) {
+               ret = NULL;
+               goto RETURN;
+       }
+
+       if (size == 0) {
+               if (opt_sysv == false)
+                       size = 1;
+               else {
+                       ret = NULL;
+                       goto RETURN;
+               }
+       }
+
+       ret = imalloc(size);
+
+RETURN:
+       if (ret == NULL) {
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in malloc(): out of memory\n", "",
+                           "");
+                       abort();
+               }
+               errno = ENOMEM;
+       }
+
+       UTRACE(0, size, ret);
+       return (ret);
+}
+
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+       int ret;
+       void *result;
+
+       if (malloc_init())
+               result = NULL;
+       else {
+               /* Make sure that alignment is a large enough power of 2. */
+               if (((alignment - 1) & alignment) != 0
+                   || alignment < sizeof(void *)) {
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in posix_memalign(): "
+                                   "invalid alignment\n", "", "");
+                               abort();
+                       }
+                       result = NULL;
+                       ret = EINVAL;
+                       goto RETURN;
+               }
+
+               result = ipalloc(alignment, size);
+       }
+
+       if (result == NULL) {
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                       ": (malloc) Error in posix_memalign(): out of memory\n",
+                       "", "");
+                       abort();
+               }
+               ret = ENOMEM;
+               goto RETURN;
+       }
+
+       *memptr = result;
+       ret = 0;
+
+RETURN:
+       UTRACE(0, size, result);
+       return (ret);
+}
+
+void *
+calloc(size_t num, size_t size)
+{
+       void *ret;
+       size_t num_size;
+
+       if (malloc_init()) {
+               num_size = 0;
+               ret = NULL;
+               goto RETURN;
+       }
+
+       num_size = num * size;
+       if (num_size == 0) {
+               if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+                       num_size = 1;
+               else {
+                       ret = NULL;
+                       goto RETURN;
+               }
+       /*
+        * Try to avoid division here.  We know that it isn't possible to
+        * overflow during multiplication if neither operand uses any of the
+        * most significant half of the bits in a size_t.
+        */
+       } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+           && (num_size / size != num)) {
+               /* size_t overflow. */
+               ret = NULL;
+               goto RETURN;
+       }
+
+       ret = icalloc(num_size);
+
+RETURN:
+       if (ret == NULL) {
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in calloc(): out of memory\n", "",
+                           "");
+                       abort();
+               }
+               errno = ENOMEM;
+       }
+
+       UTRACE(0, num_size, ret);
+       return (ret);
+}
+
+void *
+realloc(void *ptr, size_t size)
+{
+       void *ret;
+
+       if (size == 0) {
+               if (opt_sysv == false)
+                       size = 1;
+               else {
+                       if (ptr != NULL)
+                               idalloc(ptr);
+                       ret = NULL;
+                       goto RETURN;
+               }
+       }
+
+       if (ptr != NULL) {
+               assert(malloc_initialized);
+
+               ret = iralloc(ptr, size);
+
+               if (ret == NULL) {
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in realloc(): out of "
+                                   "memory\n", "", "");
+                               abort();
+                       }
+                       errno = ENOMEM;
+               }
+       } else {
+               if (malloc_init())
+                       ret = NULL;
+               else
+                       ret = imalloc(size);
+
+               if (ret == NULL) {
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in realloc(): out of "
+                                   "memory\n", "", "");
+                               abort();
+                       }
+                       errno = ENOMEM;
+               }
+       }
+
+RETURN:
+       UTRACE(ptr, size, ret);
+       return (ret);
+}
+
+void
+free(void *ptr)
+{
+
+       UTRACE(ptr, 0, 0);
+       if (ptr != NULL) {
+               assert(malloc_initialized);
+
+               idalloc(ptr);
+       }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+       assert(ptr != NULL);
+
+       return (isalloc(ptr));
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions.
+ */
+
+/******************************************************************************/
+/*
+ * Begin thread cache.
+ */
+
+/*
+ * We provide an unpublished interface in order to receive notifications from
+ * the pthreads library whenever a thread exits.  This allows us to clean up
+ * thread caches.
+ */
+void
+_malloc_thread_cleanup(void)
+{
+
+#ifdef MALLOC_MAG
+       if (mag_rack != NULL) {
+               assert(mag_rack != (void *)-1);
+               mag_rack_destroy(mag_rack);
+#ifdef MALLOC_DEBUG
+               mag_rack = (void *)-1;
+#endif
+       }
+#endif
+}
+
+/*
+ * The following functions are used by threading libraries for protection of
+ * malloc during fork().  These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+       unsigned i;
+
+       /* Acquire all mutexes in a safe order. */
+
+       malloc_spin_lock(&arenas_lock);
+       for (i = 0; i < narenas; i++) {
+               if (arenas[i] != NULL)
+                       malloc_spin_lock(&arenas[i]->lock);
+       }
+       malloc_spin_unlock(&arenas_lock);
+
+       malloc_mutex_lock(&base_mtx);
+
+       malloc_mutex_lock(&huge_mtx);
+
+#ifdef MALLOC_DSS
+       malloc_mutex_lock(&dss_mtx);
+#endif
+}
+
+void
+_malloc_postfork(void)
+{
+       unsigned i;
+
+       /* Release all mutexes, now that fork() has completed. */
+
+#ifdef MALLOC_DSS
+       malloc_mutex_unlock(&dss_mtx);
+#endif
+
+       malloc_mutex_unlock(&huge_mtx);
+
+       malloc_mutex_unlock(&base_mtx);
+
+       malloc_spin_lock(&arenas_lock);
+       for (i = 0; i < narenas; i++) {
+               if (arenas[i] != NULL)
+                       malloc_spin_unlock(&arenas[i]->lock);
+       }
+       malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
diff --git a/varnish-cache/lib/libjemalloc/malloc.3 b/varnish-cache/lib/libjemalloc/malloc.3
new file mode 100644 (file)
index 0000000..67a52fb
--- /dev/null
@@ -0,0 +1,584 @@
+.\" Copyright (c) 1980, 1991, 1993
+.\"    The Regents of the University of California.  All rights reserved.
+.\"
+.\" This code is derived from software contributed to Berkeley by
+.\" the American National Standards Committee X3, on Information
+.\" Processing Systems.
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\"    notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\"    notice, this list of conditions and the following disclaimer in the
+.\"    documentation and/or other materials provided with the distribution.
+.\" 3. Neither the name of the University nor the names of its contributors
+.\"    may be used to endorse or promote products derived from this software
+.\"    without specific prior written permission.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+.\" SUCH DAMAGE.
+.\"
+.\"     @(#)malloc.3   8.1 (Berkeley) 6/4/93
+.\" $FreeBSD: head/lib/libc/stdlib/malloc.3 182225 2008-08-27 02:00:53Z jasone $
+.\"
+.Dd August 26, 2008
+.Dt MALLOC 3
+.Os
+.Sh NAME
+.Nm malloc , calloc , realloc , free , reallocf , malloc_usable_size
+.Nd general purpose memory allocation functions
+.Sh LIBRARY
+.Lb libc
+.Sh SYNOPSIS
+.In stdlib.h
+.Ft void *
+.Fn malloc "size_t size"
+.Ft void *
+.Fn calloc "size_t number" "size_t size"
+.Ft void *
+.Fn realloc "void *ptr" "size_t size"
+.Ft void *
+.Fn reallocf "void *ptr" "size_t size"
+.Ft void
+.Fn free "void *ptr"
+.Ft const char *
+.Va _malloc_options ;
+.Ft void
+.Fo \*(lp*_malloc_message\*(rp
+.Fa "const char *p1" "const char *p2" "const char *p3" "const char *p4"
+.Fc
+.In malloc_np.h
+.Ft size_t
+.Fn malloc_usable_size "const void *ptr"
+.Sh DESCRIPTION
+The
+.Fn malloc
+function allocates
+.Fa size
+bytes of uninitialized memory.
+The allocated space is suitably aligned (after possible pointer coercion)
+for storage of any type of object.
+.Pp
+The
+.Fn calloc
+function allocates space for
+.Fa number
+objects,
+each
+.Fa size
+bytes in length.
+The result is identical to calling
+.Fn malloc
+with an argument of
+.Dq "number * size" ,
+with the exception that the allocated memory is explicitly initialized
+to zero bytes.
+.Pp
+The
+.Fn realloc
+function changes the size of the previously allocated memory referenced by
+.Fa ptr
+to
+.Fa size
+bytes.
+The contents of the memory are unchanged up to the lesser of the new and
+old sizes.
+If the new size is larger,
+the contents of the newly allocated portion of the memory are undefined.
+Upon success, the memory referenced by
+.Fa ptr
+is freed and a pointer to the newly allocated memory is returned.
+Note that
+.Fn realloc
+and
+.Fn reallocf
+may move the memory allocation, resulting in a different return value than
+.Fa ptr .
+If
+.Fa ptr
+is
+.Dv NULL ,
+the
+.Fn realloc
+function behaves identically to
+.Fn malloc
+for the specified size.
+.Pp
+The
+.Fn reallocf
+function is identical to the
+.Fn realloc
+function, except that it
+will free the passed pointer when the requested memory cannot be allocated.
+This is a
+.Fx
+specific API designed to ease the problems with traditional coding styles
+for realloc causing memory leaks in libraries.
+.Pp
+The
+.Fn free
+function causes the allocated memory referenced by
+.Fa ptr
+to be made available for future allocations.
+If
+.Fa ptr
+is
+.Dv NULL ,
+no action occurs.
+.Pp
+The
+.Fn malloc_usable_size
+function returns the usable size of the allocation pointed to by
+.Fa ptr .
+The return value may be larger than the size that was requested during
+allocation.
+The
+.Fn malloc_usable_size
+function is not a mechanism for in-place
+.Fn realloc ;
+rather it is provided solely as a tool for introspection purposes.
+Any discrepancy between the requested allocation size and the size reported by
+.Fn malloc_usable_size
+should not be depended on, since such behavior is entirely
+implementation-dependent.
+.Sh TUNING
+Once, when the first call is made to one of these memory allocation
+routines, various flags will be set or reset, which affects the
+workings of this allocator implementation.
+.Pp
+The
+.Dq name
+of the file referenced by the symbolic link named
+.Pa /etc/malloc.conf ,
+the value of the environment variable
+.Ev MALLOC_OPTIONS ,
+and the string pointed to by the global variable
+.Va _malloc_options
+will be interpreted, in that order, from left to right as flags.
+.Pp
+Each flag is a single letter, optionally prefixed by a non-negative base 10
+integer repetition count.
+For example,
+.Dq 3N
+is equivalent to
+.Dq NNN .
+Some flags control parameter magnitudes, where uppercase increases the
+magnitude, and lowercase decreases the magnitude.
+Other flags control boolean parameters, where uppercase indicates that a
+behavior is set, or on, and lowercase means that a behavior is not set, or off.
+.Bl -tag -width indent
+.It A
+All warnings (except for the warning about unknown
+flags being set) become fatal.
+The process will call
+.Xr abort 3
+in these cases.
+.It B
+Double/halve the per-arena lock contention threshold at which a thread is
+randomly re-assigned to an arena.
+This dynamic load balancing tends to push threads away from highly contended
+arenas, which avoids worst case contention scenarios in which threads
+disproportionately utilize arenas.
+However, due to the highly dynamic load that applications may place on the
+allocator, it is impossible for the allocator to know in advance how sensitive
+it should be to contention over arenas.
+Therefore, some applications may benefit from increasing or decreasing this
+threshold parameter.
+This option is not available for some configurations (non-PIC).
+.It C
+Double/halve the size of the maximum size class that is a multiple of the
+cacheline size (64).
+Above this size, subpage spacing (256 bytes) is used for size classes.
+The default value is 512 bytes.
+.It D
+Use
+.Xr sbrk 2
+to acquire memory in the data storage segment (DSS).
+This option is enabled by default.
+See the
+.Dq M
+option for related information and interactions.
+.It F
+Double/halve the per-arena maximum number of dirty unused pages that are
+allowed to accumulate before informing the kernel about at least half of those
+pages via
+.Xr madvise 2 .
+This provides the kernel with sufficient information to recycle dirty pages if
+physical memory becomes scarce and the pages remain unused.
+The default is 512 pages per arena;
+.Ev MALLOC_OPTIONS=10f
+will prevent any dirty unused pages from accumulating.
+.It G
+When there are multiple threads, use thread-specific caching for objects that
+are smaller than one page.
+This option is enabled by default.
+Thread-specific caching allows many allocations to be satisfied without
+performing any thread synchronization, at the cost of increased memory use.
+See the
+.Dq R
+option for related tuning information.
+This option is not available for some configurations (non-PIC).
+.It J
+Each byte of new memory allocated by
+.Fn malloc ,
+.Fn realloc
+or
+.Fn reallocf
+will be initialized to 0xa5.
+All memory returned by
+.Fn free ,
+.Fn realloc
+or
+.Fn reallocf
+will be initialized to 0x5a.
+This is intended for debugging and will impact performance negatively.
+.It K
+Double/halve the virtual memory chunk size.
+The default chunk size is 1 MB.
+.It M
+Use
+.Xr mmap 2
+to acquire anonymously mapped memory.
+This option is enabled by default.
+If both the
+.Dq D
+and
+.Dq M
+options are enabled, the allocator prefers the DSS over anonymous mappings,
+but allocation only fails if memory cannot be acquired via either method.
+If neither option is enabled, then the
+.Dq M
+option is implicitly enabled in order to assure that there is a method for
+acquiring memory.
+.It N
+Double/halve the number of arenas.
+The default number of arenas is two times the number of CPUs, or one if there
+is a single CPU.
+.It P
+Various statistics are printed at program exit via an
+.Xr atexit 3
+function.
+This has the potential to cause deadlock for a multi-threaded process that exits
+while one or more threads are executing in the memory allocation functions.
+Therefore, this option should only be used with care; it is primarily intended
+as a performance tuning aid during application development.
+.It Q
+Double/halve the size of the maximum size class that is a multiple of the
+quantum (8 or 16 bytes, depending on architecture).
+Above this size, cacheline spacing is used for size classes.
+The default value is 128 bytes.
+.It R
+Double/halve magazine size, which approximately doubles/halves the number of
+rounds in each magazine.
+Magazines are used by the thread-specific caching machinery to acquire and
+release objects in bulk.
+Increasing the magazine size decreases locking overhead, at the expense of
+increased memory usage.
+This option is not available for some configurations (non-PIC).
+.It U
+Generate
+.Dq utrace
+entries for
+.Xr ktrace 1 ,
+for all operations.
+Consult the source for details on this option.
+.It V
+Attempting to allocate zero bytes will return a
+.Dv NULL
+pointer instead of
+a valid pointer.
+(The default behavior is to make a minimal allocation and return a
+pointer to it.)
+This option is provided for System V compatibility.
+This option is incompatible with the
+.Dq X
+option.
+.It X
+Rather than return failure for any allocation function,
+display a diagnostic message on
+.Dv stderr
+and cause the program to drop
+core (using
+.Xr abort 3 ) .
+This option should be set at compile time by including the following in
+the source code:
+.Bd -literal -offset indent
+_malloc_options = "X";
+.Ed
+.It Z
+Each byte of new memory allocated by
+.Fn malloc ,
+.Fn realloc
+or
+.Fn reallocf
+will be initialized to 0.
+Note that this initialization only happens once for each byte, so
+.Fn realloc
+and
+.Fn reallocf
+calls do not zero memory that was previously allocated.
+This is intended for debugging and will impact performance negatively.
+.El
+.Pp
+The
+.Dq J
+and
+.Dq Z
+options are intended for testing and debugging.
+An application which changes its behavior when these options are used
+is flawed.
+.Sh IMPLEMENTATION NOTES
+Traditionally, allocators have used
+.Xr sbrk 2
+to obtain memory, which is suboptimal for several reasons, including race
+conditions, increased fragmentation, and artificial limitations on maximum
+usable memory.
+This allocator uses both
+.Xr sbrk 2
+and
+.Xr mmap 2
+by default, but it can be configured at run time to use only one or the other.
+If resource limits are not a primary concern, the preferred configuration is
+.Ev MALLOC_OPTIONS=dM
+or
+.Ev MALLOC_OPTIONS=DM .
+When so configured, the
+.Ar datasize
+resource limit has little practical effect for typical applications; use
+.Ev MALLOC_OPTIONS=Dm
+if that is a concern.
+Regardless of allocator configuration, the
+.Ar vmemoryuse
+resource limit can be used to bound the total virtual memory used by a
+process, as described in
+.Xr limits 1 .
+.Pp
+This allocator uses multiple arenas in order to reduce lock contention for
+threaded programs on multi-processor systems.
+This works well with regard to threading scalability, but incurs some costs.
+There is a small fixed per-arena overhead, and additionally, arenas manage
+memory completely independently of each other, which means a small fixed
+increase in overall memory fragmentation.
+These overheads are not generally an issue, given the number of arenas normally
+used.
+Note that using substantially more arenas than the default is not likely to
+improve performance, mainly due to reduced cache performance.
+However, it may make sense to reduce the number of arenas if an application
+does not make much use of the allocation functions.
+.Pp
+In addition to multiple arenas, this allocator supports thread-specific
+caching for small objects (smaller than one page), in order to make it
+possible to completely avoid synchronization for most small allocation requests.
+Such caching allows very fast allocation in the common case, but it increases
+memory usage and fragmentation, since a bounded number of objects can remain
+allocated in each thread cache.
+.Pp
+Memory is conceptually broken into equal-sized chunks, where the chunk size is
+a power of two that is greater than the page size.
+Chunks are always aligned to multiples of the chunk size.
+This alignment makes it possible to find metadata for user objects very
+quickly.
+.Pp
+User objects are broken into three categories according to size: small, large,
+and huge.
+Small objects are smaller than one page.
+Large objects are smaller than the chunk size.
+Huge objects are a multiple of the chunk size.
+Small and large objects are managed by arenas; huge objects are managed
+separately in a single data structure that is shared by all threads.
+Huge objects are used by applications infrequently enough that this single
+data structure is not a scalability issue.
+.Pp
+Each chunk that is managed by an arena tracks its contents as runs of
+contiguous pages (unused, backing a set of small objects, or backing one large
+object).
+The combination of chunk alignment and chunk page maps makes it possible to
+determine all metadata regarding small and large allocations in constant time.
+.Pp
+Small objects are managed in groups by page runs.
+Each run maintains a bitmap that tracks which regions are in use.
+Allocation requests that are no more than half the quantum (8 or 16, depending
+on architecture) are rounded up to the nearest power of two.
+Allocation requests that are more than half the quantum, but no more than the
+minimum cacheline-multiple size class (see the
+.Dq Q
+option) are rounded up to the nearest multiple of the quantum.
+Allocation requests that are more than the minumum cacheline-multiple size
+class, but no more than the minimum subpage-multiple size class (see the
+.Dq C
+option) are rounded up to the nearest multiple of the cacheline size (64).
+Allocation requests that are more than the minimum subpage-multiple size class
+are rounded up to the nearest multiple of the subpage size (256).
+Allocation requests that are more than one page, but small enough to fit in
+an arena-managed chunk (see the
+.Dq K
+option), are rounded up to the nearest run size.
+Allocation requests that are too large to fit in an arena-managed chunk are
+rounded up to the nearest multiple of the chunk size.
+.Pp
+Allocations are packed tightly together, which can be an issue for
+multi-threaded applications.
+If you need to assure that allocations do not suffer from cacheline sharing,
+round your allocation requests up to the nearest multiple of the cacheline
+size.
+.Sh DEBUGGING MALLOC PROBLEMS
+The first thing to do is to set the
+.Dq A
+option.
+This option forces a coredump (if possible) at the first sign of trouble,
+rather than the normal policy of trying to continue if at all possible.
+.Pp
+It is probably also a good idea to recompile the program with suitable
+options and symbols for debugger support.
+.Pp
+If the program starts to give unusual results, coredump or generally behave
+differently without emitting any of the messages mentioned in the next
+section, it is likely because it depends on the storage being filled with
+zero bytes.
+Try running it with the
+.Dq Z
+option set;
+if that improves the situation, this diagnosis has been confirmed.
+If the program still misbehaves,
+the likely problem is accessing memory outside the allocated area.
+.Pp
+Alternatively, if the symptoms are not easy to reproduce, setting the
+.Dq J
+option may help provoke the problem.
+.Pp
+In truly difficult cases, the
+.Dq U
+option, if supported by the kernel, can provide a detailed trace of
+all calls made to these functions.
+.Pp
+Unfortunately this implementation does not provide much detail about
+the problems it detects; the performance impact for storing such information
+would be prohibitive.
+There are a number of allocator implementations available on the Internet
+which focus on detecting and pinpointing problems by trading performance for
+extra sanity checks and detailed diagnostics.
+.Sh DIAGNOSTIC MESSAGES
+If any of the memory allocation/deallocation functions detect an error or
+warning condition, a message will be printed to file descriptor
+.Dv STDERR_FILENO .
+Errors will result in the process dumping core.
+If the
+.Dq A
+option is set, all warnings are treated as errors.
+.Pp
+The
+.Va _malloc_message
+variable allows the programmer to override the function which emits
+the text strings forming the errors and warnings if for some reason
+the
+.Dv stderr
+file descriptor is not suitable for this.
+Please note that doing anything which tries to allocate memory in
+this function is likely to result in a crash or deadlock.
+.Pp
+All messages are prefixed by
+.Dq Ao Ar progname Ac Ns Li : (malloc) .
+.Sh RETURN VALUES
+The
+.Fn malloc
+and
+.Fn calloc
+functions return a pointer to the allocated memory if successful; otherwise
+a
+.Dv NULL
+pointer is returned and
+.Va errno
+is set to
+.Er ENOMEM .
+.Pp
+The
+.Fn realloc
+and
+.Fn reallocf
+functions return a pointer, possibly identical to
+.Fa ptr ,
+to the allocated memory
+if successful; otherwise a
+.Dv NULL
+pointer is returned, and
+.Va errno
+is set to
+.Er ENOMEM
+if the error was the result of an allocation failure.
+The
+.Fn realloc
+function always leaves the original buffer intact
+when an error occurs, whereas
+.Fn reallocf
+deallocates it in this case.
+.Pp
+The
+.Fn free
+function returns no value.
+.Pp
+The
+.Fn malloc_usable_size
+function returns the usable size of the allocation pointed to by
+.Fa ptr .
+.Sh ENVIRONMENT
+The following environment variables affect the execution of the allocation
+functions:
+.Bl -tag -width ".Ev MALLOC_OPTIONS"
+.It Ev MALLOC_OPTIONS
+If the environment variable
+.Ev MALLOC_OPTIONS
+is set, the characters it contains will be interpreted as flags to the
+allocation functions.
+.El
+.Sh EXAMPLES
+To dump core whenever a problem occurs:
+.Pp
+.Bd -literal -offset indent
+ln -s 'A' /etc/malloc.conf
+.Ed
+.Pp
+To specify in the source that a program does no return value checking
+on calls to these functions:
+.Bd -literal -offset indent
+_malloc_options = "X";
+.Ed
+.Sh SEE ALSO
+.Xr limits 1 ,
+.Xr madvise 2 ,
+.Xr mmap 2 ,
+.Xr sbrk 2 ,
+.Xr alloca 3 ,
+.Xr atexit 3 ,
+.Xr getpagesize 3 ,
+.Xr memory 3 ,
+.Xr posix_memalign 3
+.Sh STANDARDS
+The
+.Fn malloc ,
+.Fn calloc ,
+.Fn realloc
+and
+.Fn free
+functions conform to
+.St -isoC .
+.Sh HISTORY
+The
+.Fn reallocf
+function first appeared in
+.Fx 3.0 .
+.Pp
+The
+.Fn malloc_usable_size
+function first appeared in
+.Fx 7.0 .
diff --git a/varnish-cache/lib/libjemalloc/malloc.c b/varnish-cache/lib/libjemalloc/malloc.c
new file mode 100644 (file)
index 0000000..b030e74
--- /dev/null
@@ -0,0 +1,5589 @@
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice(s), this list of conditions and the following disclaimer as
+ *    the first lines of this file unmodified other than the possible
+ *    addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice(s), this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems.  The following
+ * features are included for this purpose:
+ *
+ *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ *     contention and cache sloshing.
+ *
+ *   + Thread-specific caching is used if there are multiple threads, which
+ *     reduces the amount of locking.
+ *
+ *   + Cache line sharing between arenas is avoided for internal data
+ *     structures.
+ *
+ *   + Memory is managed in chunks and runs (chunks can be split into runs),
+ *     rather than as individual pages.  This provides a constant-time
+ *     mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained.  Allocations are broken into
+ * categories according to size class.  Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ *   |=======================================|
+ *   | Category | Subcategory      |    Size |
+ *   |=======================================|
+ *   | Small    | Tiny             |       2 |
+ *   |          |                  |       4 |
+ *   |          |                  |       8 |
+ *   |          |------------------+---------|
+ *   |          | Quantum-spaced   |      16 |
+ *   |          |                  |      32 |
+ *   |          |                  |      48 |
+ *   |          |                  |     ... |
+ *   |          |                  |      96 |
+ *   |          |                  |     112 |
+ *   |          |                  |     128 |
+ *   |          |------------------+---------|
+ *   |          | Cacheline-spaced |     192 |
+ *   |          |                  |     256 |
+ *   |          |                  |     320 |
+ *   |          |                  |     384 |
+ *   |          |                  |     448 |
+ *   |          |                  |     512 |
+ *   |          |------------------+---------|
+ *   |          | Sub-page         |     760 |
+ *   |          |                  |    1024 |
+ *   |          |                  |    1280 |
+ *   |          |                  |     ... |
+ *   |          |                  |    3328 |
+ *   |          |                  |    3584 |
+ *   |          |                  |    3840 |
+ *   |=======================================|
+ *   | Large                       |    4 kB |
+ *   |                             |    8 kB |
+ *   |                             |   12 kB |
+ *   |                             |     ... |
+ *   |                             | 1012 kB |
+ *   |                             | 1016 kB |
+ *   |                             | 1020 kB |
+ *   |=======================================|
+ *   | Huge                        |    1 MB |
+ *   |                             |    2 MB |
+ *   |                             |    3 MB |
+ *   |                             |     ... |
+ *   |=======================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ *   Small : Each size class is segregated into its own set of runs.  Each run
+ *           maintains a bitmap of which regions are free/allocated.
+ *
+ *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
+ *           in the associated arena chunk header maps.
+ *
+ *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ *          Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
+ * defaults the A and J runtime options to off.  These settings are appropriate
+ * for production systems.
+ */
+/* #define     MALLOC_PRODUCTION */
+
+#ifndef MALLOC_PRODUCTION
+   /*
+    * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+    * inline functions.
+    */
+#  define MALLOC_DEBUG
+
+   /* MALLOC_STATS enables statistics calculation. */
+#  define MALLOC_STATS
+#endif
+
+/*
+ * MALLOC_TINY enables support for tiny objects, which are smaller than one
+ * quantum.
+ */
+#define        MALLOC_TINY
+
+/*
+ * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
+ * objects.  This makes it possible to allocate/deallocate objects without any
+ * locking when the cache is in the steady state.
+ */
+#define        MALLOC_MAG
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+#define        MALLOC_BALANCE
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS).  In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+#define        MALLOC_DSS
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $");
+
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+#  define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#include <sys/mman.h>
+#include <sys/param.h>
+#include <sys/stddef.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#include <sys/uio.h>
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/cpufunc.h>
+#include <machine/vmparam.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <pthread.h>
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <strings.h>
+#include <unistd.h>
+
+#include "un-namespace.h"
+
+#ifdef MALLOC_DEBUG
+#  ifdef NDEBUG
+#    undef NDEBUG
+#  endif
+#else
+#  ifndef NDEBUG
+#    define NDEBUG
+#  endif
+#endif
+#include <assert.h>
+
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+   /* Disable inlining to make debugging easier. */
+#  define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define        STRERROR_BUF            64
+
+/*
+ * The const_size2bin table is sized according to PAGESIZE_2POW, but for
+ * correctness reasons, we never assume that
+ * (pagesize == (1U << * PAGESIZE_2POW)).
+ *
+ * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
+ */
+#ifdef __i386__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      2
+#  define CPU_SPINWAIT         __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#endif
+#ifdef __alpha__
+#  define PAGESIZE_2POW                13
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#  define NO_TLS
+#endif
+#ifdef __sparc64__
+#  define PAGESIZE_2POW                13
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#  define NO_TLS
+#endif
+#ifdef __amd64__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      3
+#  define CPU_SPINWAIT         __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         3
+#  define SIZEOF_PTR_2POW      2
+#  define NO_TLS
+#endif
+#ifdef __mips__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         3
+#  define SIZEOF_PTR_2POW      2
+#  define NO_TLS
+#endif
+#ifdef __powerpc__
+#  define PAGESIZE_2POW                12
+#  define QUANTUM_2POW         4
+#  define SIZEOF_PTR_2POW      2
+#endif
+
+#define        QUANTUM                 ((size_t)(1U << QUANTUM_2POW))
+#define        QUANTUM_MASK            (QUANTUM - 1)
+
+#define        SIZEOF_PTR              (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+#  define SIZEOF_INT_2POW      2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+#  define NO_TLS
+#endif
+
+#ifdef NO_TLS
+   /* MALLOC_MAG requires TLS. */
+#  ifdef MALLOC_MAG
+#    undef MALLOC_MAG
+#  endif
+   /* MALLOC_BALANCE requires TLS. */
+#  ifdef MALLOC_BALANCE
+#    undef MALLOC_BALANCE
+#  endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define        CHUNK_2POW_DEFAULT      20
+
+/* Maximum number of dirty pages per arena. */
+#define        DIRTY_MAX_DEFAULT       (1U << 9)
+
+/*
+ * Maximum size of L1 cache line.  This is used to avoid cache line aliasing.
+ * In addition, this controls the spacing of cacheline-spaced size classes.
+ */
+#define        CACHELINE_2POW          6
+#define        CACHELINE               ((size_t)(1U << CACHELINE_2POW))
+#define        CACHELINE_MASK          (CACHELINE - 1)
+
+/*
+ * Subpages are an artificially designated partitioning of pages.  Their only
+ * purpose is to support subpage-spaced size classes.
+ *
+ * There must be at least 4 subpages per page, due to the way size classes are
+ * handled.
+ */
+#define        SUBPAGE_2POW            8
+#define        SUBPAGE                 ((size_t)(1U << SUBPAGE_2POW))
+#define        SUBPAGE_MASK            (SUBPAGE - 1)
+
+#ifdef MALLOC_TINY
+   /* Smallest size class to support. */
+#  define TINY_MIN_2POW                1
+#endif
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2.  Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define        QSPACE_MAX_2POW_DEFAULT 7
+
+/*
+ * Maximum size class that is a multiple of the cacheline, but not (necessarily)
+ * a power of 2.  Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define        CSPACE_MAX_2POW_DEFAULT 9
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints.  The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant).  This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define        RUN_BFP                 12
+/*                                    \/   Implicit binary fixed point. */
+#define        RUN_MAX_OVRHD           0x0000003dU
+#define        RUN_MAX_OVRHD_RELAX     0x00001800U
+
+/* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
+#define        RUN_MAX_SMALL   (12 * pagesize)
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU.  If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+#  define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock.  Backing off past a certain point
+ * can actually waste time.
+ */
+#define        SPIN_LIMIT_2POW         11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define        BLOCK_COST_2POW         4
+
+#ifdef MALLOC_MAG
+   /*
+    * Default magazine size, in bytes.  max_rounds is calculated to make
+    * optimal use of the space, leaving just enough room for the magazine
+    * header.
+    */
+#  define MAG_SIZE_2POW_DEFAULT        9
+#endif
+
+#ifdef MALLOC_BALANCE
+   /*
+    * We use an exponential moving average to track recent lock contention,
+    * where the size of the history window is N, and alpha=2/(N+1).
+    *
+    * Due to integer math rounding, very small values here can cause
+    * substantial degradation in accuracy, thus making the moving average decay
+    * faster than it would with precise calculation.
+    */
+#  define BALANCE_ALPHA_INV_2POW       9
+
+   /*
+    * Threshold value for the exponential moving contention average at which to
+    * re-assign a thread.
+    */
+#  define BALANCE_THRESHOLD_DEFAULT    (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks.  We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+typedef struct {
+       spinlock_t      lock;
+} malloc_mutex_t;
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+/* Used to avoid initialization races. */
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+       /*
+        * Number of allocation requests that corresponded to the size of this
+        * bin.
+        */
+       uint64_t        nrequests;
+
+#ifdef MALLOC_MAG
+       /* Number of magazine reloads from this bin. */
+       uint64_t        nmags;
+#endif
+
+       /* Total number of runs created for this bin's size class. */
+       uint64_t        nruns;
+
+       /*
+        * Total number of runs reused by extracting them from the runs tree for
+        * this bin's size class.
+        */
+       uint64_t        reruns;
+
+       /* High-water mark for this bin. */
+       unsigned long   highruns;
+
+       /* Current number of runs in this bin. */
+       unsigned long   curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+       /* Number of bytes currently mapped. */
+       size_t          mapped;
+
+       /*
+        * Total number of purge sweeps, total number of madvise calls made,
+        * and total pages purged in order to keep dirty unused memory under
+        * control.
+        */
+       uint64_t        npurge;
+       uint64_t        nmadvise;
+       uint64_t        purged;
+
+       /* Per-size-category statistics. */
+       size_t          allocated_small;
+       uint64_t        nmalloc_small;
+       uint64_t        ndalloc_small;
+
+       size_t          allocated_large;
+       uint64_t        nmalloc_large;
+       uint64_t        ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+       /* Number of times this arena reassigned a thread due to contention. */
+       uint64_t        nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+       /* Number of chunks that were allocated. */
+       uint64_t        nchunks;
+
+       /* High-water mark for number of chunks allocated. */
+       unsigned long   highchunks;
+
+       /*
+        * Current number of chunks allocated.  This value isn't maintained for
+        * any other purpose, so keep track of it in order to be able to set
+        * highchunks.
+        */
+       unsigned long   curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+#ifdef MALLOC_DSS
+       /* Linkage for the size/address-ordered tree. */
+       rb_node(extent_node_t) link_szad;
+#endif
+
+       /* Linkage for the address-ordered tree. */
+       rb_node(extent_node_t) link_ad;
+
+       /* Pointer to the extent that this tree node is responsible for. */
+       void    *addr;
+
+       /* Total region size. */
+       size_t  size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+       /*
+        * Linkage for run trees.  There are two disjoint uses:
+        *
+        * 1) arena_t's runs_avail tree.
+        * 2) arena_run_t conceptually uses this linkage for in-use non-full
+        *    runs, rather than directly embedding linkage.
+        */
+       rb_node(arena_chunk_map_t)      link;
+
+       /*
+        * Run address (or size) and various flags are stored together.  The bit
+        * layout looks like (assuming 32-bit system):
+        *
+        *   ???????? ???????? ????---- ---kdzla
+        *
+        * ? : Unallocated: Run address for first/last pages, unset for internal
+        *                  pages.
+        *     Small: Run address.
+        *     Large: Run size for first page, unset for trailing pages.
+        * - : Unused.
+        * k : key?
+        * d : dirty?
+        * z : zeroed?
+        * l : large?
+        * a : allocated?
+        *
+        * Following are example bit patterns for the three types of runs.
+        *
+        * r : run address
+        * s : run size
+        * x : don't care
+        * - : 0
+        * [dzla] : bit set
+        *
+        *   Unallocated:
+        *     ssssssss ssssssss ssss---- --------
+        *     xxxxxxxx xxxxxxxx xxxx---- ----d---
+        *     ssssssss ssssssss ssss---- -----z--
+        *
+        *   Small:
+        *     rrrrrrrr rrrrrrrr rrrr---- -------a
+        *     rrrrrrrr rrrrrrrr rrrr---- -------a
+        *     rrrrrrrr rrrrrrrr rrrr---- -------a
+        *
+        *   Large:
+        *     ssssssss ssssssss ssss---- ------la
+        *     -------- -------- -------- ------la
+        *     -------- -------- -------- ------la
+        */
+       size_t                          bits;
+#define        CHUNK_MAP_KEY           ((size_t)0x10U)
+#define        CHUNK_MAP_DIRTY         ((size_t)0x08U)
+#define        CHUNK_MAP_ZEROED        ((size_t)0x04U)
+#define        CHUNK_MAP_LARGE         ((size_t)0x02U)
+#define        CHUNK_MAP_ALLOCATED     ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+       /* Arena that owns the chunk. */
+       arena_t         *arena;
+
+       /* Linkage for the arena's chunks_dirty tree. */
+       rb_node(arena_chunk_t) link_dirty;
+
+       /* Number of dirty pages. */
+       size_t          ndirty;
+
+       /* Map of pages within chunk that keeps track of free/large/small. */
+       arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+       uint32_t        magic;
+#  define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+       /* Bin this run is associated with. */
+       arena_bin_t     *bin;
+
+       /* Index of first element that might have a free region. */
+       unsigned        regs_minelm;
+
+       /* Number of free regions in run. */
+       unsigned        nfree;
+
+       /* Bitmask of in-use regions (0: in use, 1: free). */
+       unsigned        regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+       /*
+        * Current run being used to service allocations of this bin's size
+        * class.
+        */
+       arena_run_t     *runcur;
+
+       /*
+        * Tree of non-full runs.  This tree is used when looking for an
+        * existing run when runcur is no longer usable.  We choose the
+        * non-full run that is lowest in memory; this policy tends to keep
+        * objects packed well, and it can also help reduce the number of
+        * almost-empty chunks.
+        */
+       arena_run_tree_t runs;
+
+       /* Size of regions in a run for this bin's size class. */
+       size_t          reg_size;
+
+       /* Total size of a run for this bin's size class. */
+       size_t          run_size;
+
+       /* Total number of regions in a run for this bin's size class. */
+       uint32_t        nregs;
+
+       /* Number of elements in a run's regs_mask for this bin's size class. */
+       uint32_t        regs_mask_nelms;
+
+       /* Offset of first region in a run for this bin's size class. */
+       uint32_t        reg0_offset;
+
+#ifdef MALLOC_STATS
+       /* Bin statistics. */
+       malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+       uint32_t                magic;
+#  define ARENA_MAGIC 0x947d3d24
+#endif
+
+       /* All operations on this arena require that lock be locked. */
+       pthread_mutex_t         lock;
+
+#ifdef MALLOC_STATS
+       arena_stats_t           stats;
+#endif
+
+       /* Tree of dirty-page-containing chunks this arena manages. */
+       arena_chunk_tree_t      chunks_dirty;
+
+       /*
+        * In order to avoid rapid chunk allocation/deallocation when an arena
+        * oscillates right on the cusp of needing a new chunk, cache the most
+        * recently freed chunk.  The spare is left in the arena's chunk trees
+        * until it is deleted.
+        *
+        * There is one spare chunk per arena, rather than one spare total, in
+        * order to avoid interactions between multiple threads that could make
+        * a single spare inadequate.
+        */
+       arena_chunk_t           *spare;
+
+       /*
+        * Current count of pages within unused runs that are potentially
+        * dirty, and for which madvise(... MADV_FREE) has not been called.  By
+        * tracking this, we can institute a limit on how much dirty unused
+        * memory is mapped for each arena.
+        */
+       size_t                  ndirty;
+
+       /*
+        * Size/address-ordered tree of this arena's available runs.  This tree
+        * is used for first-best-fit run allocation.
+        */
+       arena_avail_tree_t      runs_avail;
+
+#ifdef MALLOC_BALANCE
+       /*
+        * The arena load balancing machinery needs to keep track of how much
+        * lock contention there is.  This value is exponentially averaged.
+        */
+       uint32_t                contention;
+#endif
+
+       /*
+        * bins is used to store rings of free regions of the following sizes,
+        * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+        *
+        *   bins[i] | size |
+        *   --------+------+
+        *        0  |    2 |
+        *        1  |    4 |
+        *        2  |    8 |
+        *   --------+------+
+        *        3  |   16 |
+        *        4  |   32 |
+        *        5  |   48 |
+        *        6  |   64 |
+        *           :      :
+        *           :      :
+        *       33  |  496 |
+        *       34  |  512 |
+        *   --------+------+
+        *       35  | 1024 |
+        *       36  | 2048 |
+        *   --------+------+
+        */
+       arena_bin_t             bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Magazine data structures.
+ */
+
+#ifdef MALLOC_MAG
+typedef struct mag_s mag_t;
+struct mag_s {
+       size_t          binind; /* Index of associated bin. */
+       size_t          nrounds;
+       void            *rounds[1]; /* Dynamically sized. */
+};
+
+/*
+ * Magazines are lazily allocated, but once created, they remain until the
+ * associated mag_rack is destroyed.
+ */
+typedef struct bin_mags_s bin_mags_t;
+struct bin_mags_s {
+       mag_t   *curmag;
+       mag_t   *sparemag;
+};
+
+typedef struct mag_rack_s mag_rack_t;
+struct mag_rack_s {
+       bin_mags_t      bin_mags[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned                ncpus;
+
+/* VM page size. */
+static size_t          pagesize;
+static size_t          pagesize_mask;
+static size_t          pagesize_2pow;
+
+/* Various bin-related settings. */
+#ifdef MALLOC_TINY             /* Number of (2^n)-spaced tiny bins. */
+#  define              ntbins  ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
+#else
+#  define              ntbins  0
+#endif
+static unsigned                nqbins; /* Number of quantum-spaced bins. */
+static unsigned                ncbins; /* Number of cacheline-spaced bins. */
+static unsigned                nsbins; /* Number of subpage-spaced bins. */
+static unsigned                nbins;
+#ifdef MALLOC_TINY
+#  define              tspace_max      ((size_t)(QUANTUM >> 1))
+#endif
+#define                        qspace_min      QUANTUM
+static size_t          qspace_max;
+static size_t          cspace_min;
+static size_t          cspace_max;
+static size_t          sspace_min;
+static size_t          sspace_max;
+#define                        bin_maxclass    sspace_max
+
+static uint8_t const   *size2bin;
+/*
+ * const_size2bin is a static constant lookup table that in the common case can
+ * be used as-is for size2bin.  For dynamically linked programs, this avoids
+ * a page of memory overhead per process.
+ */
+#define        S2B_1(i)        i,
+#define        S2B_2(i)        S2B_1(i) S2B_1(i)
+#define        S2B_4(i)        S2B_2(i) S2B_2(i)
+#define        S2B_8(i)        S2B_4(i) S2B_4(i)
+#define        S2B_16(i)       S2B_8(i) S2B_8(i)
+#define        S2B_32(i)       S2B_16(i) S2B_16(i)
+#define        S2B_64(i)       S2B_32(i) S2B_32(i)
+#define        S2B_128(i)      S2B_64(i) S2B_64(i)
+#define        S2B_256(i)      S2B_128(i) S2B_128(i)
+static const uint8_t   const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
+       S2B_1(0xffU)            /*    0 */
+#if (QUANTUM_2POW == 4)
+/* 64-bit system ************************/
+#  ifdef MALLOC_TINY
+       S2B_2(0)                /*    2 */
+       S2B_2(1)                /*    4 */
+       S2B_4(2)                /*    8 */
+       S2B_8(3)                /*   16 */
+#    define S2B_QMIN 3
+#  else
+       S2B_16(0)               /*   16 */
+#    define S2B_QMIN 0
+#  endif
+       S2B_16(S2B_QMIN + 1)    /*   32 */
+       S2B_16(S2B_QMIN + 2)    /*   48 */
+       S2B_16(S2B_QMIN + 3)    /*   64 */
+       S2B_16(S2B_QMIN + 4)    /*   80 */
+       S2B_16(S2B_QMIN + 5)    /*   96 */
+       S2B_16(S2B_QMIN + 6)    /*  112 */
+       S2B_16(S2B_QMIN + 7)    /*  128 */
+#  define S2B_CMIN (S2B_QMIN + 8)
+#else
+/* 32-bit system ************************/
+#  ifdef MALLOC_TINY
+       S2B_2(0)                /*    2 */
+       S2B_2(1)                /*    4 */
+       S2B_4(2)                /*    8 */
+#    define S2B_QMIN 2
+#  else
+       S2B_8(0)                /*    8 */
+#    define S2B_QMIN 0
+#  endif
+       S2B_8(S2B_QMIN + 1)     /*   16 */
+       S2B_8(S2B_QMIN + 2)     /*   24 */
+       S2B_8(S2B_QMIN + 3)     /*   32 */
+       S2B_8(S2B_QMIN + 4)     /*   40 */
+       S2B_8(S2B_QMIN + 5)     /*   48 */
+       S2B_8(S2B_QMIN + 6)     /*   56 */
+       S2B_8(S2B_QMIN + 7)     /*   64 */
+       S2B_8(S2B_QMIN + 8)     /*   72 */
+       S2B_8(S2B_QMIN + 9)     /*   80 */
+       S2B_8(S2B_QMIN + 10)    /*   88 */
+       S2B_8(S2B_QMIN + 11)    /*   96 */
+       S2B_8(S2B_QMIN + 12)    /*  104 */
+       S2B_8(S2B_QMIN + 13)    /*  112 */
+       S2B_8(S2B_QMIN + 14)    /*  120 */
+       S2B_8(S2B_QMIN + 15)    /*  128 */
+#  define S2B_CMIN (S2B_QMIN + 16)
+#endif
+/****************************************/
+       S2B_64(S2B_CMIN + 0)    /*  192 */
+       S2B_64(S2B_CMIN + 1)    /*  256 */
+       S2B_64(S2B_CMIN + 2)    /*  320 */
+       S2B_64(S2B_CMIN + 3)    /*  384 */
+       S2B_64(S2B_CMIN + 4)    /*  448 */
+       S2B_64(S2B_CMIN + 5)    /*  512 */
+#  define S2B_SMIN (S2B_CMIN + 6)
+       S2B_256(S2B_SMIN + 0)   /*  768 */
+       S2B_256(S2B_SMIN + 1)   /* 1024 */
+       S2B_256(S2B_SMIN + 2)   /* 1280 */
+       S2B_256(S2B_SMIN + 3)   /* 1536 */
+       S2B_256(S2B_SMIN + 4)   /* 1792 */
+       S2B_256(S2B_SMIN + 5)   /* 2048 */
+       S2B_256(S2B_SMIN + 6)   /* 2304 */
+       S2B_256(S2B_SMIN + 7)   /* 2560 */
+       S2B_256(S2B_SMIN + 8)   /* 2816 */
+       S2B_256(S2B_SMIN + 9)   /* 3072 */
+       S2B_256(S2B_SMIN + 10)  /* 3328 */
+       S2B_256(S2B_SMIN + 11)  /* 3584 */
+       S2B_256(S2B_SMIN + 12)  /* 3840 */
+#if (PAGESIZE_2POW == 13)
+       S2B_256(S2B_SMIN + 13)  /* 4096 */
+       S2B_256(S2B_SMIN + 14)  /* 4352 */
+       S2B_256(S2B_SMIN + 15)  /* 4608 */
+       S2B_256(S2B_SMIN + 16)  /* 4864 */
+       S2B_256(S2B_SMIN + 17)  /* 5120 */
+       S2B_256(S2B_SMIN + 18)  /* 5376 */
+       S2B_256(S2B_SMIN + 19)  /* 5632 */
+       S2B_256(S2B_SMIN + 20)  /* 5888 */
+       S2B_256(S2B_SMIN + 21)  /* 6144 */
+       S2B_256(S2B_SMIN + 22)  /* 6400 */
+       S2B_256(S2B_SMIN + 23)  /* 6656 */
+       S2B_256(S2B_SMIN + 24)  /* 6912 */
+       S2B_256(S2B_SMIN + 25)  /* 7168 */
+       S2B_256(S2B_SMIN + 26)  /* 7424 */
+       S2B_256(S2B_SMIN + 27)  /* 7680 */
+       S2B_256(S2B_SMIN + 28)  /* 7936 */
+#endif
+};
+#undef S2B_1
+#undef S2B_2
+#undef S2B_4
+#undef S2B_8
+#undef S2B_16
+#undef S2B_32
+#undef S2B_64
+#undef S2B_128
+#undef S2B_256
+#undef S2B_QMIN
+#undef S2B_CMIN
+#undef S2B_SMIN
+
+#ifdef MALLOC_MAG
+static size_t          max_rounds;
+#endif
+
+/* Various chunk-related settings. */
+static size_t          chunksize;
+static size_t          chunksize_mask; /* (chunksize - 1). */
+static size_t          chunk_npages;
+static size_t          arena_chunk_header_npages;
+static size_t          arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t  huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t   huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls.  This avoids malloc races among threads, though it
+ * does not protect against races with threads that call sbrk() directly.
+ */
+static malloc_mutex_t  dss_mtx;
+/* Base address of the DSS. */
+static void            *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void            *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void            *dss_max;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering).  These are used when allocating chunks, in an attempt to re-use
+ * address space.  Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_t   dss_chunks_szad;
+static extent_tree_t   dss_chunks_ad;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t                huge_nmalloc;
+static uint64_t                huge_ndalloc;
+static size_t          huge_allocated;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations.  These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void            *base_pages;
+static void            *base_next_addr;
+static void            *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t   *base_nodes;
+static malloc_mutex_t  base_mtx;
+#ifdef MALLOC_STATS
+static size_t          base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests.  Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t         **arenas;
+static unsigned                narenas;
+#ifndef NO_TLS
+#  ifdef MALLOC_BALANCE
+static unsigned                narenas_2pow;
+#  else
+static unsigned                next_arena;
+#  endif
+#endif
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+static __thread arena_t        *arenas_map;
+#endif
+
+#ifdef MALLOC_MAG
+/*
+ * Map of thread-specific magazine racks, used for thread-specific object
+ * caching.
+ */
+static __thread mag_rack_t     *mag_rack;
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t   stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char     *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool    opt_abort = true;
+static bool    opt_junk = true;
+#else
+static bool    opt_abort = false;
+static bool    opt_junk = false;
+#endif
+#ifdef MALLOC_DSS
+static bool    opt_dss = true;
+static bool    opt_mmap = true;
+#endif
+#ifdef MALLOC_MAG
+static bool    opt_mag = true;
+static size_t  opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
+#endif
+static size_t  opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t        opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool    opt_print_stats = false;
+static size_t  opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
+static size_t  opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
+static size_t  opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static bool    opt_utrace = false;
+static bool    opt_sysv = false;
+static bool    opt_xmalloc = false;
+static bool    opt_zero = false;
+static int     opt_narenas_lshift = 0;
+
+typedef struct {
+       void    *p;
+       size_t  s;
+       void    *r;
+} malloc_utrace_t;
+
+#define        UTRACE(a, b, c)                                                 \
+       if (opt_utrace) {                                               \
+               malloc_utrace_t ut;                                     \
+               ut.p = (a);                                             \
+               ut.s = (b);                                             \
+               ut.r = (c);                                             \
+               utrace(&ut, sizeof(ut));                                \
+       }
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static void    malloc_mutex_init(malloc_mutex_t *mutex);
+static bool    malloc_spin_init(pthread_mutex_t *lock);
+static void    wrtmessage(const char *p1, const char *p2, const char *p3,
+               const char *p4);
+#ifdef MALLOC_STATS
+static void    malloc_printf(const char *format, ...);
+#endif
+static char    *umax2s(uintmax_t x, char *s);
+#ifdef MALLOC_DSS
+static bool    base_pages_alloc_dss(size_t minsize);
+#endif
+static bool    base_pages_alloc_mmap(size_t minsize);
+static bool    base_pages_alloc(size_t minsize);
+static void    *base_alloc(size_t size);
+static void    *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void    base_node_dealloc(extent_node_t *node);
+#ifdef MALLOC_STATS
+static void    stats_print(arena_t *arena);
+#endif
+static void    *pages_map(void *addr, size_t size);
+static void    pages_unmap(void *addr, size_t size);
+#ifdef MALLOC_DSS
+static void    *chunk_alloc_dss(size_t size);
+static void    *chunk_recycle_dss(size_t size, bool zero);
+#endif
+static void    *chunk_alloc_mmap(size_t size);
+static void    *chunk_alloc(size_t size, bool zero);
+#ifdef MALLOC_DSS
+static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
+static bool    chunk_dealloc_dss(void *chunk, size_t size);
+#endif
+static void    chunk_dealloc_mmap(void *chunk, size_t size);
+static void    chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void    arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+    bool large, bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void    arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
+    bool zero);
+static void    arena_purge(arena_t *arena);
+static void    arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void    arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+    arena_run_t *run, size_t oldsize, size_t newsize);
+static void    arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+    arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void    *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t  arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void    arena_lock_balance_hard(arena_t *arena);
+#endif
+#ifdef MALLOC_MAG
+static void    mag_load(mag_t *mag);
+#endif
+static void    *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void    *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+    size_t alloc_size);
+static size_t  arena_salloc(const void *ptr);
+#ifdef MALLOC_MAG
+static void    mag_unload(mag_t *mag);
+#endif
+static void    arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr);
+static void    arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t size, size_t oldsize);
+static bool    arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t size, size_t oldsize);
+static bool    arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void    *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool    arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+#ifdef MALLOC_MAG
+static mag_t   *mag_create(arena_t *arena, size_t binind);
+static void    mag_destroy(mag_t *mag);
+static mag_rack_t *mag_rack_create(arena_t *arena);
+static void    mag_rack_destroy(mag_rack_t *rack);
+#endif
+static void    *huge_malloc(size_t size, bool zero);
+static void    *huge_palloc(size_t alignment, size_t size);
+static void    *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void    huge_dalloc(void *ptr);
+static void    malloc_print_stats(void);
+#ifdef MALLOC_DEBUG
+static void    size2bin_validate(void);
+#endif
+static bool    size2bin_init(void);
+static bool    size2bin_init_hard(void);
+static bool    malloc_init_hard(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+/*
+ * Begin mutex.  We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static void
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+       static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+       mutex->lock = lock;
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+       if (__isthreaded)
+               _SPINLOCK(&mutex->lock);
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+       if (__isthreaded)
+               _SPINUNLOCK(&mutex->lock);
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock.  Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int    _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+    void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+    _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+    void *(calloc_cb)(size_t, size_t))
+{
+
+       return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+       if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+               return (true);
+
+       return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+       unsigned ret = 0;
+
+       if (__isthreaded) {
+               if (_pthread_mutex_trylock(lock) != 0) {
+                       unsigned i;
+                       volatile unsigned j;
+
+                       /* Exponentially back off. */
+                       for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+                               for (j = 0; j < (1U << i); j++) {
+                                       ret++;
+                                       CPU_SPINWAIT;
+                               }
+
+                               if (_pthread_mutex_trylock(lock) == 0)
+                                       return (ret);
+                       }
+
+                       /*
+                        * Spinning failed.  Block until the lock becomes
+                        * available, in order to avoid indefinite priority
+                        * inversion.
+                        */
+                       _pthread_mutex_lock(lock);
+                       assert((ret << BLOCK_COST_2POW) != 0);
+                       return (ret << BLOCK_COST_2POW);
+               }
+       }
+
+       return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+       if (__isthreaded)
+               _pthread_mutex_unlock(lock);
+}
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define        CHUNK_ADDR2BASE(a)                                              \
+       ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define        CHUNK_ADDR2OFFSET(a)                                            \
+       ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define        CHUNK_CEILING(s)                                                \
+       (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest quantum multiple that is >= a. */
+#define        QUANTUM_CEILING(a)                                              \
+       (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define        CACHELINE_CEILING(s)                                            \
+       (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
+
+/* Return the smallest subpage multiple that is >= s. */
+#define        SUBPAGE_CEILING(s)                                              \
+       (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define        PAGE_CEILING(s)                                                 \
+       (((s) + pagesize_mask) & ~pagesize_mask)
+
+#ifdef MALLOC_TINY
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+       x--;
+       x |= x >> 1;
+       x |= x >> 2;
+       x |= x >> 4;
+       x |= x >> 8;
+       x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+       x |= x >> 32;
+#endif
+       x++;
+       return (x);
+}
+#endif
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ *   prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ *   a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ *   c == Odd number (relatively prime to 2^n).
+ *   m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position.  For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc.  For this reason, we prefer to use the upper
+ * bits.
+ */
+#  define PRN_DEFINE(suffix, var, a, c)                                        \
+static inline void                                                     \
+sprn_##suffix(uint32_t seed)                                           \
+{                                                                      \
+       var = seed;                                                     \
+}                                                                      \
+                                                                       \
+static inline uint32_t                                                 \
+prn_##suffix(uint32_t lg_range)                                                \
+{                                                                      \
+       uint32_t ret, x;                                                \
+                                                                       \
+       assert(lg_range > 0);                                           \
+       assert(lg_range <= 32);                                         \
+                                                                       \
+       x = (var * (a)) + (c);                                          \
+       var = x;                                                        \
+       ret = x >> (32 - lg_range);                                     \
+                                                                       \
+       return (ret);                                                   \
+}
+#  define SPRN(suffix, seed)   sprn_##suffix(seed)
+#  define PRN(suffix, lg_range)        prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+
+       _write(STDERR_FILENO, p1, strlen(p1));
+       _write(STDERR_FILENO, p2, strlen(p2));
+       _write(STDERR_FILENO, p3, strlen(p3));
+       _write(STDERR_FILENO, p4, strlen(p4));
+}
+
+void   (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+           const char *p4) = wrtmessage;
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+       char buf[4096];
+       va_list ap;
+
+       va_start(ap, format);
+       vsnprintf(buf, sizeof(buf), format, ap);
+       va_end(ap);
+       _malloc_message(buf, "", "", "");
+}
+#endif
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries.  umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited to
+ * MALLOC_STATS code.
+ */
+#define        UMAX2S_BUFSIZE  21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+       unsigned i;
+
+       /* Make sure UMAX2S_BUFSIZE is large enough. */
+       assert(sizeof(uintmax_t) <= 8);
+
+       i = UMAX2S_BUFSIZE - 1;
+       s[i] = '\0';
+       do {
+               i--;
+               s[i] = "0123456789"[x % 10];
+               x /= 10;
+       } while (x > 0);
+
+       return (&s[i]);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+       /*
+        * Do special DSS allocation here, since base allocations don't need to
+        * be chunk-aligned.
+        */
+       malloc_mutex_lock(&dss_mtx);
+       if (dss_prev != (void *)-1) {
+               intptr_t incr;
+               size_t csize = CHUNK_CEILING(minsize);
+
+               do {
+                       /* Get the current end of the DSS. */
+                       dss_max = sbrk(0);
+
+                       /*
+                        * Calculate how much padding is necessary to
+                        * chunk-align the end of the DSS.  Don't worry about
+                        * dss_max not being chunk-aligned though.
+                        */
+                       incr = (intptr_t)chunksize
+                           - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+                       assert(incr >= 0);
+                       if ((size_t)incr < minsize)
+                               incr += csize;
+
+                       dss_prev = sbrk(incr);
+                       if (dss_prev == dss_max) {
+                               /* Success. */
+                               dss_max = (void *)((intptr_t)dss_prev + incr);
+                               base_pages = dss_prev;
+                               base_next_addr = base_pages;
+                               base_past_addr = dss_max;
+#ifdef MALLOC_STATS
+                               base_mapped += incr;
+#endif
+                               malloc_mutex_unlock(&dss_mtx);
+                               return (false);
+                       }
+               } while (dss_prev != (void *)-1);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (true);
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+       size_t csize;
+
+       assert(minsize != 0);
+       csize = PAGE_CEILING(minsize);
+       base_pages = pages_map(NULL, csize);
+       if (base_pages == NULL)
+               return (true);
+       base_next_addr = base_pages;
+       base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+       base_mapped += csize;
+#endif
+
+       return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               if (base_pages_alloc_dss(minsize) == false)
+                       return (false);
+       }
+
+       if (opt_mmap && minsize != 0)
+#endif
+       {
+               if (base_pages_alloc_mmap(minsize) == false)
+                       return (false);
+       }
+
+       return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+       void *ret;
+       size_t csize;
+
+       /* Round size up to nearest multiple of the cacheline size. */
+       csize = CACHELINE_CEILING(size);
+
+       malloc_mutex_lock(&base_mtx);
+       /* Make sure there's enough space for the allocation. */
+       if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+               if (base_pages_alloc(csize)) {
+                       malloc_mutex_unlock(&base_mtx);
+                       return (NULL);
+               }
+       }
+       /* Allocate. */
+       ret = base_next_addr;
+       base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+       malloc_mutex_unlock(&base_mtx);
+
+       return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+       void *ret;
+
+       ret = base_alloc(number * size);
+       memset(ret, 0, number * size);
+
+       return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+       extent_node_t *ret;
+
+       malloc_mutex_lock(&base_mtx);
+       if (base_nodes != NULL) {
+               ret = base_nodes;
+               base_nodes = *(extent_node_t **)ret;
+               malloc_mutex_unlock(&base_mtx);
+       } else {
+               malloc_mutex_unlock(&base_mtx);
+               ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+       }
+
+       return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+       malloc_mutex_lock(&base_mtx);
+       *(extent_node_t **)node = base_nodes;
+       base_nodes = node;
+       malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+       unsigned i, gap_start;
+
+       malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+           " %llu madvise%s, %llu page%s purged\n",
+           arena->ndirty, arena->ndirty == 1 ? "" : "s",
+           arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+           arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+           arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+
+       malloc_printf("            allocated      nmalloc      ndalloc\n");
+       malloc_printf("small:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_small, arena->stats.nmalloc_small,
+           arena->stats.ndalloc_small);
+       malloc_printf("large:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_large, arena->stats.nmalloc_large,
+           arena->stats.ndalloc_large);
+       malloc_printf("total:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_small + arena->stats.allocated_large,
+           arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+           arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+       malloc_printf("mapped:  %12zu\n", arena->stats.mapped);
+
+#ifdef MALLOC_MAG
+       if (__isthreaded && opt_mag) {
+               malloc_printf("bins:     bin   size regs pgs      mags   "
+                   "newruns    reruns maxruns curruns\n");
+       } else {
+#endif
+               malloc_printf("bins:     bin   size regs pgs  requests   "
+                   "newruns    reruns maxruns curruns\n");
+#ifdef MALLOC_MAG
+       }
+#endif
+       for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
+               if (arena->bins[i].stats.nruns == 0) {
+                       if (gap_start == UINT_MAX)
+                               gap_start = i;
+               } else {
+                       if (gap_start != UINT_MAX) {
+                               if (i > gap_start + 1) {
+                                       /* Gap of more than one size class. */
+                                       malloc_printf("[%u..%u]\n",
+                                           gap_start, i - 1);
+                               } else {
+                                       /* Gap of one size class. */
+                                       malloc_printf("[%u]\n", gap_start);
+                               }
+                               gap_start = UINT_MAX;
+                       }
+                       malloc_printf(
+                           "%13u %1s %4u %4u %3u %9llu %9llu"
+                           " %9llu %7lu %7lu\n",
+                           i,
+                           i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
+                           i < ntbins + nqbins + ncbins ? "C" : "S",
+                           arena->bins[i].reg_size,
+                           arena->bins[i].nregs,
+                           arena->bins[i].run_size >> pagesize_2pow,
+#ifdef MALLOC_MAG
+                           (__isthreaded && opt_mag) ?
+                           arena->bins[i].stats.nmags :
+#endif
+                           arena->bins[i].stats.nrequests,
+                           arena->bins[i].stats.nruns,
+                           arena->bins[i].stats.reruns,
+                           arena->bins[i].stats.highruns,
+                           arena->bins[i].stats.curruns);
+               }
+       }
+       if (gap_start != UINT_MAX) {
+               if (i > gap_start + 1) {
+                       /* Gap of more than one size class. */
+                       malloc_printf("[%u..%u]\n", gap_start, i - 1);
+               } else {
+                       /* Gap of one size class. */
+                       malloc_printf("[%u]\n", gap_start);
+               }
+       }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+#ifdef MALLOC_DSS
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+       int ret;
+       size_t a_size = a->size;
+       size_t b_size = b->size;
+
+       ret = (a_size > b_size) - (a_size < b_size);
+       if (ret == 0) {
+               uintptr_t a_addr = (uintptr_t)a->addr;
+               uintptr_t b_addr = (uintptr_t)b->addr;
+
+               ret = (a_addr > b_addr) - (a_addr < b_addr);
+       }
+
+       return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
+    link_szad, extent_szad_comp)
+#endif
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+       uintptr_t a_addr = (uintptr_t)a->addr;
+       uintptr_t b_addr = (uintptr_t)b->addr;
+
+       return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+    extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+static void *
+pages_map(void *addr, size_t size)
+{
+       void *ret;
+
+       /*
+        * We don't use MAP_FIXED here, because it can cause the *replacement*
+        * of existing mappings, and we only want to create new mappings.
+        */
+       ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+           -1, 0);
+       assert(ret != NULL);
+
+       if (ret == MAP_FAILED)
+               ret = NULL;
+       else if (addr != NULL && ret != addr) {
+               /*
+                * We succeeded in mapping memory, but not in the right place.
+                */
+               if (munmap(ret, size) == -1) {
+                       char buf[STRERROR_BUF];
+
+                       strerror_r(errno, buf, sizeof(buf));
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in munmap(): ", buf, "\n");
+                       if (opt_abort)
+                               abort();
+               }
+               ret = NULL;
+       }
+
+       assert(ret == NULL || (addr == NULL && ret != addr)
+           || (addr != NULL && ret == addr));
+       return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+       if (munmap(addr, size) == -1) {
+               char buf[STRERROR_BUF];
+
+               strerror_r(errno, buf, sizeof(buf));
+               _malloc_message(_getprogname(),
+                   ": (malloc) Error in munmap(): ", buf, "\n");
+               if (opt_abort)
+                       abort();
+       }
+}
+
+#ifdef MALLOC_DSS
+static void *
+chunk_alloc_dss(size_t size)
+{
+
+       /*
+        * sbrk() uses a signed increment argument, so take care not to
+        * interpret a huge allocation request as a negative increment.
+        */
+       if ((intptr_t)size < 0)
+               return (NULL);
+
+       malloc_mutex_lock(&dss_mtx);
+       if (dss_prev != (void *)-1) {
+               intptr_t incr;
+
+               /*
+                * The loop is necessary to recover from races with other
+                * threads that are using the DSS for something other than
+                * malloc.
+                */
+               do {
+                       void *ret;
+
+                       /* Get the current end of the DSS. */
+                       dss_max = sbrk(0);
+
+                       /*
+                        * Calculate how much padding is necessary to
+                        * chunk-align the end of the DSS.
+                        */
+                       incr = (intptr_t)size
+                           - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+                       if (incr == (intptr_t)size)
+                               ret = dss_max;
+                       else {
+                               ret = (void *)((intptr_t)dss_max + incr);
+                               incr += size;
+                       }
+
+                       dss_prev = sbrk(incr);
+                       if (dss_prev == dss_max) {
+                               /* Success. */
+                               dss_max = (void *)((intptr_t)dss_prev + incr);
+                               malloc_mutex_unlock(&dss_mtx);
+                               return (ret);
+                       }
+               } while (dss_prev != (void *)-1);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (NULL);
+}
+
+static void *
+chunk_recycle_dss(size_t size, bool zero)
+{
+       extent_node_t *node, key;
+
+       key.addr = NULL;
+       key.size = size;
+       malloc_mutex_lock(&dss_mtx);
+       node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
+       if (node != NULL) {
+               void *ret = node->addr;
+
+               /* Remove node from the tree. */
+               extent_tree_szad_remove(&dss_chunks_szad, node);
+               if (node->size == size) {
+                       extent_tree_ad_remove(&dss_chunks_ad, node);
+                       base_node_dealloc(node);
+               } else {
+                       /*
+                        * Insert the remainder of node's address range as a
+                        * smaller chunk.  Its position within dss_chunks_ad
+                        * does not change.
+                        */
+                       assert(node->size > size);
+                       node->addr = (void *)((uintptr_t)node->addr + size);
+                       node->size -= size;
+                       extent_tree_szad_insert(&dss_chunks_szad, node);
+               }
+               malloc_mutex_unlock(&dss_mtx);
+
+               if (zero)
+                       memset(ret, 0, size);
+               return (ret);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (NULL);
+}
+#endif
+
+static void *
+chunk_alloc_mmap(size_t size)
+{
+       void *ret;
+       size_t offset;
+
+       /*
+        * Ideally, there would be a way to specify alignment to mmap() (like
+        * NetBSD has), but in the absence of such a feature, we have to work
+        * hard to efficiently create aligned mappings.  The reliable, but
+        * expensive method is to create a mapping that is over-sized, then
+        * trim the excess.  However, that always results in at least one call
+        * to pages_unmap().
+        *
+        * A more optimistic approach is to try mapping precisely the right
+        * amount, then try to append another mapping if alignment is off.  In
+        * practice, this works out well as long as the application is not
+        * interleaving mappings via direct mmap() calls.  If we do run into a
+        * situation where there is an interleaved mapping and we are unable to
+        * extend an unaligned mapping, our best option is to momentarily
+        * revert to the reliable-but-expensive method.  This will tend to
+        * leave a gap in the memory map that is too small to cause later
+        * problems for the optimistic method.
+        */
+
+       ret = pages_map(NULL, size);
+       if (ret == NULL)
+               return (NULL);
+
+       offset = CHUNK_ADDR2OFFSET(ret);
+       if (offset != 0) {
+               /* Try to extend chunk boundary. */
+               if (pages_map((void *)((uintptr_t)ret + size),
+                   chunksize - offset) == NULL) {
+                       /*
+                        * Extension failed.  Clean up, then revert to the
+                        * reliable-but-expensive method.
+                        */
+                       pages_unmap(ret, size);
+
+                       /* Beware size_t wrap-around. */
+                       if (size + chunksize <= size)
+                               return NULL;
+
+                       ret = pages_map(NULL, size + chunksize);
+                       if (ret == NULL)
+                               return (NULL);
+
+                       /* Clean up unneeded leading/trailing space. */
+                       offset = CHUNK_ADDR2OFFSET(ret);
+                       if (offset != 0) {
+                               /* Leading space. */
+                               pages_unmap(ret, chunksize - offset);
+
+                               ret = (void *)((uintptr_t)ret +
+                                   (chunksize - offset));
+
+                               /* Trailing space. */
+                               pages_unmap((void *)((uintptr_t)ret + size),
+                                   offset);
+                       } else {
+                               /* Trailing space only. */
+                               pages_unmap((void *)((uintptr_t)ret + size),
+                                   chunksize);
+                       }
+               } else {
+                       /* Clean up unneeded leading space. */
+                       pages_unmap(ret, chunksize - offset);
+                       ret = (void *)((uintptr_t)ret + (chunksize - offset));
+               }
+       }
+
+       return (ret);
+}
+
+static void *
+chunk_alloc(size_t size, bool zero)
+{
+       void *ret;
+
+       assert(size != 0);
+       assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               ret = chunk_recycle_dss(size, zero);
+               if (ret != NULL) {
+                       goto RETURN;
+               }
+
+               ret = chunk_alloc_dss(size);
+               if (ret != NULL)
+                       goto RETURN;
+       }
+
+       if (opt_mmap)
+#endif
+       {
+               ret = chunk_alloc_mmap(size);
+               if (ret != NULL)
+                       goto RETURN;
+       }
+
+       /* All strategies for allocation failed. */
+       ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+       if (ret != NULL) {
+               stats_chunks.nchunks += (size / chunksize);
+               stats_chunks.curchunks += (size / chunksize);
+       }
+       if (stats_chunks.curchunks > stats_chunks.highchunks)
+               stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+       assert(CHUNK_ADDR2BASE(ret) == ret);
+       return (ret);
+}
+
+#ifdef MALLOC_DSS
+static extent_node_t *
+chunk_dealloc_dss_record(void *chunk, size_t size)
+{
+       extent_node_t *node, *prev, key;
+
+       key.addr = (void *)((uintptr_t)chunk + size);
+       node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
+       /* Try to coalesce forward. */
+       if (node != NULL && node->addr == key.addr) {
+               /*
+                * Coalesce chunk with the following address range.  This does
+                * not change the position within dss_chunks_ad, so only
+                * remove/insert from/into dss_chunks_szad.
+                */
+               extent_tree_szad_remove(&dss_chunks_szad, node);
+               node->addr = chunk;
+               node->size += size;
+               extent_tree_szad_insert(&dss_chunks_szad, node);
+       } else {
+               /*
+                * Coalescing forward failed, so insert a new node.  Drop
+                * dss_mtx during node allocation, since it is possible that a
+                * new base chunk will be allocated.
+                */
+               malloc_mutex_unlock(&dss_mtx);
+               node = base_node_alloc();
+               malloc_mutex_lock(&dss_mtx);
+               if (node == NULL)
+                       return (NULL);
+               node->addr = chunk;
+               node->size = size;
+               extent_tree_ad_insert(&dss_chunks_ad, node);
+               extent_tree_szad_insert(&dss_chunks_szad, node);
+       }
+
+       /* Try to coalesce backward. */
+       prev = extent_tree_ad_prev(&dss_chunks_ad, node);
+       if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+           chunk) {
+               /*
+                * Coalesce chunk with the previous address range.  This does
+                * not change the position within dss_chunks_ad, so only
+                * remove/insert node from/into dss_chunks_szad.
+                */
+               extent_tree_szad_remove(&dss_chunks_szad, prev);
+               extent_tree_ad_remove(&dss_chunks_ad, prev);
+
+               extent_tree_szad_remove(&dss_chunks_szad, node);
+               node->addr = prev->addr;
+               node->size += prev->size;
+               extent_tree_szad_insert(&dss_chunks_szad, node);
+
+               base_node_dealloc(prev);
+       }
+
+       return (node);
+}
+
+static bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+
+       malloc_mutex_lock(&dss_mtx);
+       if ((uintptr_t)chunk >= (uintptr_t)dss_base
+           && (uintptr_t)chunk < (uintptr_t)dss_max) {
+               extent_node_t *node;
+
+               /* Try to coalesce with other unused chunks. */
+               node = chunk_dealloc_dss_record(chunk, size);
+               if (node != NULL) {
+                       chunk = node->addr;
+                       size = node->size;
+               }
+
+               /* Get the current end of the DSS. */
+               dss_max = sbrk(0);
+
+               /*
+                * Try to shrink the DSS if this chunk is at the end of the
+                * DSS.  The sbrk() call here is subject to a race condition
+                * with threads that use brk(2) or sbrk(2) directly, but the
+                * alternative would be to leak memory for the sake of poorly
+                * designed multi-threaded programs.
+                */
+               if ((void *)((uintptr_t)chunk + size) == dss_max
+                   && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
+                       /* Success. */
+                       dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
+
+                       if (node != NULL) {
+                               extent_tree_szad_remove(&dss_chunks_szad, node);
+                               extent_tree_ad_remove(&dss_chunks_ad, node);
+                               base_node_dealloc(node);
+                       }
+                       malloc_mutex_unlock(&dss_mtx);
+               } else {
+                       malloc_mutex_unlock(&dss_mtx);
+                       madvise(chunk, size, MADV_FREE);
+               }
+
+               return (false);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (true);
+}
+#endif
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+       pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+       assert(chunk != NULL);
+       assert(CHUNK_ADDR2BASE(chunk) == chunk);
+       assert(size != 0);
+       assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+       stats_chunks.curchunks -= (size / chunksize);
+#endif
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               if (chunk_dealloc_dss(chunk, size) == false)
+                       return;
+       }
+
+       if (opt_mmap)
+#endif
+               chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+       arena_t *ret;
+
+       /*
+        * We can only use TLS if this is a PIC library, since for the static
+        * library version, libc's malloc is used by TLS allocation, which
+        * introduces a bootstrapping issue.
+        */
+#ifndef NO_TLS
+       if (__isthreaded == false) {
+           /* Avoid the overhead of TLS for single-threaded operation. */
+           return (arenas[0]);
+       }
+
+       ret = arenas_map;
+       if (ret == NULL) {
+               ret = choose_arena_hard();
+               assert(ret != NULL);
+       }
+#else
+       if (__isthreaded && narenas > 1) {
+               unsigned long ind;
+
+               /*
+                * Hash _pthread_self() to one of the arenas.  There is a prime
+                * number of arenas, so this has a reasonable chance of
+                * working.  Even so, the hashing can be easily thwarted by
+                * inconvenient _pthread_self() values.  Without specific
+                * knowledge of how _pthread_self() calculates values, we can't
+                * easily do much better than this.
+                */
+               ind = (unsigned long) _pthread_self() % narenas;
+
+               /*
+                * Optimistially assume that arenas[ind] has been initialized.
+                * At worst, we find out that some other thread has already
+                * done so, after acquiring the lock in preparation.  Note that
+                * this lazy locking also has the effect of lazily forcing
+                * cache coherency; without the lock acquisition, there's no
+                * guarantee that modification of arenas[ind] by another thread
+                * would be seen on this CPU for an arbitrary amount of time.
+                *
+                * In general, this approach to modifying a synchronized value
+                * isn't a good idea, but in this case we only ever modify the
+                * value once, so things work out well.
+                */
+               ret = arenas[ind];
+               if (ret == NULL) {
+                       /*
+                        * Avoid races with another thread that may have already
+                        * initialized arenas[ind].
+                        */
+                       malloc_spin_lock(&arenas_lock);
+                       if (arenas[ind] == NULL)
+                               ret = arenas_extend((unsigned)ind);
+                       else
+                               ret = arenas[ind];
+                       malloc_spin_unlock(&arenas_lock);
+               }
+       } else
+               ret = arenas[0];
+#endif
+
+       assert(ret != NULL);
+       return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+       arena_t *ret;
+
+       assert(__isthreaded);
+
+#ifdef MALLOC_BALANCE
+       /* Seed the PRNG used for arena load balancing. */
+       SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+       if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+               unsigned ind;
+
+               ind = PRN(balance, narenas_2pow);
+               if ((ret = arenas[ind]) == NULL) {
+                       malloc_spin_lock(&arenas_lock);
+                       if ((ret = arenas[ind]) == NULL)
+                               ret = arenas_extend(ind);
+                       malloc_spin_unlock(&arenas_lock);
+               }
+#else
+               malloc_spin_lock(&arenas_lock);
+               if ((ret = arenas[next_arena]) == NULL)
+                       ret = arenas_extend(next_arena);
+               next_arena = (next_arena + 1) % narenas;
+               malloc_spin_unlock(&arenas_lock);
+#endif
+       } else
+               ret = arenas[0];
+
+       arenas_map = ret;
+
+       return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+       uintptr_t a_chunk = (uintptr_t)a;
+       uintptr_t b_chunk = (uintptr_t)b;
+
+       assert(a != NULL);
+       assert(b != NULL);
+
+       return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+    arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+       uintptr_t a_mapelm = (uintptr_t)a;
+       uintptr_t b_mapelm = (uintptr_t)b;
+
+       assert(a != NULL);
+       assert(b != NULL);
+
+       return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
+    link, arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+       int ret;
+       size_t a_size = a->bits & ~pagesize_mask;
+       size_t b_size = b->bits & ~pagesize_mask;
+
+       ret = (a_size > b_size) - (a_size < b_size);
+       if (ret == 0) {
+               uintptr_t a_mapelm, b_mapelm;
+
+               if ((a->bits & CHUNK_MAP_KEY) == 0)
+                       a_mapelm = (uintptr_t)a;
+               else {
+                       /*
+                        * Treat keys as though they are lower than anything
+                        * else.
+                        */
+                       a_mapelm = 0;
+               }
+               b_mapelm = (uintptr_t)b;
+
+               ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+       }
+
+       return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t,
+    arena_chunk_map_t, link, arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+       void *ret;
+       unsigned i, mask, bit, regind;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(run->regs_minelm < bin->regs_mask_nelms);
+
+       /*
+        * Move the first check outside the loop, so that run->regs_minelm can
+        * be updated unconditionally, without the possibility of updating it
+        * multiple times.
+        */
+       i = run->regs_minelm;
+       mask = run->regs_mask[i];
+       if (mask != 0) {
+               /* Usable allocation found. */
+               bit = ffs((int)mask) - 1;
+
+               regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+               assert(regind < bin->nregs);
+               ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+                   + (bin->reg_size * regind));
+
+               /* Clear bit. */
+               mask ^= (1U << bit);
+               run->regs_mask[i] = mask;
+
+               return (ret);
+       }
+
+       for (i++; i < bin->regs_mask_nelms; i++) {
+               mask = run->regs_mask[i];
+               if (mask != 0) {
+                       /* Usable allocation found. */
+                       bit = ffs((int)mask) - 1;
+
+                       regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+                       assert(regind < bin->nregs);
+                       ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+                           + (bin->reg_size * regind));
+
+                       /* Clear bit. */
+                       mask ^= (1U << bit);
+                       run->regs_mask[i] = mask;
+
+                       /*
+                        * Make a note that nothing before this element
+                        * contains a free region.
+                        */
+                       run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+                       return (ret);
+               }
+       }
+       /* Not reached. */
+       assert(0);
+       return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+       unsigned diff, regind, elm, bit;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+
+       /*
+        * Avoid doing division with a variable divisor if possible.  Using
+        * actual division here can reduce allocator throughput by over 20%!
+        */
+       diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+       if ((size & (size - 1)) == 0) {
+               /*
+                * log2_table allows fast division of a power of two in the
+                * [1..128] range.
+                *
+                * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+                */
+               static const unsigned char log2_table[] = {
+                   0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+               };
+
+               if (size <= 128)
+                       regind = (diff >> log2_table[size - 1]);
+               else if (size <= 32768)
+                       regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+               else
+                       regind = diff / size;
+       } else if (size < qspace_max) {
+               /*
+                * To divide by a number D that is not a power of two we
+                * multiply by (2^21 / D) and then right shift by 21 positions.
+                *
+                *   X / D
+                *
+                * becomes
+                *
+                *   (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
+                *       >> SIZE_INV_SHIFT
+                *
+                * We can omit the first three elements, because we never
+                * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
+                * two, which are handled above.
+                */
+#define        SIZE_INV_SHIFT 21
+#define        QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
+               static const unsigned qsize_invs[] = {
+                   QSIZE_INV(3),
+                   QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
+#if (QUANTUM_2POW < 4)
+                   ,
+                   QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
+                   QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
+#endif
+               };
+               assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
+                   >= (1U << QSPACE_MAX_2POW_DEFAULT));
+
+               if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
+                   QUANTUM_2POW)) {
+                       regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
+                       regind >>= SIZE_INV_SHIFT;
+               } else
+                       regind = diff / size;
+#undef QSIZE_INV
+       } else if (size < cspace_max) {
+#define        CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
+               static const unsigned csize_invs[] = {
+                   CSIZE_INV(3),
+                   CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
+               };
+               assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
+                   3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
+
+               if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
+                   CACHELINE_2POW)) {
+                       regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
+                           diff;
+                       regind >>= SIZE_INV_SHIFT;
+               } else
+                       regind = diff / size;
+#undef CSIZE_INV
+       } else {
+#define        SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
+               static const unsigned ssize_invs[] = {
+                   SSIZE_INV(3),
+                   SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
+                   SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
+                   SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
+#if (PAGESIZE_2POW == 13)
+                   ,
+                   SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
+                   SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
+                   SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
+                   SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
+#endif
+               };
+               assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
+                   >= (1U << PAGESIZE_2POW));
+
+               if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
+                   SUBPAGE_2POW)) {
+                       regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
+                       regind >>= SIZE_INV_SHIFT;
+               } else
+                       regind = diff / size;
+#undef SSIZE_INV
+       }
+#undef SIZE_INV_SHIFT
+       assert(diff == regind * size);
+       assert(regind < bin->nregs);
+
+       elm = regind >> (SIZEOF_INT_2POW + 3);
+       if (elm < run->regs_minelm)
+               run->regs_minelm = elm;
+       bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+       assert((run->regs_mask[elm] & (1U << bit)) == 0);
+       run->regs_mask[elm] |= (1U << bit);
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+    bool zero)
+{
+       arena_chunk_t *chunk;
+       size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+       old_ndirty = chunk->ndirty;
+       run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+           >> pagesize_2pow);
+       total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+           pagesize_2pow;
+       need_pages = (size >> pagesize_2pow);
+       assert(need_pages > 0);
+       assert(need_pages <= total_pages);
+       rem_pages = total_pages - need_pages;
+
+       arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+       /* Keep track of trailing unused pages for later use. */
+       if (rem_pages > 0) {
+               chunk->map[run_ind+need_pages].bits = (rem_pages <<
+                   pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+                   pagesize_mask);
+               chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+                   pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+                   pagesize_mask);
+               arena_avail_tree_insert(&arena->runs_avail,
+                   &chunk->map[run_ind+need_pages]);
+       }
+
+       for (i = 0; i < need_pages; i++) {
+               /* Zero if necessary. */
+               if (zero) {
+                       if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+                           == 0) {
+                               memset((void *)((uintptr_t)chunk + ((run_ind
+                                   + i) << pagesize_2pow)), 0, pagesize);
+                               /* CHUNK_MAP_ZEROED is cleared below. */
+                       }
+               }
+
+               /* Update dirty page accounting. */
+               if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+                       chunk->ndirty--;
+                       arena->ndirty--;
+                       /* CHUNK_MAP_DIRTY is cleared below. */
+               }
+
+               /* Initialize the chunk map. */
+               if (large) {
+                       chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+                           | CHUNK_MAP_ALLOCATED;
+               } else {
+                       chunk->map[run_ind + i].bits = (size_t)run
+                           | CHUNK_MAP_ALLOCATED;
+               }
+       }
+
+       /*
+        * Set the run size only in the first element for large runs.  This is
+        * primarily a debugging aid, since the lack of size info for trailing
+        * pages only matters if the application tries to operate on an
+        * interior pointer.
+        */
+       if (large)
+               chunk->map[run_ind].bits |= size;
+
+       if (chunk->ndirty == 0 && old_ndirty > 0)
+               arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+       arena_chunk_t *chunk;
+       size_t i;
+
+       if (arena->spare != NULL) {
+               chunk = arena->spare;
+               arena->spare = NULL;
+       } else {
+               chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
+               if (chunk == NULL)
+                       return (NULL);
+#ifdef MALLOC_STATS
+               arena->stats.mapped += chunksize;
+#endif
+
+               chunk->arena = arena;
+
+               /*
+                * Claim that no pages are in use, since the header is merely
+                * overhead.
+                */
+               chunk->ndirty = 0;
+
+               /*
+                * Initialize the map to contain one maximal free untouched run.
+                */
+               for (i = 0; i < arena_chunk_header_npages; i++)
+                       chunk->map[i].bits = 0;
+               chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
+               for (i++; i < chunk_npages-1; i++) {
+                       chunk->map[i].bits = CHUNK_MAP_ZEROED;
+               }
+               chunk->map[chunk_npages-1].bits = arena_maxclass |
+                   CHUNK_MAP_ZEROED;
+       }
+
+       /* Insert the run into the runs_avail tree. */
+       arena_avail_tree_insert(&arena->runs_avail,
+           &chunk->map[arena_chunk_header_npages]);
+
+       return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+       if (arena->spare != NULL) {
+               if (arena->spare->ndirty > 0) {
+                       arena_chunk_tree_dirty_remove(
+                           &chunk->arena->chunks_dirty, arena->spare);
+                       arena->ndirty -= arena->spare->ndirty;
+               }
+               chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+               arena->stats.mapped -= chunksize;
+#endif
+       }
+
+       /*
+        * Remove run from runs_avail, regardless of whether this chunk
+        * will be cached, so that the arena does not use it.  Dirty page
+        * flushing only uses the chunks_dirty tree, so leaving this chunk in
+        * the chunks_* trees is sufficient for that purpose.
+        */
+       arena_avail_tree_remove(&arena->runs_avail,
+           &chunk->map[arena_chunk_header_npages]);
+
+       arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
+{
+       arena_chunk_t *chunk;
+       arena_run_t *run;
+       arena_chunk_map_t *mapelm, key;
+
+       assert(size <= arena_maxclass);
+       assert((size & pagesize_mask) == 0);
+
+       /* Search the arena's chunks for the lowest best fit. */
+       key.bits = size | CHUNK_MAP_KEY;
+       mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+       if (mapelm != NULL) {
+               arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
+               size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
+                   / sizeof(arena_chunk_map_t);
+
+               run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+                   << pagesize_2pow));
+               arena_run_split(arena, run, size, large, zero);
+               return (run);
+       }
+
+       /*
+        * No usable runs.  Create a new chunk from which to allocate the run.
+        */
+       chunk = arena_chunk_alloc(arena);
+       if (chunk == NULL)
+               return (NULL);
+       run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+           pagesize_2pow));
+       /* Update page map. */
+       arena_run_split(arena, run, size, large, zero);
+       return (run);
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+       arena_chunk_t *chunk;
+       size_t i, npages;
+#ifdef MALLOC_DEBUG
+       size_t ndirty = 0;
+
+       rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+           chunk) {
+               ndirty += chunk->ndirty;
+       } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+       assert(ndirty == arena->ndirty);
+#endif
+       assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+       arena->stats.npurge++;
+#endif
+
+       /*
+        * Iterate downward through chunks until enough dirty memory has been
+        * purged.  Terminate as soon as possible in order to minimize the
+        * number of system calls, even if a chunk has only been partially
+        * purged.
+        */
+       while (arena->ndirty > (opt_dirty_max >> 1)) {
+               chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+               assert(chunk != NULL);
+
+               for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+                       assert(i >= arena_chunk_header_npages);
+
+                       if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+                               chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+                               /* Find adjacent dirty run(s). */
+                               for (npages = 1; i > arena_chunk_header_npages
+                                   && (chunk->map[i - 1].bits &
+                                   CHUNK_MAP_DIRTY); npages++) {
+                                       i--;
+                                       chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+                               }
+                               chunk->ndirty -= npages;
+                               arena->ndirty -= npages;
+
+                               madvise((void *)((uintptr_t)chunk + (i <<
+                                   pagesize_2pow)), (npages << pagesize_2pow),
+                                   MADV_FREE);
+#ifdef MALLOC_STATS
+                               arena->stats.nmadvise++;
+                               arena->stats.purged += npages;
+#endif
+                               if (arena->ndirty <= (opt_dirty_max >> 1))
+                                       break;
+                       }
+               }
+
+               if (chunk->ndirty == 0) {
+                       arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+                           chunk);
+               }
+       }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+       arena_chunk_t *chunk;
+       size_t size, run_ind, run_pages;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+       run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+           >> pagesize_2pow);
+       assert(run_ind >= arena_chunk_header_npages);
+       assert(run_ind < chunk_npages);
+       if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+               size = chunk->map[run_ind].bits & ~pagesize_mask;
+       else
+               size = run->bin->run_size;
+       run_pages = (size >> pagesize_2pow);
+
+       /* Mark pages as unallocated in the chunk map. */
+       if (dirty) {
+               size_t i;
+
+               for (i = 0; i < run_pages; i++) {
+                       assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+                           == 0);
+                       chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+               }
+
+               if (chunk->ndirty == 0) {
+                       arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+                           chunk);
+               }
+               chunk->ndirty += run_pages;
+               arena->ndirty += run_pages;
+       } else {
+               size_t i;
+
+               for (i = 0; i < run_pages; i++) {
+                       chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+                           CHUNK_MAP_ALLOCATED);
+               }
+       }
+       chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+           pagesize_mask);
+       chunk->map[run_ind+run_pages-1].bits = size |
+           (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+       /* Try to coalesce forward. */
+       if (run_ind + run_pages < chunk_npages &&
+           (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+               size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+                   ~pagesize_mask;
+
+               /*
+                * Remove successor from runs_avail; the coalesced run is
+                * inserted later.
+                */
+               arena_avail_tree_remove(&arena->runs_avail,
+                   &chunk->map[run_ind+run_pages]);
+
+               size += nrun_size;
+               run_pages = size >> pagesize_2pow;
+
+               assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+                   == nrun_size);
+               chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+                   pagesize_mask);
+               chunk->map[run_ind+run_pages-1].bits = size |
+                   (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+       }
+
+       /* Try to coalesce backward. */
+       if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+           CHUNK_MAP_ALLOCATED) == 0) {
+               size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+               run_ind -= prun_size >> pagesize_2pow;
+
+               /*
+                * Remove predecessor from runs_avail; the coalesced run is
+                * inserted later.
+                */
+               arena_avail_tree_remove(&arena->runs_avail,
+                   &chunk->map[run_ind]);
+
+               size += prun_size;
+               run_pages = size >> pagesize_2pow;
+
+               assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
+                   prun_size);
+               chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+                   pagesize_mask);
+               chunk->map[run_ind+run_pages-1].bits = size |
+                   (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+       }
+
+       /* Insert into runs_avail, now that coalescing is complete. */
+       arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+       /* Deallocate chunk if it is now completely unused. */
+       if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+           CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+               arena_chunk_dealloc(arena, chunk);
+
+       /* Enforce opt_dirty_max. */
+       if (arena->ndirty > opt_dirty_max)
+               arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+    size_t oldsize, size_t newsize)
+{
+       size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+       size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+       assert(oldsize > newsize);
+
+       /*
+        * Update the chunk map so that arena_run_dalloc() can treat the
+        * leading run as separately allocated.
+        */
+       chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+           CHUNK_MAP_ALLOCATED;
+       chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+           CHUNK_MAP_ALLOCATED;
+
+       arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+    size_t oldsize, size_t newsize, bool dirty)
+{
+       size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+       size_t npages = newsize >> pagesize_2pow;
+
+       assert(oldsize > newsize);
+
+       /*
+        * Update the chunk map so that arena_run_dalloc() can treat the
+        * trailing run as separately allocated.
+        */
+       chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+           CHUNK_MAP_ALLOCATED;
+       chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+           | CHUNK_MAP_ALLOCATED;
+
+       arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+           dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+       arena_chunk_map_t *mapelm;
+       arena_run_t *run;
+       unsigned i, remainder;
+
+       /* Look for a usable run. */
+       mapelm = arena_run_tree_first(&bin->runs);
+       if (mapelm != NULL) {
+               /* run is guaranteed to have available space. */
+               arena_run_tree_remove(&bin->runs, mapelm);
+               run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+               bin->stats.reruns++;
+#endif
+               return (run);
+       }
+       /* No existing runs have any space available. */
+
+       /* Allocate a new run. */
+       run = arena_run_alloc(arena, bin->run_size, false, false);
+       if (run == NULL)
+               return (NULL);
+
+       /* Initialize run internals. */
+       run->bin = bin;
+
+       for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+               run->regs_mask[i] = UINT_MAX;
+       remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+       if (remainder == 0)
+               run->regs_mask[i] = UINT_MAX;
+       else {
+               /* The last element has spare bits that need to be unset. */
+               run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+                   - remainder));
+       }
+
+       run->regs_minelm = 0;
+
+       run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+       run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+       bin->stats.nruns++;
+       bin->stats.curruns++;
+       if (bin->stats.curruns > bin->stats.highruns)
+               bin->stats.highruns = bin->stats.curruns;
+#endif
+       return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+       void *ret;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(run->nfree > 0);
+
+       ret = arena_run_reg_alloc(run, bin);
+       assert(ret != NULL);
+       run->nfree--;
+
+       return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+       bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+       if (bin->runcur == NULL)
+               return (NULL);
+       assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+       assert(bin->runcur->nfree > 0);
+
+       return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ *   *) bin->run_size >= min_run_size
+ *   *) bin->run_size <= arena_maxclass
+ *   *) bin->run_size <= RUN_MAX_SMALL
+ *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+       size_t try_run_size, good_run_size;
+       unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+       unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+       assert(min_run_size >= pagesize);
+       assert(min_run_size <= arena_maxclass);
+       assert(min_run_size <= RUN_MAX_SMALL);
+
+       /*
+        * Calculate known-valid settings before entering the run_size
+        * expansion loop, so that the first part of the loop always copies
+        * valid settings.
+        *
+        * The do..while loop iteratively reduces the number of regions until
+        * the run header and the regions no longer overlap.  A closed formula
+        * would be quite messy, since there is an interdependency between the
+        * header's mask length and the number of regions.
+        */
+       try_run_size = min_run_size;
+       try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+           + 1; /* Counter-act try_nregs-- in loop. */
+       do {
+               try_nregs--;
+               try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+                   ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+               try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+       } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+           > try_reg0_offset);
+
+       /* run_size expansion loop. */
+       do {
+               /*
+                * Copy valid settings before trying more aggressive settings.
+                */
+               good_run_size = try_run_size;
+               good_nregs = try_nregs;
+               good_mask_nelms = try_mask_nelms;
+               good_reg0_offset = try_reg0_offset;
+
+               /* Try more aggressive settings. */
+               try_run_size += pagesize;
+               try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+                   bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+               do {
+                       try_nregs--;
+                       try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+                           ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+                           1 : 0);
+                       try_reg0_offset = try_run_size - (try_nregs *
+                           bin->reg_size);
+               } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+                   (try_mask_nelms - 1)) > try_reg0_offset);
+       } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+           && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+           && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+       assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+           <= good_reg0_offset);
+       assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+       /* Copy final settings. */
+       bin->run_size = good_run_size;
+       bin->nregs = good_nregs;
+       bin->regs_mask_nelms = good_mask_nelms;
+       bin->reg0_offset = good_reg0_offset;
+
+       return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+       unsigned contention;
+
+       contention = malloc_spin_lock(&arena->lock);
+       if (narenas > 1) {
+               /*
+                * Calculate the exponentially averaged contention for this
+                * arena.  Due to integer math always rounding down, this value
+                * decays somewhat faster than normal.
+                */
+               arena->contention = (((uint64_t)arena->contention
+                   * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+                   + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+               if (arena->contention >= opt_balance_threshold)
+                       arena_lock_balance_hard(arena);
+       }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+       uint32_t ind;
+
+       arena->contention = 0;
+#ifdef MALLOC_STATS
+       arena->stats.nbalance++;
+#endif
+       ind = PRN(balance, narenas_2pow);
+       if (arenas[ind] != NULL)
+               arenas_map = arenas[ind];
+       else {
+               malloc_spin_lock(&arenas_lock);
+               if (arenas[ind] != NULL)
+                       arenas_map = arenas[ind];
+               else
+                       arenas_map = arenas_extend(ind);
+               malloc_spin_unlock(&arenas_lock);
+       }
+}
+#endif
+
+#ifdef MALLOC_MAG
+static inline void *
+mag_alloc(mag_t *mag)
+{
+
+       if (mag->nrounds == 0)
+               return (NULL);
+       mag->nrounds--;
+
+       return (mag->rounds[mag->nrounds]);
+}
+
+static void
+mag_load(mag_t *mag)
+{
+       arena_t *arena;
+       arena_bin_t *bin;
+       arena_run_t *run;
+       void *round;
+       size_t i;
+
+       arena = choose_arena();
+       bin = &arena->bins[mag->binind];
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       for (i = mag->nrounds; i < max_rounds; i++) {
+               if ((run = bin->runcur) != NULL && run->nfree > 0)
+                       round = arena_bin_malloc_easy(arena, bin, run);
+               else
+                       round = arena_bin_malloc_hard(arena, bin);
+               if (round == NULL)
+                       break;
+               mag->rounds[i] = round;
+       }
+#ifdef MALLOC_STATS
+       bin->stats.nmags++;
+       arena->stats.nmalloc_small += (i - mag->nrounds);
+       arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+       mag->nrounds = i;
+}
+
+static inline void *
+mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
+{
+       void *ret;
+       bin_mags_t *bin_mags;
+       mag_t *mag;
+       size_t binind;
+
+       binind = size2bin[size];
+       assert(binind < nbins);
+       bin_mags = &rack->bin_mags[binind];
+
+       mag = bin_mags->curmag;
+       if (mag == NULL) {
+               /* Create an initial magazine for this size class. */
+               assert(bin_mags->sparemag == NULL);
+               mag = mag_create(choose_arena(), binind);
+               if (mag == NULL)
+                       return (NULL);
+               bin_mags->curmag = mag;
+               mag_load(mag);
+       }
+
+       ret = mag_alloc(mag);
+       if (ret == NULL) {
+               if (bin_mags->sparemag != NULL) {
+                       if (bin_mags->sparemag->nrounds > 0) {
+                               /* Swap magazines. */
+                               bin_mags->curmag = bin_mags->sparemag;
+                               bin_mags->sparemag = mag;
+                               mag = bin_mags->curmag;
+                       } else {
+                               /* Reload the current magazine. */
+                               mag_load(mag);
+                       }
+               } else {
+                       /* Create a second magazine. */
+                       mag = mag_create(choose_arena(), binind);
+                       if (mag == NULL)
+                               return (NULL);
+                       mag_load(mag);
+                       bin_mags->sparemag = bin_mags->curmag;
+                       bin_mags->curmag = mag;
+               }
+               ret = mag_alloc(mag);
+               if (ret == NULL)
+                       return (NULL);
+       }
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+       } else
+               memset(ret, 0, size);
+
+       return (ret);
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+       void *ret;
+       arena_bin_t *bin;
+       arena_run_t *run;
+       size_t binind;
+
+       binind = size2bin[size];
+       assert(binind < nbins);
+       bin = &arena->bins[binind];
+       size = bin->reg_size;
+
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       if ((run = bin->runcur) != NULL && run->nfree > 0)
+               ret = arena_bin_malloc_easy(arena, bin, run);
+       else
+               ret = arena_bin_malloc_hard(arena, bin);
+
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+
+#ifdef MALLOC_STATS
+       bin->stats.nrequests++;
+       arena->stats.nmalloc_small++;
+       arena->stats.allocated_small += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+       } else
+               memset(ret, 0, size);
+
+       return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+       void *ret;
+
+       /* Large allocation. */
+       size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       ret = (void *)arena_run_alloc(arena, size, true, zero);
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+#ifdef MALLOC_STATS
+       arena->stats.nmalloc_large++;
+       arena->stats.allocated_large += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+       }
+
+       return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+       assert(arena != NULL);
+       assert(arena->magic == ARENA_MAGIC);
+       assert(size != 0);
+       assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+       if (size <= bin_maxclass) {
+#ifdef MALLOC_MAG
+               if (__isthreaded && opt_mag) {
+                       mag_rack_t *rack = mag_rack;
+                       if (rack == NULL) {
+                               rack = mag_rack_create(arena);
+                               if (rack == NULL)
+                                       return (NULL);
+                               mag_rack = rack;
+                       }
+                       return (mag_rack_alloc(rack, size, zero));
+               } else
+#endif
+                       return (arena_malloc_small(arena, size, zero));
+       } else
+               return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+       assert(size != 0);
+
+       if (size <= arena_maxclass)
+               return (arena_malloc(choose_arena(), size, false));
+       else
+               return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+       if (size <= arena_maxclass)
+               return (arena_malloc(choose_arena(), size, true));
+       else
+               return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+       void *ret;
+       size_t offset;
+       arena_chunk_t *chunk;
+
+       assert((size & pagesize_mask) == 0);
+       assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+       offset = (uintptr_t)ret & (alignment - 1);
+       assert((offset & pagesize_mask) == 0);
+       assert(offset < alloc_size);
+       if (offset == 0)
+               arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
+       else {
+               size_t leadsize, trailsize;
+
+               leadsize = alignment - offset;
+               if (leadsize > 0) {
+                       arena_run_trim_head(arena, chunk, ret, alloc_size,
+                           alloc_size - leadsize);
+                       ret = (void *)((uintptr_t)ret + leadsize);
+               }
+
+               trailsize = alloc_size - leadsize - size;
+               if (trailsize != 0) {
+                       /* Trim trailing space. */
+                       assert(trailsize < alloc_size);
+                       arena_run_trim_tail(arena, chunk, ret, size + trailsize,
+                           size, false);
+               }
+       }
+
+#ifdef MALLOC_STATS
+       arena->stats.nmalloc_large++;
+       arena->stats.allocated_large += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (opt_junk)
+               memset(ret, 0xa5, size);
+       else if (opt_zero)
+               memset(ret, 0, size);
+       return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+       void *ret;
+       size_t ceil_size;
+
+       /*
+        * Round size up to the nearest multiple of alignment.
+        *
+        * This done, we can take advantage of the fact that for each small
+        * size class, every object is aligned at the smallest power of two
+        * that is non-zero in the base two representation of the size.  For
+        * example:
+        *
+        *   Size |   Base 2 | Minimum alignment
+        *   -----+----------+------------------
+        *     96 |  1100000 |  32
+        *    144 | 10100000 |  32
+        *    192 | 11000000 |  64
+        *
+        * Depending on runtime settings, it is possible that arena_malloc()
+        * will further round up to a power of two, but that never causes
+        * correctness issues.
+        */
+       ceil_size = (size + (alignment - 1)) & (-alignment);
+       /*
+        * (ceil_size < size) protects against the combination of maximal
+        * alignment and size greater than maximal alignment.
+        */
+       if (ceil_size < size) {
+               /* size_t overflow. */
+               return (NULL);
+       }
+
+       if (ceil_size <= pagesize || (alignment <= pagesize
+           && ceil_size <= arena_maxclass))
+               ret = arena_malloc(choose_arena(), ceil_size, false);
+       else {
+               size_t run_size;
+
+               /*
+                * We can't achieve subpage alignment, so round up alignment
+                * permanently; it makes later calculations simpler.
+                */
+               alignment = PAGE_CEILING(alignment);
+               ceil_size = PAGE_CEILING(size);
+               /*
+                * (ceil_size < size) protects against very large sizes within
+                * pagesize of SIZE_T_MAX.
+                *
+                * (ceil_size + alignment < ceil_size) protects against the
+                * combination of maximal alignment and ceil_size large enough
+                * to cause overflow.  This is similar to the first overflow
+                * check above, but it needs to be repeated due to the new
+                * ceil_size value, which may now be *equal* to maximal
+                * alignment, whereas before we only detected overflow if the
+                * original size was *greater* than maximal alignment.
+                */
+               if (ceil_size < size || ceil_size + alignment < ceil_size) {
+                       /* size_t overflow. */
+                       return (NULL);
+               }
+
+               /*
+                * Calculate the size of the over-size run that arena_palloc()
+                * would need to allocate in order to guarantee the alignment.
+                */
+               if (ceil_size >= alignment)
+                       run_size = ceil_size + alignment - pagesize;
+               else {
+                       /*
+                        * It is possible that (alignment << 1) will cause
+                        * overflow, but it doesn't matter because we also
+                        * subtract pagesize, which in the case of overflow
+                        * leaves us with a very large run_size.  That causes
+                        * the first conditional below to fail, which means
+                        * that the bogus run_size value never gets used for
+                        * anything important.
+                        */
+                       run_size = (alignment << 1) - pagesize;
+               }
+
+               if (run_size <= arena_maxclass) {
+                       ret = arena_palloc(choose_arena(), alignment, ceil_size,
+                           run_size);
+               } else if (alignment <= chunksize)
+                       ret = huge_malloc(ceil_size, false);
+               else
+                       ret = huge_palloc(alignment, ceil_size);
+       }
+
+       assert(((uintptr_t)ret & (alignment - 1)) == 0);
+       return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+       size_t ret;
+       arena_chunk_t *chunk;
+       size_t pageind, mapbits;
+
+       assert(ptr != NULL);
+       assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapbits = chunk->map[pageind].bits;
+       assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+       if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+               arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+               assert(run->magic == ARENA_RUN_MAGIC);
+               ret = run->bin->reg_size;
+       } else {
+               ret = mapbits & ~pagesize_mask;
+               assert(ret != 0);
+       }
+
+       return (ret);
+}
+
+static inline size_t
+isalloc(const void *ptr)
+{
+       size_t ret;
+       arena_chunk_t *chunk;
+
+       assert(ptr != NULL);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr) {
+               /* Region. */
+               assert(chunk->arena->magic == ARENA_MAGIC);
+
+               ret = arena_salloc(ptr);
+       } else {
+               extent_node_t *node, key;
+
+               /* Chunk (huge allocation). */
+
+               malloc_mutex_lock(&huge_mtx);
+
+               /* Extract from tree of huge allocations. */
+               key.addr = __DECONST(void *, ptr);
+               node = extent_tree_ad_search(&huge, &key);
+               assert(node != NULL);
+
+               ret = node->size;
+
+               malloc_mutex_unlock(&huge_mtx);
+       }
+
+       return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    arena_chunk_map_t *mapelm)
+{
+       arena_run_t *run;
+       arena_bin_t *bin;
+       size_t size;
+
+       run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+       assert(run->magic == ARENA_RUN_MAGIC);
+       bin = run->bin;
+       size = bin->reg_size;
+
+       if (opt_junk)
+               memset(ptr, 0x5a, size);
+
+       arena_run_reg_dalloc(run, bin, ptr, size);
+       run->nfree++;
+
+       if (run->nfree == bin->nregs) {
+               /* Deallocate run. */
+               if (run == bin->runcur)
+                       bin->runcur = NULL;
+               else if (bin->nregs != 1) {
+                       size_t run_pageind = (((uintptr_t)run -
+                           (uintptr_t)chunk)) >> pagesize_2pow;
+                       arena_chunk_map_t *run_mapelm =
+                           &chunk->map[run_pageind];
+                       /*
+                        * This block's conditional is necessary because if the
+                        * run only contains one region, then it never gets
+                        * inserted into the non-full runs tree.
+                        */
+                       arena_run_tree_remove(&bin->runs, run_mapelm);
+               }
+#ifdef MALLOC_DEBUG
+               run->magic = 0;
+#endif
+               arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+               bin->stats.curruns--;
+#endif
+       } else if (run->nfree == 1 && run != bin->runcur) {
+               /*
+                * Make sure that bin->runcur always refers to the lowest
+                * non-full run, if one exists.
+                */
+               if (bin->runcur == NULL)
+                       bin->runcur = run;
+               else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+                       /* Switch runcur. */
+                       if (bin->runcur->nfree > 0) {
+                               arena_chunk_t *runcur_chunk =
+                                   CHUNK_ADDR2BASE(bin->runcur);
+                               size_t runcur_pageind =
+                                   (((uintptr_t)bin->runcur -
+                                   (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+                               arena_chunk_map_t *runcur_mapelm =
+                                   &runcur_chunk->map[runcur_pageind];
+
+                               /* Insert runcur. */
+                               arena_run_tree_insert(&bin->runs,
+                                   runcur_mapelm);
+                       }
+                       bin->runcur = run;
+               } else {
+                       size_t run_pageind = (((uintptr_t)run -
+                           (uintptr_t)chunk)) >> pagesize_2pow;
+                       arena_chunk_map_t *run_mapelm =
+                           &chunk->map[run_pageind];
+
+                       assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+                           NULL);
+                       arena_run_tree_insert(&bin->runs, run_mapelm);
+               }
+       }
+#ifdef MALLOC_STATS
+       arena->stats.allocated_small -= size;
+       arena->stats.ndalloc_small++;
+#endif
+}
+
+#ifdef MALLOC_MAG
+static void
+mag_unload(mag_t *mag)
+{
+       arena_chunk_t *chunk;
+       arena_t *arena;
+       void *round;
+       size_t i, ndeferred, nrounds;
+
+       for (ndeferred = mag->nrounds; ndeferred > 0;) {
+               nrounds = ndeferred;
+               /* Lock the arena associated with the first round. */
+               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
+               arena = chunk->arena;
+#ifdef MALLOC_BALANCE
+               arena_lock_balance(arena);
+#else
+               malloc_spin_lock(&arena->lock);
+#endif
+               /* Deallocate every round that belongs to the locked arena. */
+               for (i = ndeferred = 0; i < nrounds; i++) {
+                       round = mag->rounds[i];
+                       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
+                       if (chunk->arena == arena) {
+                               size_t pageind = (((uintptr_t)round -
+                                   (uintptr_t)chunk) >> pagesize_2pow);
+                               arena_chunk_map_t *mapelm =
+                                   &chunk->map[pageind];
+                               arena_dalloc_small(arena, chunk, round, mapelm);
+                       } else {
+                               /*
+                                * This round was allocated via a different
+                                * arena than the one that is currently locked.
+                                * Stash the round, so that it can be handled
+                                * in a future pass.
+                                */
+                               mag->rounds[ndeferred] = round;
+                               ndeferred++;
+                       }
+               }
+               malloc_spin_unlock(&arena->lock);
+       }
+
+       mag->nrounds = 0;
+}
+
+static inline void
+mag_rack_dalloc(mag_rack_t *rack, void *ptr)
+{
+       arena_t *arena;
+       arena_chunk_t *chunk;
+       arena_run_t *run;
+       arena_bin_t *bin;
+       bin_mags_t *bin_mags;
+       mag_t *mag;
+       size_t pageind, binind;
+       arena_chunk_map_t *mapelm;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       arena = chunk->arena;
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+       run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+       assert(run->magic == ARENA_RUN_MAGIC);
+       bin = run->bin;
+       binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
+           sizeof(arena_bin_t);
+       assert(binind < nbins);
+
+       if (opt_junk)
+               memset(ptr, 0x5a, arena->bins[binind].reg_size);
+
+       bin_mags = &rack->bin_mags[binind];
+       mag = bin_mags->curmag;
+       if (mag == NULL) {
+               /* Create an initial magazine for this size class. */
+               assert(bin_mags->sparemag == NULL);
+               mag = mag_create(choose_arena(), binind);
+               if (mag == NULL) {
+                       malloc_spin_lock(&arena->lock);
+                       arena_dalloc_small(arena, chunk, ptr, mapelm);
+                       malloc_spin_unlock(&arena->lock);
+                       return;
+               }
+               bin_mags->curmag = mag;
+       }
+
+       if (mag->nrounds == max_rounds) {
+               if (bin_mags->sparemag != NULL) {
+                       if (bin_mags->sparemag->nrounds < max_rounds) {
+                               /* Swap magazines. */
+                               bin_mags->curmag = bin_mags->sparemag;
+                               bin_mags->sparemag = mag;
+                               mag = bin_mags->curmag;
+                       } else {
+                               /* Unload the current magazine. */
+                               mag_unload(mag);
+                       }
+               } else {
+                       /* Create a second magazine. */
+                       mag = mag_create(choose_arena(), binind);
+                       if (mag == NULL) {
+                               mag = rack->bin_mags[binind].curmag;
+                               mag_unload(mag);
+                       } else {
+                               bin_mags->sparemag = bin_mags->curmag;
+                               bin_mags->curmag = mag;
+                       }
+               }
+               assert(mag->nrounds < max_rounds);
+       }
+       mag->rounds[mag->nrounds] = ptr;
+       mag->nrounds++;
+}
+#endif
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+       /* Large allocation. */
+       malloc_spin_lock(&arena->lock);
+
+#ifndef MALLOC_STATS
+       if (opt_junk)
+#endif
+       {
+               size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+                   pagesize_2pow;
+               size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_STATS
+               if (opt_junk)
+#endif
+                       memset(ptr, 0x5a, size);
+#ifdef MALLOC_STATS
+               arena->stats.allocated_large -= size;
+#endif
+       }
+#ifdef MALLOC_STATS
+       arena->stats.ndalloc_large++;
+#endif
+
+       arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+       malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+       size_t pageind;
+       arena_chunk_map_t *mapelm;
+
+       assert(arena != NULL);
+       assert(arena->magic == ARENA_MAGIC);
+       assert(chunk->arena == arena);
+       assert(ptr != NULL);
+       assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+       assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+       if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+               /* Small allocation. */
+#ifdef MALLOC_MAG
+               if (__isthreaded && opt_mag) {
+                       mag_rack_t *rack = mag_rack;
+                       if (rack == NULL) {
+                               rack = mag_rack_create(arena);
+                               if (rack == NULL) {
+                                       malloc_spin_lock(&arena->lock);
+                                       arena_dalloc_small(arena, chunk, ptr,
+                                           mapelm);
+                                       malloc_spin_unlock(&arena->lock);
+                               }
+                               mag_rack = rack;
+                       }
+                       mag_rack_dalloc(rack, ptr);
+               } else {
+#endif
+                       malloc_spin_lock(&arena->lock);
+                       arena_dalloc_small(arena, chunk, ptr, mapelm);
+                       malloc_spin_unlock(&arena->lock);
+#ifdef MALLOC_MAG
+               }
+#endif
+       } else
+               arena_dalloc_large(arena, chunk, ptr);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+       arena_chunk_t *chunk;
+
+       assert(ptr != NULL);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr)
+               arena_dalloc(chunk->arena, chunk, ptr);
+       else
+               huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t size, size_t oldsize)
+{
+
+       assert(size < oldsize);
+
+       /*
+        * Shrink the run, and make trailing pages available for other
+        * allocations.
+        */
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+           true);
+#ifdef MALLOC_STATS
+       arena->stats.allocated_large -= oldsize - size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t size, size_t oldsize)
+{
+       size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+       size_t npages = oldsize >> pagesize_2pow;
+
+       assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+       /* Try to extend the run. */
+       assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+           & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+           ~pagesize_mask) >= size - oldsize) {
+               /*
+                * The next run is available and sufficiently large.  Split the
+                * following run, then merge the first part with the existing
+                * allocation.
+                */
+               arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+                   ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+                   false);
+
+               chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+                   CHUNK_MAP_ALLOCATED;
+               chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+                   CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+               arena->stats.allocated_large += size - oldsize;
+#endif
+               malloc_spin_unlock(&arena->lock);
+               return (false);
+       }
+       malloc_spin_unlock(&arena->lock);
+
+       return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying.  This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+       size_t psize;
+
+       psize = PAGE_CEILING(size);
+       if (psize == oldsize) {
+               /* Same size class. */
+               if (opt_junk && size < oldsize) {
+                       memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+                           size);
+               }
+               return (false);
+       } else {
+               arena_chunk_t *chunk;
+               arena_t *arena;
+
+               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+               arena = chunk->arena;
+               assert(arena->magic == ARENA_MAGIC);
+
+               if (psize < oldsize) {
+                       /* Fill before shrinking in order avoid a race. */
+                       if (opt_junk) {
+                               memset((void *)((uintptr_t)ptr + size), 0x5a,
+                                   oldsize - size);
+                       }
+                       arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+                           oldsize);
+                       return (false);
+               } else {
+                       bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+                           psize, oldsize);
+                       if (ret == false && opt_zero) {
+                               memset((void *)((uintptr_t)ptr + oldsize), 0,
+                                   size - oldsize);
+                       }
+                       return (ret);
+               }
+       }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+       void *ret;
+       size_t copysize;
+
+       /* Try to avoid moving the allocation. */
+       if (size <= bin_maxclass) {
+               if (oldsize <= bin_maxclass && size2bin[size] ==
+                   size2bin[oldsize])
+                       goto IN_PLACE;
+       } else {
+               if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+                       assert(size > bin_maxclass);
+                       if (arena_ralloc_large(ptr, size, oldsize) == false)
+                               return (ptr);
+               }
+       }
+
+       /*
+        * If we get here, then size and oldsize are different enough that we
+        * need to move the object.  In that case, fall back to allocating new
+        * space and copying.
+        */
+       ret = arena_malloc(choose_arena(), size, false);
+       if (ret == NULL)
+               return (NULL);
+
+       /* Junk/zero-filling were already done by arena_malloc(). */
+       copysize = (size < oldsize) ? size : oldsize;
+       memcpy(ret, ptr, copysize);
+       idalloc(ptr);
+       return (ret);
+IN_PLACE:
+       if (opt_junk && size < oldsize)
+               memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+       else if (opt_zero && size > oldsize)
+               memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+       return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+       size_t oldsize;
+
+       assert(ptr != NULL);
+       assert(size != 0);
+
+       oldsize = isalloc(ptr);
+
+       if (size <= arena_maxclass)
+               return (arena_ralloc(ptr, size, oldsize));
+       else
+               return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+       unsigned i;
+       arena_bin_t *bin;
+       size_t prev_run_size;
+
+       if (malloc_spin_init(&arena->lock))
+               return (true);
+
+#ifdef MALLOC_STATS
+       memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+       /* Initialize chunks. */
+       arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+       arena->spare = NULL;
+
+       arena->ndirty = 0;
+
+       arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+       arena->contention = 0;
+#endif
+
+       /* Initialize bins. */
+       prev_run_size = pagesize;
+
+       i = 0;
+#ifdef MALLOC_TINY
+       /* (2^n)-spaced tiny bins. */
+       for (; i < ntbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+#endif
+
+       /* Quantum-spaced bins. */
+       for (; i < ntbins + nqbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+       /* Cacheline-spaced bins. */
+       for (; i < ntbins + nqbins + ncbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
+                   CACHELINE_2POW);
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+       /* Subpage-spaced bins. */
+       for (; i < nbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               arena_run_tree_new(&bin->runs);
+
+               bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
+                   << SUBPAGE_2POW);
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+#ifdef MALLOC_DEBUG
+       arena->magic = ARENA_MAGIC;
+#endif
+
+       return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+       arena_t *ret;
+
+       /* Allocate enough space for trailing bins. */
+       ret = (arena_t *)base_alloc(sizeof(arena_t)
+           + (sizeof(arena_bin_t) * (nbins - 1)));
+       if (ret != NULL && arena_new(ret) == false) {
+               arenas[ind] = ret;
+               return (ret);
+       }
+       /* Only reached if there is an OOM error. */
+
+       /*
+        * OOM here is quite inconvenient to propagate, since dealing with it
+        * would require a check for failure in the fast path.  Instead, punt
+        * by using arenas[0].  In practice, this is an extremely unlikely
+        * failure.
+        */
+       _malloc_message(_getprogname(),
+           ": (malloc) Error initializing arena\n", "", "");
+       if (opt_abort)
+               abort();
+
+       return (arenas[0]);
+}
+
+#ifdef MALLOC_MAG
+static mag_t *
+mag_create(arena_t *arena, size_t binind)
+{
+       mag_t *ret;
+
+       if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+           bin_maxclass) {
+               ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
+                   * (max_rounds - 1)), false);
+       } else {
+               ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
+                   1)));
+       }
+       if (ret == NULL)
+               return (NULL);
+       ret->binind = binind;
+       ret->nrounds = 0;
+
+       return (ret);
+}
+
+static void
+mag_destroy(mag_t *mag)
+{
+       arena_t *arena;
+       arena_chunk_t *chunk;
+       size_t pageind;
+       arena_chunk_map_t *mapelm;
+
+       chunk = CHUNK_ADDR2BASE(mag);
+       arena = chunk->arena;
+       pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+
+       assert(mag->nrounds == 0);
+       if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+           bin_maxclass) {
+               malloc_spin_lock(&arena->lock);
+               arena_dalloc_small(arena, chunk, mag, mapelm);
+               malloc_spin_unlock(&arena->lock);
+       } else
+               idalloc(mag);
+}
+
+static mag_rack_t *
+mag_rack_create(arena_t *arena)
+{
+
+       assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
+           bin_maxclass);
+       return (arena_malloc_small(arena, sizeof(mag_rack_t) +
+           (sizeof(bin_mags_t) * (nbins - 1)), true));
+}
+
+static void
+mag_rack_destroy(mag_rack_t *rack)
+{
+       arena_t *arena;
+       arena_chunk_t *chunk;
+       bin_mags_t *bin_mags;
+       size_t i, pageind;
+       arena_chunk_map_t *mapelm;
+
+       for (i = 0; i < nbins; i++) {
+               bin_mags = &rack->bin_mags[i];
+               if (bin_mags->curmag != NULL) {
+                       assert(bin_mags->curmag->binind == i);
+                       mag_unload(bin_mags->curmag);
+                       mag_destroy(bin_mags->curmag);
+               }
+               if (bin_mags->sparemag != NULL) {
+                       assert(bin_mags->sparemag->binind == i);
+                       mag_unload(bin_mags->sparemag);
+                       mag_destroy(bin_mags->sparemag);
+               }
+       }
+
+       chunk = CHUNK_ADDR2BASE(rack);
+       arena = chunk->arena;
+       pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+
+       malloc_spin_lock(&arena->lock);
+       arena_dalloc_small(arena, chunk, rack, mapelm);
+       malloc_spin_unlock(&arena->lock);
+}
+#endif
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+       void *ret;
+       size_t csize;
+       extent_node_t *node;
+
+       /* Allocate one or more contiguous chunks for this request. */
+
+       csize = CHUNK_CEILING(size);
+       if (csize == 0) {
+               /* size is large enough to cause size_t wrap-around. */
+               return (NULL);
+       }
+
+       /* Allocate an extent node with which to track the chunk. */
+       node = base_node_alloc();
+       if (node == NULL)
+               return (NULL);
+
+       ret = chunk_alloc(csize, zero);
+       if (ret == NULL) {
+               base_node_dealloc(node);
+               return (NULL);
+       }
+
+       /* Insert node into huge. */
+       node->addr = ret;
+       node->size = csize;
+
+       malloc_mutex_lock(&huge_mtx);
+       extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+       huge_nmalloc++;
+       huge_allocated += csize;
+#endif
+       malloc_mutex_unlock(&huge_mtx);
+
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, csize);
+               else if (opt_zero)
+                       memset(ret, 0, csize);
+       }
+
+       return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+       void *ret;
+       size_t alloc_size, chunk_size, offset;
+       extent_node_t *node;
+
+       /*
+        * This allocation requires alignment that is even larger than chunk
+        * alignment.  This means that huge_malloc() isn't good enough.
+        *
+        * Allocate almost twice as many chunks as are demanded by the size or
+        * alignment, in order to assure the alignment can be achieved, then
+        * unmap leading and trailing chunks.
+        */
+       assert(alignment >= chunksize);
+
+       chunk_size = CHUNK_CEILING(size);
+
+       if (size >= alignment)
+               alloc_size = chunk_size + alignment - chunksize;
+       else
+               alloc_size = (alignment << 1) - chunksize;
+
+       /* Allocate an extent node with which to track the chunk. */
+       node = base_node_alloc();
+       if (node == NULL)
+               return (NULL);
+
+       ret = chunk_alloc(alloc_size, false);
+       if (ret == NULL) {
+               base_node_dealloc(node);
+               return (NULL);
+       }
+
+       offset = (uintptr_t)ret & (alignment - 1);
+       assert((offset & chunksize_mask) == 0);
+       assert(offset < alloc_size);
+       if (offset == 0) {
+               /* Trim trailing space. */
+               chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+                   - chunk_size);
+       } else {
+               size_t trailsize;
+
+               /* Trim leading space. */
+               chunk_dealloc(ret, alignment - offset);
+
+               ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+               trailsize = alloc_size - (alignment - offset) - chunk_size;
+               if (trailsize != 0) {
+                   /* Trim trailing space. */
+                   assert(trailsize < alloc_size);
+                   chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+                       trailsize);
+               }
+       }
+
+       /* Insert node into huge. */
+       node->addr = ret;
+       node->size = chunk_size;
+
+       malloc_mutex_lock(&huge_mtx);
+       extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+       huge_nmalloc++;
+       huge_allocated += chunk_size;
+#endif
+       malloc_mutex_unlock(&huge_mtx);
+
+       if (opt_junk)
+               memset(ret, 0xa5, chunk_size);
+       else if (opt_zero)
+               memset(ret, 0, chunk_size);
+
+       return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+       void *ret;
+       size_t copysize;
+
+       /* Avoid moving the allocation if the size class would not change. */
+       if (oldsize > arena_maxclass &&
+           CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+               if (opt_junk && size < oldsize) {
+                       memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+                           - size);
+               } else if (opt_zero && size > oldsize) {
+                       memset((void *)((uintptr_t)ptr + oldsize), 0, size
+                           - oldsize);
+               }
+               return (ptr);
+       }
+
+       /*
+        * If we get here, then size and oldsize are different enough that we
+        * need to use a different size class.  In that case, fall back to
+        * allocating new space and copying.
+        */
+       ret = huge_malloc(size, false);
+       if (ret == NULL)
+               return (NULL);
+
+       copysize = (size < oldsize) ? size : oldsize;
+       memcpy(ret, ptr, copysize);
+       idalloc(ptr);
+       return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+       extent_node_t *node, key;
+
+       malloc_mutex_lock(&huge_mtx);
+
+       /* Extract from tree of huge allocations. */
+       key.addr = ptr;
+       node = extent_tree_ad_search(&huge, &key);
+       assert(node != NULL);
+       assert(node->addr == ptr);
+       extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+       huge_ndalloc++;
+       huge_allocated -= node->size;
+#endif
+
+       malloc_mutex_unlock(&huge_mtx);
+
+       /* Unmap chunk. */
+#ifdef MALLOC_DSS
+       if (opt_dss && opt_junk)
+               memset(node->addr, 0x5a, node->size);
+#endif
+       chunk_dealloc(node->addr, node->size);
+
+       base_node_dealloc(node);
+}
+
+static void
+malloc_print_stats(void)
+{
+
+       if (opt_print_stats) {
+               char s[UMAX2S_BUFSIZE];
+               _malloc_message("___ Begin malloc statistics ___\n", "", "",
+                   "");
+               _malloc_message("Assertions ",
+#ifdef NDEBUG
+                   "disabled",
+#else
+                   "enabled",
+#endif
+                   "\n", "");
+               _malloc_message("Boolean MALLOC_OPTIONS: ",
+                   opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+               _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+#ifdef MALLOC_MAG
+               _malloc_message(opt_mag ? "G" : "g", "", "", "");
+#endif
+               _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#ifdef MALLOC_DSS
+               _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+               _malloc_message(opt_utrace ? "PU" : "Pu",
+                   opt_sysv ? "V" : "v",
+                   opt_xmalloc ? "X" : "x",
+                   opt_zero ? "Z\n" : "z\n");
+
+               _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+               _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_BALANCE
+               _malloc_message("Arena balance threshold: ",
+                   umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+               _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+                   "\n", "");
+               _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
+               _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
+                   s), "\n", "");
+#ifdef MALLOC_TINY
+               _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
+                   TINY_MIN_2POW), s), "..", "");
+               _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
+#endif
+               _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
+                   s), "..", "");
+               _malloc_message(umax2s(qspace_max, s), "]\n", "", "");
+               _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
+                   s), "..", "");
+               _malloc_message(umax2s(cspace_max, s), "]\n", "", "");
+               _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
+                   s), "..", "");
+               _malloc_message(umax2s(sspace_max, s), "]\n", "", "");
+#ifdef MALLOC_MAG
+               _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
+                   "\n", "");
+#endif
+               _malloc_message("Max dirty pages per arena: ",
+                   umax2s(opt_dirty_max, s), "\n", "");
+
+               _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+               _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+               {
+                       size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+                       uint64_t nbalance = 0;
+#endif
+                       unsigned i;
+                       arena_t *arena;
+
+                       /* Calculate and print allocated/mapped stats. */
+
+                       /* arenas. */
+                       for (i = 0, allocated = 0; i < narenas; i++) {
+                               if (arenas[i] != NULL) {
+                                       malloc_spin_lock(&arenas[i]->lock);
+                                       allocated +=
+                                           arenas[i]->stats.allocated_small;
+                                       allocated +=
+                                           arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+                                       nbalance += arenas[i]->stats.nbalance;
+#endif
+                                       malloc_spin_unlock(&arenas[i]->lock);
+                               }
+                       }
+
+                       /* huge/base. */
+                       malloc_mutex_lock(&huge_mtx);
+                       allocated += huge_allocated;
+                       mapped = stats_chunks.curchunks * chunksize;
+                       malloc_mutex_unlock(&huge_mtx);
+
+                       malloc_mutex_lock(&base_mtx);
+                       mapped += base_mapped;
+                       malloc_mutex_unlock(&base_mtx);
+
+                       malloc_printf("Allocated: %zu, mapped: %zu\n",
+                           allocated, mapped);
+
+#ifdef MALLOC_BALANCE
+                       malloc_printf("Arena balance reassignments: %llu\n",
+                           nbalance);
+#endif
+
+                       /* Print chunk stats. */
+                       {
+                               chunk_stats_t chunks_stats;
+
+                               malloc_mutex_lock(&huge_mtx);
+                               chunks_stats = stats_chunks;
+                               malloc_mutex_unlock(&huge_mtx);
+
+                               malloc_printf("chunks: nchunks   "
+                                   "highchunks    curchunks\n");
+                               malloc_printf("  %13llu%13lu%13lu\n",
+                                   chunks_stats.nchunks,
+                                   chunks_stats.highchunks,
+                                   chunks_stats.curchunks);
+                       }
+
+                       /* Print chunk stats. */
+                       malloc_printf(
+                           "huge: nmalloc      ndalloc    allocated\n");
+                       malloc_printf(" %12llu %12llu %12zu\n",
+                           huge_nmalloc, huge_ndalloc, huge_allocated);
+
+                       /* Print stats for each arena. */
+                       for (i = 0; i < narenas; i++) {
+                               arena = arenas[i];
+                               if (arena != NULL) {
+                                       malloc_printf(
+                                           "\narenas[%u]:\n", i);
+                                       malloc_spin_lock(&arena->lock);
+                                       stats_print(arena);
+                                       malloc_spin_unlock(&arena->lock);
+                               }
+                       }
+               }
+#endif /* #ifdef MALLOC_STATS */
+               _malloc_message("--- End malloc statistics ---\n", "", "", "");
+       }
+}
+
+#ifdef MALLOC_DEBUG
+static void
+size2bin_validate(void)
+{
+       size_t i, size, binind;
+
+       assert(size2bin[0] == 0xffU);
+       i = 1;
+#  ifdef MALLOC_TINY
+       /* Tiny. */
+       for (; i < (1U << TINY_MIN_2POW); i++) {
+               size = pow2_ceil(1U << TINY_MIN_2POW);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               assert(size2bin[i] == binind);
+       }
+       for (; i < qspace_min; i++) {
+               size = pow2_ceil(i);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               assert(size2bin[i] == binind);
+       }
+#  endif
+       /* Quantum-spaced. */
+       for (; i <= qspace_max; i++) {
+               size = QUANTUM_CEILING(i);
+               binind = ntbins + (size >> QUANTUM_2POW) - 1;
+               assert(size2bin[i] == binind);
+       }
+       /* Cacheline-spaced. */
+       for (; i <= cspace_max; i++) {
+               size = CACHELINE_CEILING(i);
+               binind = ntbins + nqbins + ((size - cspace_min) >>
+                   CACHELINE_2POW);
+               assert(size2bin[i] == binind);
+       }
+       /* Sub-page. */
+       for (; i <= sspace_max; i++) {
+               size = SUBPAGE_CEILING(i);
+               binind = ntbins + nqbins + ncbins + ((size - sspace_min)
+                   >> SUBPAGE_2POW);
+               assert(size2bin[i] == binind);
+       }
+}
+#endif
+
+static bool
+size2bin_init(void)
+{
+
+       if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+           || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
+               return (size2bin_init_hard());
+
+       size2bin = const_size2bin;
+#ifdef MALLOC_DEBUG
+       assert(sizeof(const_size2bin) == bin_maxclass + 1);
+       size2bin_validate();
+#endif
+       return (false);
+}
+
+static bool
+size2bin_init_hard(void)
+{
+       size_t i, size, binind;
+       uint8_t *custom_size2bin;
+
+       assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+           || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
+
+       custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
+       if (custom_size2bin == NULL)
+               return (true);
+
+       custom_size2bin[0] = 0xffU;
+       i = 1;
+#ifdef MALLOC_TINY
+       /* Tiny. */
+       for (; i < (1U << TINY_MIN_2POW); i++) {
+               size = pow2_ceil(1U << TINY_MIN_2POW);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               custom_size2bin[i] = binind;
+       }
+       for (; i < qspace_min; i++) {
+               size = pow2_ceil(i);
+               binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+               custom_size2bin[i] = binind;
+       }
+#endif
+       /* Quantum-spaced. */
+       for (; i <= qspace_max; i++) {
+               size = QUANTUM_CEILING(i);
+               binind = ntbins + (size >> QUANTUM_2POW) - 1;
+               custom_size2bin[i] = binind;
+       }
+       /* Cacheline-spaced. */
+       for (; i <= cspace_max; i++) {
+               size = CACHELINE_CEILING(i);
+               binind = ntbins + nqbins + ((size - cspace_min) >>
+                   CACHELINE_2POW);
+               custom_size2bin[i] = binind;
+       }
+       /* Sub-page. */
+       for (; i <= sspace_max; i++) {
+               size = SUBPAGE_CEILING(i);
+               binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
+                   SUBPAGE_2POW);
+               custom_size2bin[i] = binind;
+       }
+
+       size2bin = custom_size2bin;
+#ifdef MALLOC_DEBUG
+       size2bin_validate();
+#endif
+       return (false);
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+static inline bool
+malloc_init(void)
+{
+
+       if (malloc_initialized == false)
+               return (malloc_init_hard());
+
+       return (false);
+}
+
+static bool
+malloc_init_hard(void)
+{
+       unsigned i;
+       int linklen;
+       char buf[PATH_MAX + 1];
+       const char *opts;
+
+       malloc_mutex_lock(&init_lock);
+       if (malloc_initialized) {
+               /*
+                * Another thread initialized the allocator before this one
+                * acquired init_lock.
+                */
+               malloc_mutex_unlock(&init_lock);
+               return (false);
+       }
+
+       /* Get number of CPUs. */
+       {
+               int mib[2];
+               size_t len;
+
+               mib[0] = CTL_HW;
+               mib[1] = HW_NCPU;
+               len = sizeof(ncpus);
+               if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
+                       /* Error. */
+                       ncpus = 1;
+               }
+       }
+
+       /* Get page size. */
+       {
+               long result;
+
+               result = sysconf(_SC_PAGESIZE);
+               assert(result != -1);
+               pagesize = (unsigned)result;
+
+               /*
+                * We assume that pagesize is a power of 2 when calculating
+                * pagesize_mask and pagesize_2pow.
+                */
+               assert(((result - 1) & result) == 0);
+               pagesize_mask = result - 1;
+               pagesize_2pow = ffs((int)result) - 1;
+       }
+
+       for (i = 0; i < 3; i++) {
+               unsigned j;
+
+               /* Get runtime configuration. */
+               switch (i) {
+               case 0:
+                       if ((linklen = readlink("/etc/malloc.conf", buf,
+                                               sizeof(buf) - 1)) != -1) {
+                               /*
+                                * Use the contents of the "/etc/malloc.conf"
+                                * symbolic link's name.
+                                */
+                               buf[linklen] = '\0';
+                               opts = buf;
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               case 1:
+                       if (issetugid() == 0 && (opts =
+                           getenv("MALLOC_OPTIONS")) != NULL) {
+                               /*
+                                * Do nothing; opts is already initialized to
+                                * the value of the MALLOC_OPTIONS environment
+                                * variable.
+                                */
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               case 2:
+                       if (_malloc_options != NULL) {
+                               /*
+                                * Use options that were compiled into the
+                                * program.
+                                */
+                               opts = _malloc_options;
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               default:
+                       /* NOTREACHED */
+                       assert(false);
+               }
+
+               for (j = 0; opts[j] != '\0'; j++) {
+                       unsigned k, nreps;
+                       bool nseen;
+
+                       /* Parse repetition count, if any. */
+                       for (nreps = 0, nseen = false;; j++, nseen = true) {
+                               switch (opts[j]) {
+                                       case '0': case '1': case '2': case '3':
+                                       case '4': case '5': case '6': case '7':
+                                       case '8': case '9':
+                                               nreps *= 10;
+                                               nreps += opts[j] - '0';
+                                               break;
+                                       default:
+                                               goto MALLOC_OUT;
+                               }
+                       }
+MALLOC_OUT:
+                       if (nseen == false)
+                               nreps = 1;
+
+                       for (k = 0; k < nreps; k++) {
+                               switch (opts[j]) {
+                               case 'a':
+                                       opt_abort = false;
+                                       break;
+                               case 'A':
+                                       opt_abort = true;
+                                       break;
+                               case 'b':
+#ifdef MALLOC_BALANCE
+                                       opt_balance_threshold >>= 1;
+#endif
+                                       break;
+                               case 'B':
+#ifdef MALLOC_BALANCE
+                                       if (opt_balance_threshold == 0)
+                                               opt_balance_threshold = 1;
+                                       else if ((opt_balance_threshold << 1)
+                                           > opt_balance_threshold)
+                                               opt_balance_threshold <<= 1;
+#endif
+                                       break;
+                               case 'c':
+                                       if (opt_cspace_max_2pow - 1 >
+                                           opt_qspace_max_2pow &&
+                                           opt_cspace_max_2pow >
+                                           CACHELINE_2POW)
+                                               opt_cspace_max_2pow--;
+                                       break;
+                               case 'C':
+                                       if (opt_cspace_max_2pow < pagesize_2pow
+                                           - 1)
+                                               opt_cspace_max_2pow++;
+                                       break;
+                               case 'd':
+#ifdef MALLOC_DSS
+                                       opt_dss = false;
+#endif
+                                       break;
+                               case 'D':
+#ifdef MALLOC_DSS
+                                       opt_dss = true;
+#endif
+                                       break;
+                               case 'f':
+                                       opt_dirty_max >>= 1;
+                                       break;
+                               case 'F':
+                                       if (opt_dirty_max == 0)
+                                               opt_dirty_max = 1;
+                                       else if ((opt_dirty_max << 1) != 0)
+                                               opt_dirty_max <<= 1;
+                                       break;
+#ifdef MALLOC_MAG
+                               case 'g':
+                                       opt_mag = false;
+                                       break;
+                               case 'G':
+                                       opt_mag = true;
+                                       break;
+#endif
+                               case 'j':
+                                       opt_junk = false;
+                                       break;
+                               case 'J':
+                                       opt_junk = true;
+                                       break;
+                               case 'k':
+                                       /*
+                                        * Chunks always require at least one
+                                        * header page, so chunks can never be
+                                        * smaller than two pages.
+                                        */
+                                       if (opt_chunk_2pow > pagesize_2pow + 1)
+                                               opt_chunk_2pow--;
+                                       break;
+                               case 'K':
+                                       if (opt_chunk_2pow + 1 <
+                                           (sizeof(size_t) << 3))
+                                               opt_chunk_2pow++;
+                                       break;
+                               case 'm':
+#ifdef MALLOC_DSS
+                                       opt_mmap = false;
+#endif
+                                       break;
+                               case 'M':
+#ifdef MALLOC_DSS
+                                       opt_mmap = true;
+#endif
+                                       break;
+                               case 'n':
+                                       opt_narenas_lshift--;
+                                       break;
+                               case 'N':
+                                       opt_narenas_lshift++;
+                                       break;
+                               case 'p':
+                                       opt_print_stats = false;
+                                       break;
+                               case 'P':
+                                       opt_print_stats = true;
+                                       break;
+                               case 'q':
+                                       if (opt_qspace_max_2pow > QUANTUM_2POW)
+                                               opt_qspace_max_2pow--;
+                                       break;
+                               case 'Q':
+                                       if (opt_qspace_max_2pow + 1 <
+                                           opt_cspace_max_2pow)
+                                               opt_qspace_max_2pow++;
+                                       break;
+#ifdef MALLOC_MAG
+                               case 'R':
+                                       if (opt_mag_size_2pow + 1 < (8U <<
+                                           SIZEOF_PTR_2POW))
+                                               opt_mag_size_2pow++;
+                                       break;
+                               case 'r':
+                                       /*
+                                        * Make sure there's always at least
+                                        * one round per magazine.
+                                        */
+                                       if ((1U << (opt_mag_size_2pow-1)) >=
+                                           sizeof(mag_t))
+                                               opt_mag_size_2pow--;
+                                       break;
+#endif
+                               case 'u':
+                                       opt_utrace = false;
+                                       break;
+                               case 'U':
+                                       opt_utrace = true;
+                                       break;
+                               case 'v':
+                                       opt_sysv = false;
+                                       break;
+                               case 'V':
+                                       opt_sysv = true;
+                                       break;
+                               case 'x':
+                                       opt_xmalloc = false;
+                                       break;
+                               case 'X':
+                                       opt_xmalloc = true;
+                                       break;
+                               case 'z':
+                                       opt_zero = false;
+                                       break;
+                               case 'Z':
+                                       opt_zero = true;
+                                       break;
+                               default: {
+                                       char cbuf[2];
+
+                                       cbuf[0] = opts[j];
+                                       cbuf[1] = '\0';
+                                       _malloc_message(_getprogname(),
+                                           ": (malloc) Unsupported character "
+                                           "in malloc options: '", cbuf,
+                                           "'\n");
+                               }
+                               }
+                       }
+               }
+       }
+
+#ifdef MALLOC_DSS
+       /* Make sure that there is some method for acquiring memory. */
+       if (opt_dss == false && opt_mmap == false)
+               opt_mmap = true;
+#endif
+
+       /* Take care to call atexit() only once. */
+       if (opt_print_stats) {
+               /* Print statistics at exit. */
+               atexit(malloc_print_stats);
+       }
+
+#ifdef MALLOC_MAG
+       /*
+        * Calculate the actual number of rounds per magazine, taking into
+        * account header overhead.
+        */
+       max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
+           (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
+#endif
+
+       /* Set variables according to the value of opt_[qc]space_max_2pow. */
+       qspace_max = (1U << opt_qspace_max_2pow);
+       cspace_min = CACHELINE_CEILING(qspace_max);
+       if (cspace_min == qspace_max)
+               cspace_min += CACHELINE;
+       cspace_max = (1U << opt_cspace_max_2pow);
+       sspace_min = SUBPAGE_CEILING(cspace_max);
+       if (sspace_min == cspace_max)
+               sspace_min += SUBPAGE;
+       assert(sspace_min < pagesize);
+       sspace_max = pagesize - SUBPAGE;
+
+#ifdef MALLOC_TINY
+       assert(QUANTUM_2POW >= TINY_MIN_2POW);
+#endif
+       assert(ntbins <= QUANTUM_2POW);
+       nqbins = qspace_max >> QUANTUM_2POW;
+       ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
+       nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
+       nbins = ntbins + nqbins + ncbins + nsbins;
+
+       if (size2bin_init()) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+
+       /* Set variables according to the value of opt_chunk_2pow. */
+       chunksize = (1LU << opt_chunk_2pow);
+       chunksize_mask = chunksize - 1;
+       chunk_npages = (chunksize >> pagesize_2pow);
+       {
+               size_t header_size;
+
+               /*
+                * Compute the header size such that it is large enough to
+                * contain the page map.
+                */
+               header_size = sizeof(arena_chunk_t) +
+                   (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+               arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+                   ((header_size & pagesize_mask) != 0);
+       }
+       arena_maxclass = chunksize - (arena_chunk_header_npages <<
+           pagesize_2pow);
+
+       UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+       memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+       /* Various sanity checks that regard configuration. */
+       assert(chunksize >= pagesize);
+
+       /* Initialize chunks data. */
+       malloc_mutex_init(&huge_mtx);
+       extent_tree_ad_new(&huge);
+#ifdef MALLOC_DSS
+       malloc_mutex_init(&dss_mtx);
+       dss_base = sbrk(0);
+       dss_prev = dss_base;
+       dss_max = dss_base;
+       extent_tree_szad_new(&dss_chunks_szad);
+       extent_tree_ad_new(&dss_chunks_ad);
+#endif
+#ifdef MALLOC_STATS
+       huge_nmalloc = 0;
+       huge_ndalloc = 0;
+       huge_allocated = 0;
+#endif
+
+       /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+       base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+       /*
+        * Allocate a base chunk here, since it doesn't actually have to be
+        * chunk-aligned.  Doing this before allocating any other chunks allows
+        * the use of space that would otherwise be wasted.
+        */
+       if (opt_dss)
+               base_pages_alloc(0);
+#endif
+       base_nodes = NULL;
+       malloc_mutex_init(&base_mtx);
+
+       if (ncpus > 1) {
+               /*
+                * For SMP systems, create twice as many arenas as there are
+                * CPUs by default.
+                */
+               opt_narenas_lshift++;
+       }
+
+       /* Determine how many arenas to use. */
+       narenas = ncpus;
+       if (opt_narenas_lshift > 0) {
+               if ((narenas << opt_narenas_lshift) > narenas)
+                       narenas <<= opt_narenas_lshift;
+               /*
+                * Make sure not to exceed the limits of what base_alloc() can
+                * handle.
+                */
+               if (narenas * sizeof(arena_t *) > chunksize)
+                       narenas = chunksize / sizeof(arena_t *);
+       } else if (opt_narenas_lshift < 0) {
+               if ((narenas >> -opt_narenas_lshift) < narenas)
+                       narenas >>= -opt_narenas_lshift;
+               /* Make sure there is at least one arena. */
+               if (narenas == 0)
+                       narenas = 1;
+       }
+#ifdef MALLOC_BALANCE
+       assert(narenas != 0);
+       for (narenas_2pow = 0;
+            (narenas >> (narenas_2pow + 1)) != 0;
+            narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+       if (narenas > 1) {
+               static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+                   23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+                   89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+                   151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+                   223, 227, 229, 233, 239, 241, 251, 257, 263};
+               unsigned nprimes, parenas;
+
+               /*
+                * Pick a prime number of hash arenas that is more than narenas
+                * so that direct hashing of pthread_self() pointers tends to
+                * spread allocations evenly among the arenas.
+                */
+               assert((narenas & 1) == 0); /* narenas must be even. */
+               nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+               parenas = primes[nprimes - 1]; /* In case not enough primes. */
+               for (i = 1; i < nprimes; i++) {
+                       if (primes[i] > narenas) {
+                               parenas = primes[i];
+                               break;
+                       }
+               }
+               narenas = parenas;
+       }
+#endif
+
+#ifndef NO_TLS
+#  ifndef MALLOC_BALANCE
+       next_arena = 0;
+#  endif
+#endif
+
+       /* Allocate and initialize arenas. */
+       arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+       if (arenas == NULL) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+       /*
+        * Zero the array.  In practice, this should always be pre-zeroed,
+        * since it was just mmap()ed, but let's be sure.
+        */
+       memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+       /*
+        * Initialize one arena here.  The rest are lazily created in
+        * choose_arena_hard().
+        */
+       arenas_extend(0);
+       if (arenas[0] == NULL) {
+               malloc_mutex_unlock(&init_lock);
+               return (true);
+       }
+#ifndef NO_TLS
+       /*
+        * Assign the initial arena to the initial thread, in order to avoid
+        * spurious creation of an extra arena if the application switches to
+        * threaded mode.
+        */
+       arenas_map = arenas[0];
+#endif
+       /*
+        * Seed here for the initial thread, since choose_arena_hard() is only
+        * called for other threads.  The seed value doesn't really matter.
+        */
+#ifdef MALLOC_BALANCE
+       SPRN(balance, 42);
+#endif
+
+       malloc_spin_init(&arenas_lock);
+
+       malloc_initialized = true;
+       malloc_mutex_unlock(&init_lock);
+       return (false);
+}
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+void *
+malloc(size_t size)
+{
+       void *ret;
+
+       if (malloc_init()) {
+               ret = NULL;
+               goto RETURN;
+       }
+
+       if (size == 0) {
+               if (opt_sysv == false)
+                       size = 1;
+               else {
+                       ret = NULL;
+                       goto RETURN;
+               }
+       }
+
+       ret = imalloc(size);
+
+RETURN:
+       if (ret == NULL) {
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in malloc(): out of memory\n", "",
+                           "");
+                       abort();
+               }
+               errno = ENOMEM;
+       }
+
+       UTRACE(0, size, ret);
+       return (ret);
+}
+
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+       int ret;
+       void *result;
+
+       if (malloc_init())
+               result = NULL;
+       else {
+               /* Make sure that alignment is a large enough power of 2. */
+               if (((alignment - 1) & alignment) != 0
+                   || alignment < sizeof(void *)) {
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in posix_memalign(): "
+                                   "invalid alignment\n", "", "");
+                               abort();
+                       }
+                       result = NULL;
+                       ret = EINVAL;
+                       goto RETURN;
+               }
+
+               result = ipalloc(alignment, size);
+       }
+
+       if (result == NULL) {
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                       ": (malloc) Error in posix_memalign(): out of memory\n",
+                       "", "");
+                       abort();
+               }
+               ret = ENOMEM;
+               goto RETURN;
+       }
+
+       *memptr = result;
+       ret = 0;
+
+RETURN:
+       UTRACE(0, size, result);
+       return (ret);
+}
+
+void *
+calloc(size_t num, size_t size)
+{
+       void *ret;
+       size_t num_size;
+
+       if (malloc_init()) {
+               num_size = 0;
+               ret = NULL;
+               goto RETURN;
+       }
+
+       num_size = num * size;
+       if (num_size == 0) {
+               if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+                       num_size = 1;
+               else {
+                       ret = NULL;
+                       goto RETURN;
+               }
+       /*
+        * Try to avoid division here.  We know that it isn't possible to
+        * overflow during multiplication if neither operand uses any of the
+        * most significant half of the bits in a size_t.
+        */
+       } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+           && (num_size / size != num)) {
+               /* size_t overflow. */
+               ret = NULL;
+               goto RETURN;
+       }
+
+       ret = icalloc(num_size);
+
+RETURN:
+       if (ret == NULL) {
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in calloc(): out of memory\n", "",
+                           "");
+                       abort();
+               }
+               errno = ENOMEM;
+       }
+
+       UTRACE(0, num_size, ret);
+       return (ret);
+}
+
+void *
+realloc(void *ptr, size_t size)
+{
+       void *ret;
+
+       if (size == 0) {
+               if (opt_sysv == false)
+                       size = 1;
+               else {
+                       if (ptr != NULL)
+                               idalloc(ptr);
+                       ret = NULL;
+                       goto RETURN;
+               }
+       }
+
+       if (ptr != NULL) {
+               assert(malloc_initialized);
+
+               ret = iralloc(ptr, size);
+
+               if (ret == NULL) {
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in realloc(): out of "
+                                   "memory\n", "", "");
+                               abort();
+                       }
+                       errno = ENOMEM;
+               }
+       } else {
+               if (malloc_init())
+                       ret = NULL;
+               else
+                       ret = imalloc(size);
+
+               if (ret == NULL) {
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in realloc(): out of "
+                                   "memory\n", "", "");
+                               abort();
+                       }
+                       errno = ENOMEM;
+               }
+       }
+
+RETURN:
+       UTRACE(ptr, size, ret);
+       return (ret);
+}
+
+void
+free(void *ptr)
+{
+
+       UTRACE(ptr, 0, 0);
+       if (ptr != NULL) {
+               assert(malloc_initialized);
+
+               idalloc(ptr);
+       }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+       assert(ptr != NULL);
+
+       return (isalloc(ptr));
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions.
+ */
+
+/******************************************************************************/
+/*
+ * Begin thread cache.
+ */
+
+/*
+ * We provide an unpublished interface in order to receive notifications from
+ * the pthreads library whenever a thread exits.  This allows us to clean up
+ * thread caches.
+ */
+void
+_malloc_thread_cleanup(void)
+{
+
+#ifdef MALLOC_MAG
+       if (mag_rack != NULL) {
+               assert(mag_rack != (void *)-1);
+               mag_rack_destroy(mag_rack);
+#ifdef MALLOC_DEBUG
+               mag_rack = (void *)-1;
+#endif
+       }
+#endif
+}
+
+/*
+ * The following functions are used by threading libraries for protection of
+ * malloc during fork().  These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+       unsigned i;
+
+       /* Acquire all mutexes in a safe order. */
+
+       malloc_spin_lock(&arenas_lock);
+       for (i = 0; i < narenas; i++) {
+               if (arenas[i] != NULL)
+                       malloc_spin_lock(&arenas[i]->lock);
+       }
+       malloc_spin_unlock(&arenas_lock);
+
+       malloc_mutex_lock(&base_mtx);
+
+       malloc_mutex_lock(&huge_mtx);
+
+#ifdef MALLOC_DSS
+       malloc_mutex_lock(&dss_mtx);
+#endif
+}
+
+void
+_malloc_postfork(void)
+{
+       unsigned i;
+
+       /* Release all mutexes, now that fork() has completed. */
+
+#ifdef MALLOC_DSS
+       malloc_mutex_unlock(&dss_mtx);
+#endif
+
+       malloc_mutex_unlock(&huge_mtx);
+
+       malloc_mutex_unlock(&base_mtx);
+
+       malloc_spin_lock(&arenas_lock);
+       for (i = 0; i < narenas; i++) {
+               if (arenas[i] != NULL)
+                       malloc_spin_unlock(&arenas[i]->lock);
+       }
+       malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
diff --git a/varnish-cache/lib/libjemalloc/rb.h b/varnish-cache/lib/libjemalloc/rb.h
new file mode 100644 (file)
index 0000000..acfe203
--- /dev/null
@@ -0,0 +1,946 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice(s), this list of conditions and the following disclaimer
+ *    unmodified other than the allowable addition of one or more
+ *    copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice(s), this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ *
+ * cpp macro implementation of left-leaning red-black trees.
+ *
+ * Usage:
+ *
+ *   (Optional, see assert(3).)
+ *   #define NDEBUG
+ *
+ *   (Required.)
+ *   #include <assert.h>
+ *   #include <rb.h>
+ *   ...
+ *
+ * All operations are done non-recursively.  Parent pointers are not used, and
+ * color bits are stored in the least significant bit of right-child pointers,
+ * thus making node linkage as compact as is possible for red-black trees.
+ *
+ * Some macros use a comparison function pointer, which is expected to have the
+ * following prototype:
+ *
+ *   int (a_cmp *)(a_type *a_node, a_type *a_other);
+ *                         ^^^^^^
+ *                      or a_key
+ *
+ * Interpretation of comparision function return values:
+ *
+ *   -1 : a_node <  a_other
+ *    0 : a_node == a_other
+ *    1 : a_node >  a_other
+ *
+ * In all cases, the a_node or a_key macro argument is the first argument to the
+ * comparison function, which makes it possible to write comparison functions
+ * that treat the first argument specially.
+ *
+ ******************************************************************************/
+
+#ifndef RB_H_
+#define        RB_H_
+
+//__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
+
+/* Node structure. */
+#define        rb_node(a_type)                                                 \
+struct {                                                               \
+    a_type *rbn_left;                                                  \
+    a_type *rbn_right_red;                                             \
+}
+
+/* Root structure. */
+#define        rb_tree(a_type)                                                 \
+struct {                                                               \
+    a_type *rbt_root;                                                  \
+    a_type rbt_nil;                                                    \
+}
+
+/* Left accessors. */
+#define        rbp_left_get(a_type, a_field, a_node)                           \
+    ((a_node)->a_field.rbn_left)
+#define        rbp_left_set(a_type, a_field, a_node, a_left) do {              \
+    (a_node)->a_field.rbn_left = a_left;                               \
+} while (0)
+
+/* Right accessors. */
+#define        rbp_right_get(a_type, a_field, a_node)                          \
+    ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red)          \
+      & ((ssize_t)-2)))
+#define        rbp_right_set(a_type, a_field, a_node, a_right) do {            \
+    (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right)        \
+      | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1)));        \
+} while (0)
+
+/* Color accessors. */
+#define        rbp_red_get(a_type, a_field, a_node)                            \
+    ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red)             \
+      & ((size_t)1)))
+#define        rbp_color_set(a_type, a_field, a_node, a_red) do {              \
+    (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t)         \
+      (a_node)->a_field.rbn_right_red) & ((ssize_t)-2))                        \
+      | ((ssize_t)a_red));                                             \
+} while (0)
+#define        rbp_red_set(a_type, a_field, a_node) do {                       \
+    (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t)         \
+      (a_node)->a_field.rbn_right_red) | ((size_t)1));                 \
+} while (0)
+#define        rbp_black_set(a_type, a_field, a_node) do {                     \
+    (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t)          \
+      (a_node)->a_field.rbn_right_red) & ((ssize_t)-2));               \
+} while (0)
+
+/* Node initializer. */
+#define        rbp_node_new(a_type, a_field, a_tree, a_node) do {              \
+    rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil);       \
+    rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil);      \
+    rbp_red_set(a_type, a_field, (a_node));                            \
+} while (0)
+
+/* Tree initializer. */
+#define        rb_new(a_type, a_field, a_tree) do {                            \
+    (a_tree)->rbt_root = &(a_tree)->rbt_nil;                           \
+    rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil);         \
+    rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil);                        \
+} while (0)
+
+/* Tree operations. */
+#define        rbp_black_height(a_type, a_field, a_tree, r_height) do {        \
+    a_type *rbp_bh_t;                                                  \
+    for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0;                        \
+      rbp_bh_t != &(a_tree)->rbt_nil;                                  \
+      rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) {            \
+       if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) {          \
+           (r_height)++;                                               \
+       }                                                               \
+    }                                                                  \
+} while (0)
+
+#define        rbp_first(a_type, a_field, a_tree, a_root, r_node) do {         \
+    for ((r_node) = (a_root);                                          \
+      rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil;   \
+      (r_node) = rbp_left_get(a_type, a_field, (r_node))) {            \
+    }                                                                  \
+} while (0)
+
+#define        rbp_last(a_type, a_field, a_tree, a_root, r_node) do {          \
+    for ((r_node) = (a_root);                                          \
+      rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil;  \
+      (r_node) = rbp_right_get(a_type, a_field, (r_node))) {           \
+    }                                                                  \
+} while (0)
+
+#define        rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {   \
+    if (rbp_right_get(a_type, a_field, (a_node))                       \
+      != &(a_tree)->rbt_nil) {                                         \
+       rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type,        \
+         a_field, (a_node)), (r_node));                                \
+    } else {                                                           \
+       a_type *rbp_n_t = (a_tree)->rbt_root;                           \
+       assert(rbp_n_t != &(a_tree)->rbt_nil);                          \
+       (r_node) = &(a_tree)->rbt_nil;                                  \
+       while (true) {                                                  \
+           int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t);                 \
+           if (rbp_n_cmp < 0) {                                        \
+               (r_node) = rbp_n_t;                                     \
+               rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t);       \
+           } else if (rbp_n_cmp > 0) {                                 \
+               rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t);      \
+           } else {                                                    \
+               break;                                                  \
+           }                                                           \
+           assert(rbp_n_t != &(a_tree)->rbt_nil);                      \
+       }                                                               \
+    }                                                                  \
+} while (0)
+
+#define        rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {   \
+    if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
+       rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type,          \
+         a_field, (a_node)), (r_node));                                \
+    } else {                                                           \
+       a_type *rbp_p_t = (a_tree)->rbt_root;                           \
+       assert(rbp_p_t != &(a_tree)->rbt_nil);                          \
+       (r_node) = &(a_tree)->rbt_nil;                                  \
+       while (true) {                                                  \
+           int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t);                 \
+           if (rbp_p_cmp < 0) {                                        \
+               rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t);       \
+           } else if (rbp_p_cmp > 0) {                                 \
+               (r_node) = rbp_p_t;                                     \
+               rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t);      \
+           } else {                                                    \
+               break;                                                  \
+           }                                                           \
+           assert(rbp_p_t != &(a_tree)->rbt_nil);                      \
+       }                                                               \
+    }                                                                  \
+} while (0)
+
+#define        rb_first(a_type, a_field, a_tree, r_node) do {                  \
+    rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node));  \
+    if ((r_node) == &(a_tree)->rbt_nil) {                              \
+       (r_node) = NULL;                                                \
+    }                                                                  \
+} while (0)
+
+#define        rb_last(a_type, a_field, a_tree, r_node) do {                   \
+    rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node);     \
+    if ((r_node) == &(a_tree)->rbt_nil) {                              \
+       (r_node) = NULL;                                                \
+    }                                                                  \
+} while (0)
+
+#define        rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {    \
+    rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node));      \
+    if ((r_node) == &(a_tree)->rbt_nil) {                              \
+       (r_node) = NULL;                                                \
+    }                                                                  \
+} while (0)
+
+#define        rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {    \
+    rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node));      \
+    if ((r_node) == &(a_tree)->rbt_nil) {                              \
+       (r_node) = NULL;                                                \
+    }                                                                  \
+} while (0)
+
+#define        rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {   \
+    int rbp_se_cmp;                                                    \
+    (r_node) = (a_tree)->rbt_root;                                     \
+    while ((r_node) != &(a_tree)->rbt_nil                              \
+      && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) {             \
+       if (rbp_se_cmp < 0) {                                           \
+           (r_node) = rbp_left_get(a_type, a_field, (r_node));         \
+       } else {                                                        \
+           (r_node) = rbp_right_get(a_type, a_field, (r_node));        \
+       }                                                               \
+    }                                                                  \
+    if ((r_node) == &(a_tree)->rbt_nil) {                              \
+       (r_node) = NULL;                                                \
+    }                                                                  \
+} while (0)
+
+/*
+ * Find a match if it exists.  Otherwise, find the next greater node, if one
+ * exists.
+ */
+#define        rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {  \
+    a_type *rbp_ns_t = (a_tree)->rbt_root;                             \
+    (r_node) = NULL;                                                   \
+    while (rbp_ns_t != &(a_tree)->rbt_nil) {                           \
+       int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t);                    \
+       if (rbp_ns_cmp < 0) {                                           \
+           (r_node) = rbp_ns_t;                                        \
+           rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t);         \
+       } else if (rbp_ns_cmp > 0) {                                    \
+           rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t);        \
+       } else {                                                        \
+           (r_node) = rbp_ns_t;                                        \
+           break;                                                      \
+       }                                                               \
+    }                                                                  \
+} while (0)
+
+/*
+ * Find a match if it exists.  Otherwise, find the previous lesser node, if one
+ * exists.
+ */
+#define        rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {  \
+    a_type *rbp_ps_t = (a_tree)->rbt_root;                             \
+    (r_node) = NULL;                                                   \
+    while (rbp_ps_t != &(a_tree)->rbt_nil) {                           \
+       int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t);                    \
+       if (rbp_ps_cmp < 0) {                                           \
+           rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t);         \
+       } else if (rbp_ps_cmp > 0) {                                    \
+           (r_node) = rbp_ps_t;                                        \
+           rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t);        \
+       } else {                                                        \
+           (r_node) = rbp_ps_t;                                        \
+           break;                                                      \
+       }                                                               \
+    }                                                                  \
+} while (0)
+
+#define        rbp_rotate_left(a_type, a_field, a_node, r_node) do {           \
+    (r_node) = rbp_right_get(a_type, a_field, (a_node));               \
+    rbp_right_set(a_type, a_field, (a_node),                           \
+      rbp_left_get(a_type, a_field, (r_node)));                                \
+    rbp_left_set(a_type, a_field, (r_node), (a_node));                 \
+} while (0)
+
+#define        rbp_rotate_right(a_type, a_field, a_node, r_node) do {          \
+    (r_node) = rbp_left_get(a_type, a_field, (a_node));                        \
+    rbp_left_set(a_type, a_field, (a_node),                            \
+      rbp_right_get(a_type, a_field, (r_node)));                       \
+    rbp_right_set(a_type, a_field, (r_node), (a_node));                        \
+} while (0)
+
+#define        rbp_lean_left(a_type, a_field, a_node, r_node) do {             \
+    bool rbp_ll_red;                                                   \
+    rbp_rotate_left(a_type, a_field, (a_node), (r_node));              \
+    rbp_ll_red = rbp_red_get(a_type, a_field, (a_node));               \
+    rbp_color_set(a_type, a_field, (r_node), rbp_ll_red);              \
+    rbp_red_set(a_type, a_field, (a_node));                            \
+} while (0)
+
+#define        rbp_lean_right(a_type, a_field, a_node, r_node) do {            \
+    bool rbp_lr_red;                                                   \
+    rbp_rotate_right(a_type, a_field, (a_node), (r_node));             \
+    rbp_lr_red = rbp_red_get(a_type, a_field, (a_node));               \
+    rbp_color_set(a_type, a_field, (r_node), rbp_lr_red);              \
+    rbp_red_set(a_type, a_field, (a_node));                            \
+} while (0)
+
+#define        rbp_move_red_left(a_type, a_field, a_node, r_node) do {         \
+    a_type *rbp_mrl_t, *rbp_mrl_u;                                     \
+    rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node));               \
+    rbp_red_set(a_type, a_field, rbp_mrl_t);                           \
+    rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node));              \
+    rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t);              \
+    if (rbp_red_get(a_type, a_field, rbp_mrl_u)) {                     \
+       rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u);        \
+       rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u);            \
+       rbp_rotate_left(a_type, a_field, (a_node), (r_node));           \
+       rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node));           \
+       if (rbp_red_get(a_type, a_field, rbp_mrl_t)) {                  \
+           rbp_black_set(a_type, a_field, rbp_mrl_t);                  \
+           rbp_red_set(a_type, a_field, (a_node));                     \
+           rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t);      \
+           rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t);         \
+       } else {                                                        \
+           rbp_black_set(a_type, a_field, (a_node));                   \
+       }                                                               \
+    } else {                                                           \
+       rbp_red_set(a_type, a_field, (a_node));                         \
+       rbp_rotate_left(a_type, a_field, (a_node), (r_node));           \
+    }                                                                  \
+} while (0)
+
+#define        rbp_move_red_right(a_type, a_field, a_node, r_node) do {        \
+    a_type *rbp_mrr_t;                                                 \
+    rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node));               \
+    if (rbp_red_get(a_type, a_field, rbp_mrr_t)) {                     \
+       a_type *rbp_mrr_u, *rbp_mrr_v;                                  \
+       rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t);          \
+       rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u);           \
+       if (rbp_red_get(a_type, a_field, rbp_mrr_v)) {                  \
+           rbp_color_set(a_type, a_field, rbp_mrr_u,                   \
+             rbp_red_get(a_type, a_field, (a_node)));                  \
+           rbp_black_set(a_type, a_field, rbp_mrr_v);                  \
+           rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u);     \
+           rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u);         \
+           rbp_rotate_right(a_type, a_field, (a_node), (r_node));      \
+           rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);      \
+           rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);        \
+       } else {                                                        \
+           rbp_color_set(a_type, a_field, rbp_mrr_t,                   \
+             rbp_red_get(a_type, a_field, (a_node)));                  \
+           rbp_red_set(a_type, a_field, rbp_mrr_u);                    \
+           rbp_rotate_right(a_type, a_field, (a_node), (r_node));      \
+           rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);      \
+           rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);        \
+       }                                                               \
+       rbp_red_set(a_type, a_field, (a_node));                         \
+    } else {                                                           \
+       rbp_red_set(a_type, a_field, rbp_mrr_t);                        \
+       rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t);           \
+       if (rbp_red_get(a_type, a_field, rbp_mrr_t)) {                  \
+           rbp_black_set(a_type, a_field, rbp_mrr_t);                  \
+           rbp_rotate_right(a_type, a_field, (a_node), (r_node));      \
+           rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);      \
+           rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);        \
+       } else {                                                        \
+           rbp_rotate_left(a_type, a_field, (a_node), (r_node));       \
+       }                                                               \
+    }                                                                  \
+} while (0)
+
+#define        rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do {          \
+    a_type rbp_i_s;                                                    \
+    a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;           \
+    int rbp_i_cmp = 0;                                                 \
+    rbp_i_g = &(a_tree)->rbt_nil;                                      \
+    rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root);       \
+    rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil);      \
+    rbp_black_set(a_type, a_field, &rbp_i_s);                          \
+    rbp_i_p = &rbp_i_s;                                                        \
+    rbp_i_c = (a_tree)->rbt_root;                                      \
+    /* Iteratively search down the tree for the insertion point,      */\
+    /* splitting 4-nodes as they are encountered.  At the end of each */\
+    /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down    */\
+    /* the tree, assuming a sufficiently deep tree.                   */\
+    while (rbp_i_c != &(a_tree)->rbt_nil) {                            \
+       rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c);               \
+       rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t);               \
+       if (rbp_red_get(a_type, a_field, rbp_i_t)                       \
+         && rbp_red_get(a_type, a_field, rbp_i_u)) {                   \
+           /* rbp_i_c is the top of a logical 4-node, so split it.   */\
+           /* This iteration does not move down the tree, due to the */\
+           /* disruptiveness of node splitting.                      */\
+           /*                                                        */\
+           /* Rotate right.                                          */\
+           rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t);        \
+           /* Pass red links up one level.                           */\
+           rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t);           \
+           rbp_black_set(a_type, a_field, rbp_i_u);                    \
+           if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) {    \
+               rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t);        \
+               rbp_i_c = rbp_i_t;                                      \
+           } else {                                                    \
+               /* rbp_i_c was the right child of rbp_i_p, so rotate  */\
+               /* left in order to maintain the left-leaning         */\
+               /* invariant.                                         */\
+               assert(rbp_right_get(a_type, a_field, rbp_i_p)          \
+                 == rbp_i_c);                                          \
+               rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t);       \
+               rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u);       \
+               if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+                   rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u);    \
+               } else {                                                \
+                   assert(rbp_right_get(a_type, a_field, rbp_i_g)      \
+                     == rbp_i_p);                                      \
+                   rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u);   \
+               }                                                       \
+               rbp_i_p = rbp_i_u;                                      \
+               rbp_i_cmp = (a_cmp)((a_node), rbp_i_p);                 \
+               if (rbp_i_cmp < 0) {                                    \
+                   rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p);   \
+               } else {                                                \
+                   assert(rbp_i_cmp > 0);                              \
+                   rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p);  \
+               }                                                       \
+               continue;                                               \
+           }                                                           \
+       }                                                               \
+       rbp_i_g = rbp_i_p;                                              \
+       rbp_i_p = rbp_i_c;                                              \
+       rbp_i_cmp = (a_cmp)((a_node), rbp_i_c);                         \
+       if (rbp_i_cmp < 0) {                                            \
+           rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c);           \
+       } else {                                                        \
+           assert(rbp_i_cmp > 0);                                      \
+           rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c);          \
+       }                                                               \
+    }                                                                  \
+    /* rbp_i_p now refers to the node under which to insert.          */\
+    rbp_node_new(a_type, a_field, a_tree, (a_node));                   \
+    if (rbp_i_cmp > 0) {                                               \
+       rbp_right_set(a_type, a_field, rbp_i_p, (a_node));              \
+       rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t);               \
+       if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {        \
+           rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t);            \
+       } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+           rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t);           \
+       }                                                               \
+    } else {                                                           \
+       rbp_left_set(a_type, a_field, rbp_i_p, (a_node));               \
+    }                                                                  \
+    /* Update the root and make sure that it is black.                */\
+    (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s);      \
+    rbp_black_set(a_type, a_field, (a_tree)->rbt_root);                        \
+} while (0)
+
+#define        rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do {          \
+    a_type rbp_r_s;                                                    \
+    a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;          \
+    int rbp_r_cmp;                                                     \
+    rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root);       \
+    rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil);      \
+    rbp_black_set(a_type, a_field, &rbp_r_s);                          \
+    rbp_r_p = &rbp_r_s;                                                        \
+    rbp_r_c = (a_tree)->rbt_root;                                      \
+    rbp_r_xp = &(a_tree)->rbt_nil;                                     \
+    /* Iterate down the tree, but always transform 2-nodes to 3- or   */\
+    /* 4-nodes in order to maintain the invariant that the current    */\
+    /* node is not a 2-node.  This allows simple deletion once a leaf */\
+    /* is reached.  Handle the root specially though, since there may */\
+    /* be no way to convert it from a 2-node to a 3-node.             */\
+    rbp_r_cmp = (a_cmp)((a_node), rbp_r_c);                            \
+    if (rbp_r_cmp < 0) {                                               \
+       rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);               \
+       rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);               \
+       if (rbp_red_get(a_type, a_field, rbp_r_t) == false              \
+         && rbp_red_get(a_type, a_field, rbp_r_u) == false) {          \
+           /* Apply standard transform to prepare for left move.     */\
+           rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t);       \
+           rbp_black_set(a_type, a_field, rbp_r_t);                    \
+           rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);            \
+           rbp_r_c = rbp_r_t;                                          \
+       } else {                                                        \
+           /* Move left.                                             */\
+           rbp_r_p = rbp_r_c;                                          \
+           rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c);           \
+       }                                                               \
+    } else {                                                           \
+       if (rbp_r_cmp == 0) {                                           \
+           assert((a_node) == rbp_r_c);                                \
+           if (rbp_right_get(a_type, a_field, rbp_r_c)                 \
+             == &(a_tree)->rbt_nil) {                                  \
+               /* Delete root node (which is also a leaf node).      */\
+               if (rbp_left_get(a_type, a_field, rbp_r_c)              \
+                 != &(a_tree)->rbt_nil) {                              \
+                   rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t);  \
+                   rbp_right_set(a_type, a_field, rbp_r_t,             \
+                     &(a_tree)->rbt_nil);                              \
+               } else {                                                \
+                   rbp_r_t = &(a_tree)->rbt_nil;                       \
+               }                                                       \
+               rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);        \
+           } else {                                                    \
+               /* This is the node we want to delete, but we will    */\
+               /* instead swap it with its successor and delete the  */\
+               /* successor.  Record enough information to do the    */\
+               /* swap later.  rbp_r_xp is the a_node's parent.      */\
+               rbp_r_xp = rbp_r_p;                                     \
+               rbp_r_cmp = 1; /* Note that deletion is incomplete.   */\
+           }                                                           \
+       }                                                               \
+       if (rbp_r_cmp == 1) {                                           \
+           if (rbp_red_get(a_type, a_field, rbp_left_get(a_type,       \
+             a_field, rbp_right_get(a_type, a_field, rbp_r_c)))        \
+             == false) {                                               \
+               rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);       \
+               if (rbp_red_get(a_type, a_field, rbp_r_t)) {            \
+                   /* Standard transform.                            */\
+                   rbp_move_red_right(a_type, a_field, rbp_r_c,        \
+                     rbp_r_t);                                         \
+               } else {                                                \
+                   /* Root-specific transform.                       */\
+                   rbp_red_set(a_type, a_field, rbp_r_c);              \
+                   rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);   \
+                   if (rbp_red_get(a_type, a_field, rbp_r_u)) {        \
+                       rbp_black_set(a_type, a_field, rbp_r_u);        \
+                       rbp_rotate_right(a_type, a_field, rbp_r_c,      \
+                         rbp_r_t);                                     \
+                       rbp_rotate_left(a_type, a_field, rbp_r_c,       \
+                         rbp_r_u);                                     \
+                       rbp_right_set(a_type, a_field, rbp_r_t,         \
+                         rbp_r_u);                                     \
+                   } else {                                            \
+                       rbp_red_set(a_type, a_field, rbp_r_t);          \
+                       rbp_rotate_left(a_type, a_field, rbp_r_c,       \
+                         rbp_r_t);                                     \
+                   }                                                   \
+               }                                                       \
+               rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);        \
+               rbp_r_c = rbp_r_t;                                      \
+           } else {                                                    \
+               /* Move right.                                        */\
+               rbp_r_p = rbp_r_c;                                      \
+               rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c);      \
+           }                                                           \
+       }                                                               \
+    }                                                                  \
+    if (rbp_r_cmp != 0) {                                              \
+       while (true) {                                                  \
+           assert(rbp_r_p != &(a_tree)->rbt_nil);                      \
+           rbp_r_cmp = (a_cmp)((a_node), rbp_r_c);                     \
+           if (rbp_r_cmp < 0) {                                        \
+               rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);       \
+               if (rbp_r_t == &(a_tree)->rbt_nil) {                    \
+                   /* rbp_r_c now refers to the successor node to    */\
+                   /* relocate, and rbp_r_xp/a_node refer to the     */\
+                   /* context for the relocation.                    */\
+                   if (rbp_left_get(a_type, a_field, rbp_r_xp)         \
+                     == (a_node)) {                                    \
+                       rbp_left_set(a_type, a_field, rbp_r_xp,         \
+                         rbp_r_c);                                     \
+                   } else {                                            \
+                       assert(rbp_right_get(a_type, a_field,           \
+                         rbp_r_xp) == (a_node));                       \
+                       rbp_right_set(a_type, a_field, rbp_r_xp,        \
+                         rbp_r_c);                                     \
+                   }                                                   \
+                   rbp_left_set(a_type, a_field, rbp_r_c,              \
+                     rbp_left_get(a_type, a_field, (a_node)));         \
+                   rbp_right_set(a_type, a_field, rbp_r_c,             \
+                     rbp_right_get(a_type, a_field, (a_node)));        \
+                   rbp_color_set(a_type, a_field, rbp_r_c,             \
+                     rbp_red_get(a_type, a_field, (a_node)));          \
+                   if (rbp_left_get(a_type, a_field, rbp_r_p)          \
+                     == rbp_r_c) {                                     \
+                       rbp_left_set(a_type, a_field, rbp_r_p,          \
+                         &(a_tree)->rbt_nil);                          \
+                   } else {                                            \
+                       assert(rbp_right_get(a_type, a_field, rbp_r_p)  \
+                         == rbp_r_c);                                  \
+                       rbp_right_set(a_type, a_field, rbp_r_p,         \
+                         &(a_tree)->rbt_nil);                          \
+                   }                                                   \
+                   break;                                              \
+               }                                                       \
+               rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);       \
+               if (rbp_red_get(a_type, a_field, rbp_r_t) == false      \
+                 && rbp_red_get(a_type, a_field, rbp_r_u) == false) {  \
+                   rbp_move_red_left(a_type, a_field, rbp_r_c,         \
+                     rbp_r_t);                                         \
+                   if (rbp_left_get(a_type, a_field, rbp_r_p)          \
+                     == rbp_r_c) {                                     \
+                       rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+                   } else {                                            \
+                       rbp_right_set(a_type, a_field, rbp_r_p,         \
+                         rbp_r_t);                                     \
+                   }                                                   \
+                   rbp_r_c = rbp_r_t;                                  \
+               } else {                                                \
+                   rbp_r_p = rbp_r_c;                                  \
+                   rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c);   \
+               }                                                       \
+           } else {                                                    \
+               /* Check whether to delete this node (it has to be    */\
+               /* the correct node and a leaf node).                 */\
+               if (rbp_r_cmp == 0) {                                   \
+                   assert((a_node) == rbp_r_c);                        \
+                   if (rbp_right_get(a_type, a_field, rbp_r_c)         \
+                     == &(a_tree)->rbt_nil) {                          \
+                       /* Delete leaf node.                          */\
+                       if (rbp_left_get(a_type, a_field, rbp_r_c)      \
+                         != &(a_tree)->rbt_nil) {                      \
+                           rbp_lean_right(a_type, a_field, rbp_r_c,    \
+                             rbp_r_t);                                 \
+                           rbp_right_set(a_type, a_field, rbp_r_t,     \
+                             &(a_tree)->rbt_nil);                      \
+                       } else {                                        \
+                           rbp_r_t = &(a_tree)->rbt_nil;               \
+                       }                                               \
+                       if (rbp_left_get(a_type, a_field, rbp_r_p)      \
+                         == rbp_r_c) {                                 \
+                           rbp_left_set(a_type, a_field, rbp_r_p,      \
+                             rbp_r_t);                                 \
+                       } else {                                        \
+                           rbp_right_set(a_type, a_field, rbp_r_p,     \
+                             rbp_r_t);                                 \
+                       }                                               \
+                       break;                                          \
+                   } else {                                            \
+                       /* This is the node we want to delete, but we */\
+                       /* will instead swap it with its successor    */\
+                       /* and delete the successor.  Record enough   */\
+                       /* information to do the swap later.          */\
+                       /* rbp_r_xp is a_node's parent.               */\
+                       rbp_r_xp = rbp_r_p;                             \
+                   }                                                   \
+               }                                                       \
+               rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c);      \
+               rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);       \
+               if (rbp_red_get(a_type, a_field, rbp_r_u) == false) {   \
+                   rbp_move_red_right(a_type, a_field, rbp_r_c,        \
+                     rbp_r_t);                                         \
+                   if (rbp_left_get(a_type, a_field, rbp_r_p)          \
+                     == rbp_r_c) {                                     \
+                       rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+                   } else {                                            \
+                       rbp_right_set(a_type, a_field, rbp_r_p,         \
+                         rbp_r_t);                                     \
+                   }                                                   \
+                   rbp_r_c = rbp_r_t;                                  \
+               } else {                                                \
+                   rbp_r_p = rbp_r_c;                                  \
+                   rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c);  \
+               }                                                       \
+           }                                                           \
+       }                                                               \
+    }                                                                  \
+    /* Update root.                                                   */\
+    (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s);      \
+} while (0)
+
+/*
+ * The rb_wrap() macro provides a convenient way to wrap functions around the
+ * cpp macros.  The main benefits of wrapping are that 1) repeated macro
+ * expansion can cause code bloat, especially for rb_{insert,remove)(), and
+ * 2) type, linkage, comparison functions, etc. need not be specified at every
+ * call point.
+ */
+
+#define        rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp)  \
+a_attr void                                                            \
+a_prefix##new(a_tree_type *tree) {                                     \
+    rb_new(a_type, a_field, tree);                                     \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##first(a_tree_type *tree) {                                   \
+    a_type *ret;                                                       \
+    rb_first(a_type, a_field, tree, ret);                              \
+    return (ret);                                                      \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##last(a_tree_type *tree) {                                    \
+    a_type *ret;                                                       \
+    rb_last(a_type, a_field, tree, ret);                               \
+    return (ret);                                                      \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##next(a_tree_type *tree, a_type *node) {                      \
+    a_type *ret;                                                       \
+    rb_next(a_type, a_field, a_cmp, tree, node, ret);                  \
+    return (ret);                                                      \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##prev(a_tree_type *tree, a_type *node) {                      \
+    a_type *ret;                                                       \
+    rb_prev(a_type, a_field, a_cmp, tree, node, ret);                  \
+    return (ret);                                                      \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##search(a_tree_type *tree, a_type *key) {                     \
+    a_type *ret;                                                       \
+    rb_search(a_type, a_field, a_cmp, tree, key, ret);                 \
+    return (ret);                                                      \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##nsearch(a_tree_type *tree, a_type *key) {                    \
+    a_type *ret;                                                       \
+    rb_nsearch(a_type, a_field, a_cmp, tree, key, ret);                        \
+    return (ret);                                                      \
+}                                                                      \
+a_attr a_type *                                                                \
+a_prefix##psearch(a_tree_type *tree, a_type *key) {                    \
+    a_type *ret;                                                       \
+    rb_psearch(a_type, a_field, a_cmp, tree, key, ret);                        \
+    return (ret);                                                      \
+}                                                                      \
+a_attr void                                                            \
+a_prefix##insert(a_tree_type *tree, a_type *node) {                    \
+    rb_insert(a_type, a_field, a_cmp, tree, node);                     \
+}                                                                      \
+a_attr void                                                            \
+a_prefix##remove(a_tree_type *tree, a_type *node) {                    \
+    rb_remove(a_type, a_field, a_cmp, tree, node);                     \
+}
+
+/*
+ * The iterators simulate recursion via an array of pointers that store the
+ * current path.  This is critical to performance, since a series of calls to
+ * rb_{next,prev}() would require time proportional to (n lg n), whereas this
+ * implementation only requires time proportional to (n).
+ *
+ * Since the iterators cache a path down the tree, any tree modification may
+ * cause the cached path to become invalid.  In order to continue iteration,
+ * use something like the following sequence:
+ *
+ *   {
+ *       a_type *node, *tnode;
+ *
+ *       rb_foreach_begin(a_type, a_field, a_tree, node) {
+ *           ...
+ *           rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
+ *           rb_remove(a_type, a_field, a_cmp, a_tree, node);
+ *           rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
+ *           ...
+ *       } rb_foreach_end(a_type, a_field, a_tree, node)
+ *   }
+ *
+ * Note that this idiom is not advised if every iteration modifies the tree,
+ * since in that case there is no algorithmic complexity improvement over a
+ * series of rb_{next,prev}() calls, thus making the setup overhead wasted
+ * effort.
+ */
+
+#define        rb_foreach_begin(a_type, a_field, a_tree, a_var) {              \
+    /* Compute the maximum possible tree depth (3X the black height). */\
+    unsigned rbp_f_height;                                             \
+    rbp_black_height(a_type, a_field, a_tree, rbp_f_height);           \
+    rbp_f_height *= 3;                                                 \
+    {                                                                  \
+       /* Initialize the path to contain the left spine.             */\
+       a_type *rbp_f_path[rbp_f_height];                               \
+       a_type *rbp_f_node;                                             \
+       bool rbp_f_synced = false;                                      \
+       unsigned rbp_f_depth = 0;                                       \
+       if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {                 \
+           rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root;               \
+           rbp_f_depth++;                                              \
+           while ((rbp_f_node = rbp_left_get(a_type, a_field,          \
+             rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {      \
+               rbp_f_path[rbp_f_depth] = rbp_f_node;                   \
+               rbp_f_depth++;                                          \
+           }                                                           \
+       }                                                               \
+       /* While the path is non-empty, iterate.                      */\
+       while (rbp_f_depth > 0) {                                       \
+           (a_var) = rbp_f_path[rbp_f_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define        rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node)         \
+           /* Re-initialize the path to contain the path to a_node.  */\
+           rbp_f_depth = 0;                                            \
+           if (a_node != NULL) {                                       \
+               if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {         \
+                   rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root;       \
+                   rbp_f_depth++;                                      \
+                   rbp_f_node = rbp_f_path[0];                         \
+                   while (true) {                                      \
+                       int rbp_f_cmp = (a_cmp)((a_node),               \
+                         rbp_f_path[rbp_f_depth-1]);                   \
+                       if (rbp_f_cmp < 0) {                            \
+                           rbp_f_node = rbp_left_get(a_type, a_field,  \
+                             rbp_f_path[rbp_f_depth-1]);               \
+                       } else if (rbp_f_cmp > 0) {                     \
+                           rbp_f_node = rbp_right_get(a_type, a_field, \
+                             rbp_f_path[rbp_f_depth-1]);               \
+                       } else {                                        \
+                           break;                                      \
+                       }                                               \
+                       assert(rbp_f_node != &(a_tree)->rbt_nil);       \
+                       rbp_f_path[rbp_f_depth] = rbp_f_node;           \
+                       rbp_f_depth++;                                  \
+                   }                                                   \
+               }                                                       \
+           }                                                           \
+           rbp_f_synced = true;
+
+#define        rb_foreach_end(a_type, a_field, a_tree, a_var)                  \
+           if (rbp_f_synced) {                                         \
+               rbp_f_synced = false;                                   \
+               continue;                                               \
+           }                                                           \
+           /* Find the successor.                                    */\
+           if ((rbp_f_node = rbp_right_get(a_type, a_field,            \
+             rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {      \
+               /* The successor is the left-most node in the right   */\
+               /* subtree.                                           */\
+               rbp_f_path[rbp_f_depth] = rbp_f_node;                   \
+               rbp_f_depth++;                                          \
+               while ((rbp_f_node = rbp_left_get(a_type, a_field,      \
+                 rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {  \
+                   rbp_f_path[rbp_f_depth] = rbp_f_node;               \
+                   rbp_f_depth++;                                      \
+               }                                                       \
+           } else {                                                    \
+               /* The successor is above the current node.  Unwind   */\
+               /* until a left-leaning edge is removed from the      */\
+               /* path, or the path is empty.                        */\
+               for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) {   \
+                   if (rbp_left_get(a_type, a_field,                   \
+                     rbp_f_path[rbp_f_depth-1])                        \
+                     == rbp_f_path[rbp_f_depth]) {                     \
+                       break;                                          \
+                   }                                                   \
+               }                                                       \
+           }                                                           \
+       }                                                               \
+    }                                                                  \
+}
+
+#define        rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) {      \
+    /* Compute the maximum possible tree depth (3X the black height). */\
+    unsigned rbp_fr_height;                                            \
+    rbp_black_height(a_type, a_field, a_tree, rbp_fr_height);          \
+    rbp_fr_height *= 3;                                                        \
+    {                                                                  \
+       /* Initialize the path to contain the right spine.            */\
+       a_type *rbp_fr_path[rbp_fr_height];                             \
+       a_type *rbp_fr_node;                                            \
+       bool rbp_fr_synced = false;                                     \
+       unsigned rbp_fr_depth = 0;                                      \
+       if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {                 \
+           rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root;             \
+           rbp_fr_depth++;                                             \
+           while ((rbp_fr_node = rbp_right_get(a_type, a_field,        \
+             rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {    \
+               rbp_fr_path[rbp_fr_depth] = rbp_fr_node;                \
+               rbp_fr_depth++;                                         \
+           }                                                           \
+       }                                                               \
+       /* While the path is non-empty, iterate.                      */\
+       while (rbp_fr_depth > 0) {                                      \
+           (a_var) = rbp_fr_path[rbp_fr_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define        rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
+           /* Re-initialize the path to contain the path to a_node.  */\
+           rbp_fr_depth = 0;                                           \
+           if (a_node != NULL) {                                       \
+               if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {         \
+                   rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root;     \
+                   rbp_fr_depth++;                                     \
+                   rbp_fr_node = rbp_fr_path[0];                       \
+                   while (true) {                                      \
+                       int rbp_fr_cmp = (a_cmp)((a_node),              \
+                         rbp_fr_path[rbp_fr_depth-1]);                 \
+                       if (rbp_fr_cmp < 0) {                           \
+                           rbp_fr_node = rbp_left_get(a_type, a_field, \
+                             rbp_fr_path[rbp_fr_depth-1]);             \
+                       } else if (rbp_fr_cmp > 0) {                    \
+                           rbp_fr_node = rbp_right_get(a_type, a_field,\
+                             rbp_fr_path[rbp_fr_depth-1]);             \
+                       } else {                                        \
+                           break;                                      \
+                       }                                               \
+                       assert(rbp_fr_node != &(a_tree)->rbt_nil);      \
+                       rbp_fr_path[rbp_fr_depth] = rbp_fr_node;        \
+                       rbp_fr_depth++;                                 \
+                   }                                                   \
+               }                                                       \
+           }                                                           \
+           rbp_fr_synced = true;
+
+#define        rb_foreach_reverse_end(a_type, a_field, a_tree, a_var)          \
+           if (rbp_fr_synced) {                                        \
+               rbp_fr_synced = false;                                  \
+               continue;                                               \
+           }                                                           \
+           if (rbp_fr_depth == 0) {                                    \
+               /* rb_foreach_reverse_sync() was called with a NULL   */\
+               /* a_node.                                            */\
+               break;                                                  \
+           }                                                           \
+           /* Find the predecessor.                                  */\
+           if ((rbp_fr_node = rbp_left_get(a_type, a_field,            \
+             rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {    \
+               /* The predecessor is the right-most node in the left */\
+               /* subtree.                                           */\
+               rbp_fr_path[rbp_fr_depth] = rbp_fr_node;                \
+               rbp_fr_depth++;                                         \
+               while ((rbp_fr_node = rbp_right_get(a_type, a_field,    \
+                 rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
+                   rbp_fr_path[rbp_fr_depth] = rbp_fr_node;            \
+                   rbp_fr_depth++;                                     \
+               }                                                       \
+           } else {                                                    \
+               /* The predecessor is above the current node.  Unwind */\
+               /* until a right-leaning edge is removed from the     */\
+               /* path, or the path is empty.                        */\
+               for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
+                   if (rbp_right_get(a_type, a_field,                  \
+                     rbp_fr_path[rbp_fr_depth-1])                      \
+                     == rbp_fr_path[rbp_fr_depth]) {                   \
+                       break;                                          \
+                   }                                                   \
+               }                                                       \
+           }                                                           \
+       }                                                               \
+    }                                                                  \
+}
+
+#endif /* RB_H_ */