--- /dev/null
+CFLAGS := -O3 -g
+# See source code comments to avoid memory leaks when enabling MALLOC_MAG.
+#CPPFLAGS := -DMALLOC_PRODUCTION -DMALLOC_MAG
+CPPFLAGS := -DMALLOC_PRODUCTION
+
+all: libjemalloc.so.0 libjemalloc_mt.so.0
+
+jemalloc_linux_mt.o: jemalloc_linux.c
+ gcc $(CFLAGS) -c -DPIC -fPIC $(CPPFLAGS) -D__isthreaded=true -o $@ $+
+
+jemalloc_linux.o: jemalloc_linux.c
+ gcc $(CFLAGS) -c -DPIC -fPIC $(CPPFLAGS) -D__isthreaded=false -o $@ $+
+
+libjemalloc_mt.so.0: jemalloc_linux_mt.o
+ gcc -shared -lpthread -o $@ $+
+ ln -sf $@ libjemalloc_mt.so
+
+libjemalloc.so.0: jemalloc_linux.o
+ gcc -shared -lpthread -o $@ $+
+ ln -sf $@ libjemalloc.so
+
+clean:
+ rm -f *.o *.so.0 *.so
--- /dev/null
+This is a minimal-effort stand-alone jemalloc distribution for Linux. The main
+rough spots are:
+
+* __isthreaded must be hard-coded, since the pthreads library really needs to
+ be involved in order to toggle it at run time. Therefore, this distribution
+ builds two separate libraries:
+
+ + libjemalloc_mt.so.0 : Use for multi-threaded applications.
+ + libjemalloc.so.0 : Use for single-threaded applications.
+
+ Both libraries link against libpthread, though with a bit more code hacking,
+ this dependency could be removed for the single-threaded version.
+
+* MALLOC_MAG (thread-specific caching, using magazines) is disabled, because
+ special effort is required to avoid memory leaks when it is enabled. To make
+ cleanup automatic, we would need help from the pthreads library. If you
+ enable MALLOC_MAG, be sure to call _malloc_thread_cleanup() in each thread
+ just before it exits.
+
+* The code that determines the number of CPUs is sketchy. The trouble is that
+ we must avoid any memory allocation during early initialization.
+
+In order to build:
+
+ make
+
+This generates two shared libraries, which you can either link against, or
+pre-load.
+
+Linking and running, where /path/to is the path to libjemalloc (-lpthread
+required even for libjemalloc.so):
+
+ gcc app.o -o app -L/path/to -ljemalloc_mt -lpthread
+ LD_LIBRARY_PATH=/path/to app
+
+Pre-loading:
+
+ LD_PRELOAD=/path/to/libjemalloc_mt.so.0 app
+
+jemalloc has a lot of run-time tuning options. See the man page for details:
+
+ nroff -man malloc.3 | less
+
+In particular, take a look at the B, F, and N options. If you enable
+MALLOC_MAG, look at the G and R options.
+
+If your application is crashing, or performance seems to be lacking, enable
+assertions and statistics gathering by removing MALLOC_PRODUCTION from CPPFLAGS
+in the Makefile. In order to print a statistics summary at program exit, run
+your application like:
+
+ LD_PRELOAD=/path/to/libjemalloc_mt.so.0 MALLOC_OPTIONS=P app
+
+Please contact Jason Evans <jasone@canonware.com> with questions, comments, bug
+reports, etc.
--- /dev/null
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Thread-specific caching is used if there are multiple threads, which
+ * reduces the amount of locking.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ * |=======================================|
+ * | Category | Subcategory | Size |
+ * |=======================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |------------------+---------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 96 |
+ * | | | 112 |
+ * | | | 128 |
+ * | |------------------+---------|
+ * | | Cacheline-spaced | 192 |
+ * | | | 256 |
+ * | | | 320 |
+ * | | | 384 |
+ * | | | 448 |
+ * | | | 512 |
+ * | |------------------+---------|
+ * | | Sub-page | 760 |
+ * | | | 1024 |
+ * | | | 1280 |
+ * | | | ... |
+ * | | | 3328 |
+ * | | | 3584 |
+ * | | | 3840 |
+ * |=======================================|
+ * | Large | 4 kB |
+ * | | 8 kB |
+ * | | 12 kB |
+ * | | ... |
+ * | | 1012 kB |
+ * | | 1016 kB |
+ * | | 1020 kB |
+ * |=======================================|
+ * | Huge | 1 MB |
+ * | | 2 MB |
+ * | | 3 MB |
+ * | | ... |
+ * |=======================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ * Small : Each size class is segregated into its own set of runs. Each run
+ * maintains a bitmap of which regions are free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * Set to false if single-threaded. Even better, rip out all of the code that
+ * doesn't get used if __isthreaded is false, so that libpthread isn't
+ * necessary.
+ */
+#ifndef __isthreaded
+# define __isthreaded true
+#endif
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+/* #define MALLOC_PRODUCTION */
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* MALLOC_STATS enables statistics calculation. */
+# define MALLOC_STATS
+#endif
+
+/*
+ * MALLOC_TINY enables support for tiny objects, which are smaller than one
+ * quantum.
+ */
+#define MALLOC_TINY
+
+/*
+ * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
+ * objects. This makes it possible to allocate/deallocate objects without any
+ * locking when the cache is in the steady state.
+ *
+ * If MALLOC_MAG is enabled, make sure that _malloc_thread_cleanup() is called
+ * by each thread just before it exits.
+ */
+/* #define MALLOC_MAG */
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+#define MALLOC_BALANCE
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS). In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+/* #define MALLOC_DSS */
+
+#define _GNU_SOURCE /* For mremap(2). */
+#define issetugid() 0
+#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+
+/* __FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $"); */
+
+#include <sys/mman.h>
+#include <sys/param.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#include <sys/uio.h>
+
+#include <errno.h>
+#include <limits.h>
+#ifndef SIZE_T_MAX
+# define SIZE_T_MAX SIZE_MAX
+#endif
+#include <pthread.h>
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <strings.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <pthread.h>
+
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/*
+ * The const_size2bin table is sized according to PAGESIZE_2POW, but for
+ * correctness reasons, we never assume that
+ * (pagesize == (1U << * PAGESIZE_2POW)).
+ *
+ * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
+ */
+#ifdef __i386__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+#endif
+#ifdef __alpha__
+# define PAGESIZE_2POW 13
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define PAGESIZE_2POW 13
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __amd64__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __mips__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __powerpc__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 2
+#endif
+
+#define QUANTUM ((size_t)(1U << QUANTUM_2POW))
+#define QUANTUM_MASK (QUANTUM - 1)
+
+#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_MAG requires TLS. */
+# ifdef MALLOC_MAG
+# undef MALLOC_MAG
+# endif
+ /* MALLOC_BALANCE requires TLS. */
+# ifdef MALLOC_BALANCE
+# undef MALLOC_BALANCE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define CHUNK_2POW_DEFAULT 20
+
+/* Maximum number of dirty pages per arena. */
+#define DIRTY_MAX_DEFAULT (1U << 9)
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing.
+ * In addition, this controls the spacing of cacheline-spaced size classes.
+ */
+#define CACHELINE_2POW 6
+#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
+#define CACHELINE_MASK (CACHELINE - 1)
+
+/*
+ * Subpages are an artificially designated partitioning of pages. Their only
+ * purpose is to support subpage-spaced size classes.
+ *
+ * There must be at least 4 subpages per page, due to the way size classes are
+ * handled.
+ */
+#define SUBPAGE_2POW 8
+#define SUBPAGE ((size_t)(1U << SUBPAGE_2POW))
+#define SUBPAGE_MASK (SUBPAGE - 1)
+
+#ifdef MALLOC_TINY
+ /* Smallest size class to support. */
+# define TINY_MIN_2POW 1
+#endif
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define QSPACE_MAX_2POW_DEFAULT 7
+
+/*
+ * Maximum size class that is a multiple of the cacheline, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define CSPACE_MAX_2POW_DEFAULT 9
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
+#define RUN_MAX_SMALL (12 * pagesize)
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define SPIN_LIMIT_2POW 11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define BLOCK_COST_2POW 4
+
+#ifdef MALLOC_MAG
+ /*
+ * Default magazine size, in bytes. max_rounds is calculated to make
+ * optimal use of the space, leaving just enough room for the magazine
+ * header.
+ */
+# define MAG_SIZE_2POW_DEFAULT 9
+#endif
+
+#ifdef MALLOC_BALANCE
+ /*
+ * We use an exponential moving average to track recent lock contention,
+ * where the size of the history window is N, and alpha=2/(N+1).
+ *
+ * Due to integer math rounding, very small values here can cause
+ * substantial degradation in accuracy, thus making the moving average decay
+ * faster than it would with precise calculation.
+ */
+# define BALANCE_ALPHA_INV_2POW 9
+
+ /*
+ * Threshold value for the exponential moving contention average at which to
+ * re-assign a thread.
+ */
+# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+typedef pthread_mutex_t malloc_mutex_t;
+typedef pthread_mutex_t malloc_spinlock_t;
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+/* Used to avoid initialization races. */
+static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+#ifdef MALLOC_MAG
+ /* Number of magazine reloads from this bin. */
+ uint64_t nmags;
+#endif
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ unsigned long highruns;
+
+ /* Current number of runs in this bin. */
+ unsigned long curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /*
+ * Total number of purge sweeps, total number of madvise calls made,
+ * and total pages purged in order to keep dirty unused memory under
+ * control.
+ */
+ uint64_t npurge;
+ uint64_t nmadvise;
+ uint64_t purged;
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+ /* Number of times this arena reassigned a thread due to contention. */
+ uint64_t nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+ /* Number of chunks that were allocated. */
+ uint64_t nchunks;
+
+ /* High-water mark for number of chunks allocated. */
+ unsigned long highchunks;
+
+ /*
+ * Current number of chunks allocated. This value isn't maintained for
+ * any other purpose, so keep track of it in order to be able to set
+ * highchunks.
+ */
+ unsigned long curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+#ifdef MALLOC_DSS
+ /* Linkage for the size/address-ordered tree. */
+ rb_node(extent_node_t) link_szad;
+#endif
+
+ /* Linkage for the address-ordered tree. */
+ rb_node(extent_node_t) link_ad;
+
+ /* Pointer to the extent that this tree node is responsible for. */
+ void *addr;
+
+ /* Total region size. */
+ size_t size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Linkage for run trees. There are two disjoint uses:
+ *
+ * 1) arena_t's runs_avail tree.
+ * 2) arena_run_t conceptually uses this linkage for in-use non-full
+ * runs, rather than directly embedding linkage.
+ */
+ rb_node(arena_chunk_map_t) link;
+
+ /*
+ * Run address (or size) and various flags are stored together. The bit
+ * layout looks like (assuming 32-bit system):
+ *
+ * ???????? ???????? ????---- ---kdzla
+ *
+ * ? : Unallocated: Run address for first/last pages, unset for internal
+ * pages.
+ * Small: Run address.
+ * Large: Run size for first page, unset for trailing pages.
+ * - : Unused.
+ * k : key?
+ * d : dirty?
+ * z : zeroed?
+ * l : large?
+ * a : allocated?
+ *
+ * Following are example bit patterns for the three types of runs.
+ *
+ * r : run address
+ * s : run size
+ * x : don't care
+ * - : 0
+ * [dzla] : bit set
+ *
+ * Unallocated:
+ * ssssssss ssssssss ssss---- --------
+ * xxxxxxxx xxxxxxxx xxxx---- ----d---
+ * ssssssss ssssssss ssss---- -----z--
+ *
+ * Small:
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ *
+ * Large:
+ * ssssssss ssssssss ssss---- ------la
+ * -------- -------- -------- ------la
+ * -------- -------- -------- ------la
+ */
+ size_t bits;
+#define CHUNK_MAP_KEY ((size_t)0x10U)
+#define CHUNK_MAP_DIRTY ((size_t)0x08U)
+#define CHUNK_MAP_ZEROED ((size_t)0x04U)
+#define CHUNK_MAP_LARGE ((size_t)0x02U)
+#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunks_dirty tree. */
+ rb_node(arena_chunk_t) link_dirty;
+
+ /* Number of dirty pages. */
+ size_t ndirty;
+
+ /* Map of pages within chunk that keeps track of free/large/small. */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+ pthread_mutex_t lock;
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+#endif
+
+ /* Tree of dirty-page-containing chunks this arena manages. */
+ arena_chunk_tree_t chunks_dirty;
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. The spare is left in the arena's chunk trees
+ * until it is deleted.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+ /*
+ * Current count of pages within unused runs that are potentially
+ * dirty, and for which madvise(... MADV_DONTNEED) has not been called.
+ * By tracking this, we can institute a limit on how much dirty unused
+ * memory is mapped for each arena.
+ */
+ size_t ndirty;
+
+ /*
+ * Size/address-ordered tree of this arena's available runs. This tree
+ * is used for first-best-fit run allocation.
+ */
+ arena_avail_tree_t runs_avail;
+
+#ifdef MALLOC_BALANCE
+ /*
+ * The arena load balancing machinery needs to keep track of how much
+ * lock contention there is. This value is exponentially averaged.
+ */
+ uint32_t contention;
+#endif
+
+ /*
+ * bins is used to store rings of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * 6 | 64 |
+ * : :
+ * : :
+ * 33 | 496 |
+ * 34 | 512 |
+ * --------+------+
+ * 35 | 1024 |
+ * 36 | 2048 |
+ * --------+------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Magazine data structures.
+ */
+
+#ifdef MALLOC_MAG
+typedef struct mag_s mag_t;
+struct mag_s {
+ size_t binind; /* Index of associated bin. */
+ size_t nrounds;
+ void *rounds[1]; /* Dynamically sized. */
+};
+
+/*
+ * Magazines are lazily allocated, but once created, they remain until the
+ * associated mag_rack is destroyed.
+ */
+typedef struct bin_mags_s bin_mags_t;
+struct bin_mags_s {
+ mag_t *curmag;
+ mag_t *sparemag;
+};
+
+typedef struct mag_rack_s mag_rack_t;
+struct mag_rack_s {
+ bin_mags_t bin_mags[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned ncpus;
+
+/* VM page size. */
+static size_t pagesize;
+static size_t pagesize_mask;
+static size_t pagesize_2pow;
+
+/* Various bin-related settings. */
+#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
+# define ntbins ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
+#else
+# define ntbins 0
+#endif
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned ncbins; /* Number of cacheline-spaced bins. */
+static unsigned nsbins; /* Number of subpage-spaced bins. */
+static unsigned nbins;
+#ifdef MALLOC_TINY
+# define tspace_max ((size_t)(QUANTUM >> 1))
+#endif
+#define qspace_min QUANTUM
+static size_t qspace_max;
+static size_t cspace_min;
+static size_t cspace_max;
+static size_t sspace_min;
+static size_t sspace_max;
+#define bin_maxclass sspace_max
+
+static uint8_t const *size2bin;
+/*
+ * const_size2bin is a static constant lookup table that in the common case can
+ * be used as-is for size2bin. For dynamically linked programs, this avoids
+ * a page of memory overhead per process.
+ */
+#define S2B_1(i) i,
+#define S2B_2(i) S2B_1(i) S2B_1(i)
+#define S2B_4(i) S2B_2(i) S2B_2(i)
+#define S2B_8(i) S2B_4(i) S2B_4(i)
+#define S2B_16(i) S2B_8(i) S2B_8(i)
+#define S2B_32(i) S2B_16(i) S2B_16(i)
+#define S2B_64(i) S2B_32(i) S2B_32(i)
+#define S2B_128(i) S2B_64(i) S2B_64(i)
+#define S2B_256(i) S2B_128(i) S2B_128(i)
+static const uint8_t const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
+ S2B_1(0xffU) /* 0 */
+#if (QUANTUM_2POW == 4)
+/* 64-bit system ************************/
+# ifdef MALLOC_TINY
+ S2B_2(0) /* 2 */
+ S2B_2(1) /* 4 */
+ S2B_4(2) /* 8 */
+ S2B_8(3) /* 16 */
+# define S2B_QMIN 3
+# else
+ S2B_16(0) /* 16 */
+# define S2B_QMIN 0
+# endif
+ S2B_16(S2B_QMIN + 1) /* 32 */
+ S2B_16(S2B_QMIN + 2) /* 48 */
+ S2B_16(S2B_QMIN + 3) /* 64 */
+ S2B_16(S2B_QMIN + 4) /* 80 */
+ S2B_16(S2B_QMIN + 5) /* 96 */
+ S2B_16(S2B_QMIN + 6) /* 112 */
+ S2B_16(S2B_QMIN + 7) /* 128 */
+# define S2B_CMIN (S2B_QMIN + 8)
+#else
+/* 32-bit system ************************/
+# ifdef MALLOC_TINY
+ S2B_2(0) /* 2 */
+ S2B_2(1) /* 4 */
+ S2B_4(2) /* 8 */
+# define S2B_QMIN 2
+# else
+ S2B_8(0) /* 8 */
+# define S2B_QMIN 0
+# endif
+ S2B_8(S2B_QMIN + 1) /* 16 */
+ S2B_8(S2B_QMIN + 2) /* 24 */
+ S2B_8(S2B_QMIN + 3) /* 32 */
+ S2B_8(S2B_QMIN + 4) /* 40 */
+ S2B_8(S2B_QMIN + 5) /* 48 */
+ S2B_8(S2B_QMIN + 6) /* 56 */
+ S2B_8(S2B_QMIN + 7) /* 64 */
+ S2B_8(S2B_QMIN + 8) /* 72 */
+ S2B_8(S2B_QMIN + 9) /* 80 */
+ S2B_8(S2B_QMIN + 10) /* 88 */
+ S2B_8(S2B_QMIN + 11) /* 96 */
+ S2B_8(S2B_QMIN + 12) /* 104 */
+ S2B_8(S2B_QMIN + 13) /* 112 */
+ S2B_8(S2B_QMIN + 14) /* 120 */
+ S2B_8(S2B_QMIN + 15) /* 128 */
+# define S2B_CMIN (S2B_QMIN + 16)
+#endif
+/****************************************/
+ S2B_64(S2B_CMIN + 0) /* 192 */
+ S2B_64(S2B_CMIN + 1) /* 256 */
+ S2B_64(S2B_CMIN + 2) /* 320 */
+ S2B_64(S2B_CMIN + 3) /* 384 */
+ S2B_64(S2B_CMIN + 4) /* 448 */
+ S2B_64(S2B_CMIN + 5) /* 512 */
+# define S2B_SMIN (S2B_CMIN + 6)
+ S2B_256(S2B_SMIN + 0) /* 768 */
+ S2B_256(S2B_SMIN + 1) /* 1024 */
+ S2B_256(S2B_SMIN + 2) /* 1280 */
+ S2B_256(S2B_SMIN + 3) /* 1536 */
+ S2B_256(S2B_SMIN + 4) /* 1792 */
+ S2B_256(S2B_SMIN + 5) /* 2048 */
+ S2B_256(S2B_SMIN + 6) /* 2304 */
+ S2B_256(S2B_SMIN + 7) /* 2560 */
+ S2B_256(S2B_SMIN + 8) /* 2816 */
+ S2B_256(S2B_SMIN + 9) /* 3072 */
+ S2B_256(S2B_SMIN + 10) /* 3328 */
+ S2B_256(S2B_SMIN + 11) /* 3584 */
+ S2B_256(S2B_SMIN + 12) /* 3840 */
+#if (PAGESIZE_2POW == 13)
+ S2B_256(S2B_SMIN + 13) /* 4096 */
+ S2B_256(S2B_SMIN + 14) /* 4352 */
+ S2B_256(S2B_SMIN + 15) /* 4608 */
+ S2B_256(S2B_SMIN + 16) /* 4864 */
+ S2B_256(S2B_SMIN + 17) /* 5120 */
+ S2B_256(S2B_SMIN + 18) /* 5376 */
+ S2B_256(S2B_SMIN + 19) /* 5632 */
+ S2B_256(S2B_SMIN + 20) /* 5888 */
+ S2B_256(S2B_SMIN + 21) /* 6144 */
+ S2B_256(S2B_SMIN + 22) /* 6400 */
+ S2B_256(S2B_SMIN + 23) /* 6656 */
+ S2B_256(S2B_SMIN + 24) /* 6912 */
+ S2B_256(S2B_SMIN + 25) /* 7168 */
+ S2B_256(S2B_SMIN + 26) /* 7424 */
+ S2B_256(S2B_SMIN + 27) /* 7680 */
+ S2B_256(S2B_SMIN + 28) /* 7936 */
+#endif
+};
+#undef S2B_1
+#undef S2B_2
+#undef S2B_4
+#undef S2B_8
+#undef S2B_16
+#undef S2B_32
+#undef S2B_64
+#undef S2B_128
+#undef S2B_256
+#undef S2B_QMIN
+#undef S2B_CMIN
+#undef S2B_SMIN
+
+#ifdef MALLOC_MAG
+static size_t max_rounds;
+#endif
+
+/* Various chunk-related settings. */
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static size_t chunk_npages;
+static size_t arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls. This avoids malloc races among threads, though it
+ * does not protect against races with threads that call sbrk() directly.
+ */
+static malloc_mutex_t dss_mtx;
+/* Base address of the DSS. */
+static void *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void *dss_max;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering). These are used when allocating chunks, in an attempt to re-use
+ * address space. Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_t dss_chunks_szad;
+static extent_tree_t dss_chunks_ad;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t *base_nodes;
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+#ifndef NO_TLS
+# ifdef MALLOC_BALANCE
+static unsigned narenas_2pow;
+# else
+static unsigned next_arena;
+# endif
+#endif
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+static __thread arena_t *arenas_map;
+#endif
+
+#ifdef MALLOC_MAG
+/*
+ * Map of thread-specific magazine racks, used for thread-specific object
+ * caching.
+ */
+static __thread mag_rack_t *mag_rack;
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+static bool opt_junk = true;
+#else
+static bool opt_abort = false;
+static bool opt_junk = false;
+#endif
+#ifdef MALLOC_DSS
+static bool opt_dss = true;
+static bool opt_mmap = true;
+#endif
+#ifdef MALLOC_MAG
+static bool opt_mag = true;
+static size_t opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
+#endif
+static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool opt_print_stats = false;
+static size_t opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
+static size_t opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
+static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static bool opt_utrace = false;
+static bool opt_sysv = false;
+static bool opt_xmalloc = false;
+static bool opt_zero = false;
+static int opt_narenas_lshift = 0;
+
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#ifdef MALLOC_STATS
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ utrace(&ut, sizeof(ut)); \
+ }
+#else
+#define UTRACE(a, b, c)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static bool malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(pthread_mutex_t *lock);
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+static void malloc_printf(const char *format, ...);
+#endif
+static char *umax2s(uintmax_t x, char *s);
+#ifdef MALLOC_DSS
+static bool base_pages_alloc_dss(size_t minsize);
+#endif
+static bool base_pages_alloc_mmap(size_t minsize);
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void base_node_dealloc(extent_node_t *node);
+#ifdef MALLOC_STATS
+static void stats_print(arena_t *arena);
+#endif
+static void *pages_map(void *addr, size_t size);
+static void pages_unmap(void *addr, size_t size);
+#ifdef MALLOC_DSS
+static void *chunk_alloc_dss(size_t size);
+static void *chunk_recycle_dss(size_t size, bool zero);
+#endif
+static void *chunk_alloc_mmap(size_t size);
+static void *chunk_alloc(size_t size, bool zero);
+#ifdef MALLOC_DSS
+static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
+static bool chunk_dealloc_dss(void *chunk, size_t size);
+#endif
+static void chunk_dealloc_mmap(void *chunk, size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool large, bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
+ bool zero);
+static void arena_purge(arena_t *arena);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize);
+static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void arena_lock_balance_hard(arena_t *arena);
+#endif
+#ifdef MALLOC_MAG
+static void mag_load(mag_t *mag);
+#endif
+static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static size_t arena_salloc(const void *ptr);
+#ifdef MALLOC_MAG
+static void mag_unload(mag_t *mag);
+#endif
+static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr);
+static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+#ifdef MALLOC_MAG
+static mag_t *mag_create(arena_t *arena, size_t binind);
+static void mag_destroy(mag_t *mag);
+static mag_rack_t *mag_rack_create(arena_t *arena);
+static void mag_rack_destroy(mag_rack_t *rack);
+#endif
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t alignment, size_t size);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void malloc_print_stats(void);
+#ifdef MALLOC_DEBUG
+static void size2bin_validate(void);
+#endif
+static bool size2bin_init(void);
+static bool size2bin_init_hard(void);
+static unsigned malloc_ncpus(void);
+static bool malloc_init_hard(void);
+void _malloc_prefork(void);
+void _malloc_postfork(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+
+ write(STDERR_FILENO, p1, strlen(p1));
+ write(STDERR_FILENO, p2, strlen(p2));
+ write(STDERR_FILENO, p3, strlen(p3));
+ write(STDERR_FILENO, p4, strlen(p4));
+}
+
+#define _malloc_message malloc_message
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries. umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited to
+ * MALLOC_STATS code.
+ */
+#define UMAX2S_BUFSIZE 21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+ unsigned i;
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+
+ return (&s[i]);
+}
+
+/*
+ * Define a custom assert() in order to reduce the chances of deadlock during
+ * assertion failure.
+ */
+#ifdef MALLOC_DEBUG
+# define assert(e) do { \
+ if (!(e)) { \
+ char line_buf[UMAX2S_BUFSIZE]; \
+ _malloc_message(__FILE__, ":", umax2s(__LINE__, \
+ line_buf), ": Failed assertion: "); \
+ _malloc_message("\"", #e, "\"\n", ""); \
+ abort(); \
+ } \
+} while (0)
+#else
+#define assert(e)
+#endif
+
+#ifdef MALLOC_STATS
+static int
+utrace(const void *addr, size_t len)
+{
+ malloc_utrace_t *ut = (malloc_utrace_t *)addr;
+
+ assert(len == sizeof(malloc_utrace_t));
+
+ if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
+ malloc_printf("%d x USER malloc_init()\n", getpid());
+ else if (ut->p == NULL && ut->r != NULL) {
+ malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
+ ut->s);
+ } else if (ut->p != NULL && ut->r != NULL) {
+ malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
+ ut->r, ut->p, ut->s);
+ } else
+ malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
+
+ return (0);
+}
+#endif
+
+static inline const char *
+_getprogname(void)
+{
+
+ return ("<jemalloc>");
+}
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+}
+#endif
+
+/******************************************************************************/
+/*
+ * Begin mutex.
+ */
+
+static bool
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+ pthread_mutexattr_t attr;
+
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(mutex, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+
+ return (false);
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ pthread_mutex_lock(mutex);
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ pthread_mutex_unlock(mutex);
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (pthread_mutex_init(lock, NULL) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+ unsigned ret = 0;
+
+ if (__isthreaded) {
+ if (pthread_mutex_trylock(lock) != 0) {
+ unsigned i;
+ volatile unsigned j;
+
+ /* Exponentially back off. */
+ for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+ for (j = 0; j < (1U << i); j++) {
+ ret++;
+ CPU_SPINWAIT;
+ }
+
+ if (pthread_mutex_trylock(lock) == 0)
+ return (ret);
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ pthread_mutex_lock(lock);
+ assert((ret << BLOCK_COST_2POW) != 0);
+ return (ret << BLOCK_COST_2POW);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded)
+ pthread_mutex_unlock(lock);
+}
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
+
+/* Return the smallest subpage multiple that is >= s. */
+#define SUBPAGE_CEILING(s) \
+ (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + pagesize_mask) & ~pagesize_mask)
+
+#ifdef MALLOC_TINY
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+#endif
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+# define PRN_DEFINE(suffix, var, a, c) \
+static inline void \
+sprn_##suffix(uint32_t seed) \
+{ \
+ var = seed; \
+} \
+ \
+static inline uint32_t \
+prn_##suffix(uint32_t lg_range) \
+{ \
+ uint32_t ret, x; \
+ \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ x = (var * (a)) + (c); \
+ var = x; \
+ ret = x >> (32 - lg_range); \
+ \
+ return (ret); \
+}
+# define SPRN(suffix, seed) sprn_##suffix(seed)
+# define PRN(suffix, lg_range) prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+ /*
+ * Do special DSS allocation here, since base allocations don't need to
+ * be chunk-aligned.
+ */
+ malloc_mutex_lock(&dss_mtx);
+ if (dss_prev != (void *)-1) {
+ intptr_t incr;
+ size_t csize = CHUNK_CEILING(minsize);
+
+ do {
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS. Don't worry about
+ * dss_max not being chunk-aligned though.
+ */
+ incr = (intptr_t)chunksize
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+ assert(incr >= 0);
+ if ((size_t)incr < minsize)
+ incr += csize;
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev + incr);
+ base_pages = dss_prev;
+ base_next_addr = base_pages;
+ base_past_addr = dss_max;
+#ifdef MALLOC_STATS
+ base_mapped += incr;
+#endif
+ malloc_mutex_unlock(&dss_mtx);
+ return (false);
+ }
+ } while (dss_prev != (void *)-1);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (true);
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+ size_t csize;
+
+ assert(minsize != 0);
+ csize = PAGE_CEILING(minsize);
+ base_pages = pages_map(NULL, csize);
+ if (base_pages == NULL)
+ return (true);
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+ base_mapped += csize;
+#endif
+
+ return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (base_pages_alloc_dss(minsize) == false)
+ return (false);
+ }
+
+ if (opt_mmap && minsize != 0)
+#endif
+ {
+ if (base_pages_alloc_mmap(minsize) == false)
+ return (false);
+ }
+
+ return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ malloc_mutex_unlock(&base_mtx);
+ return (NULL);
+ }
+ }
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+ malloc_mutex_unlock(&base_mtx);
+
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+ extent_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_nodes != NULL) {
+ ret = base_nodes;
+ base_nodes = *(extent_node_t **)ret;
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ *(extent_node_t **)node = base_nodes;
+ base_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+ unsigned i, gap_start;
+
+ malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+ " %llu madvise%s, %llu page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12zu %12llu %12llu\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12zu\n", arena->stats.mapped);
+
+#ifdef MALLOC_MAG
+ if (__isthreaded && opt_mag) {
+ malloc_printf("bins: bin size regs pgs mags "
+ "newruns reruns maxruns curruns\n");
+ } else {
+#endif
+ malloc_printf("bins: bin size regs pgs requests "
+ "newruns reruns maxruns curruns\n");
+#ifdef MALLOC_MAG
+ }
+#endif
+ for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
+ if (arena->bins[i].stats.nruns == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+ "%13u %1s %4u %4u %3u %9llu %9llu"
+ " %9llu %7lu %7lu\n",
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
+ i < ntbins + nqbins + ncbins ? "C" : "S",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> pagesize_2pow,
+#ifdef MALLOC_MAG
+ (__isthreaded && opt_mag) ?
+ arena->bins[i].stats.nmags :
+#endif
+ arena->bins[i].stats.nrequests,
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+#ifdef MALLOC_DSS
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+ int ret;
+ size_t a_size = a->size;
+ size_t b_size = b->size;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ ret = (a_addr > b_addr) - (a_addr < b_addr);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
+ link_szad, extent_szad_comp)
+#endif
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+ extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+static void *
+pages_map(void *addr, size_t size)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ -1, 0);
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else if (addr != NULL && ret != addr) {
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+
+#ifdef MALLOC_DSS
+static void *
+chunk_alloc_dss(size_t size)
+{
+
+ /*
+ * sbrk() uses a signed increment argument, so take care not to
+ * interpret a huge allocation request as a negative increment.
+ */
+ if ((intptr_t)size < 0)
+ return (NULL);
+
+ malloc_mutex_lock(&dss_mtx);
+ if (dss_prev != (void *)-1) {
+ intptr_t incr;
+
+ /*
+ * The loop is necessary to recover from races with other
+ * threads that are using the DSS for something other than
+ * malloc.
+ */
+ do {
+ void *ret;
+
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS.
+ */
+ incr = (intptr_t)size
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+ if (incr == (intptr_t)size)
+ ret = dss_max;
+ else {
+ ret = (void *)((intptr_t)dss_max + incr);
+ incr += size;
+ }
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev + incr);
+ malloc_mutex_unlock(&dss_mtx);
+ return (ret);
+ }
+ } while (dss_prev != (void *)-1);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (NULL);
+}
+
+static void *
+chunk_recycle_dss(size_t size, bool zero)
+{
+ extent_node_t *node, key;
+
+ key.addr = NULL;
+ key.size = size;
+ malloc_mutex_lock(&dss_mtx);
+ node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
+ if (node != NULL) {
+ void *ret = node->addr;
+
+ /* Remove node from the tree. */
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ if (node->size == size) {
+ extent_tree_ad_remove(&dss_chunks_ad, node);
+ base_node_dealloc(node);
+ } else {
+ /*
+ * Insert the remainder of node's address range as a
+ * smaller chunk. Its position within dss_chunks_ad
+ * does not change.
+ */
+ assert(node->size > size);
+ node->addr = (void *)((uintptr_t)node->addr + size);
+ node->size -= size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ if (zero)
+ memset(ret, 0, size);
+ return (ret);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (NULL);
+}
+#endif
+
+static void *
+chunk_alloc_mmap(size_t size)
+{
+ void *ret;
+ size_t offset;
+
+ /*
+ * Ideally, there would be a way to specify alignment to mmap() (like
+ * NetBSD has), but in the absence of such a feature, we have to work
+ * hard to efficiently create aligned mappings. The reliable, but
+ * expensive method is to create a mapping that is over-sized, then
+ * trim the excess. However, that always results in at least one call
+ * to pages_unmap().
+ *
+ * A more optimistic approach is to try mapping precisely the right
+ * amount, then try to append another mapping if alignment is off. In
+ * practice, this works out well as long as the application is not
+ * interleaving mappings via direct mmap() calls. If we do run into a
+ * situation where there is an interleaved mapping and we are unable to
+ * extend an unaligned mapping, our best option is to momentarily
+ * revert to the reliable-but-expensive method. This will tend to
+ * leave a gap in the memory map that is too small to cause later
+ * problems for the optimistic method.
+ */
+
+ ret = pages_map(NULL, size);
+ if (ret == NULL)
+ return (NULL);
+
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Try to extend chunk boundary. */
+ if (pages_map((void *)((uintptr_t)ret + size),
+ chunksize - offset) == NULL) {
+ /*
+ * Extension failed. Clean up, then revert to the
+ * reliable-but-expensive method.
+ */
+ pages_unmap(ret, size);
+
+ /* Beware size_t wrap-around. */
+ if (size + chunksize <= size)
+ return NULL;
+
+ ret = pages_map(NULL, size + chunksize);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Clean up unneeded leading/trailing space. */
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Leading space. */
+ pages_unmap(ret, chunksize - offset);
+
+ ret = (void *)((uintptr_t)ret +
+ (chunksize - offset));
+
+ /* Trailing space. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ offset);
+ } else {
+ /* Trailing space only. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ chunksize);
+ }
+ } else {
+ /* Clean up unneeded leading space. */
+ pages_unmap(ret, chunksize - offset);
+ ret = (void *)((uintptr_t)ret + (chunksize - offset));
+ }
+ }
+
+ return (ret);
+}
+
+static void *
+chunk_alloc(size_t size, bool zero)
+{
+ void *ret;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ ret = chunk_recycle_dss(size, zero);
+ if (ret != NULL) {
+ goto RETURN;
+ }
+
+ ret = chunk_alloc_dss(size);
+ if (ret != NULL)
+ goto RETURN;
+ }
+
+ if (opt_mmap)
+#endif
+ {
+ ret = chunk_alloc_mmap(size);
+ if (ret != NULL)
+ goto RETURN;
+ }
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+ if (ret != NULL) {
+ stats_chunks.nchunks += (size / chunksize);
+ stats_chunks.curchunks += (size / chunksize);
+ }
+ if (stats_chunks.curchunks > stats_chunks.highchunks)
+ stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+#ifdef MALLOC_DSS
+static extent_node_t *
+chunk_dealloc_dss_record(void *chunk, size_t size)
+{
+ extent_node_t *node, *prev, key;
+
+ key.addr = (void *)((uintptr_t)chunk + size);
+ node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
+ /* Try to coalesce forward. */
+ if (node != NULL && node->addr == key.addr) {
+ /*
+ * Coalesce chunk with the following address range. This does
+ * not change the position within dss_chunks_ad, so only
+ * remove/insert from/into dss_chunks_szad.
+ */
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ node->addr = chunk;
+ node->size += size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ } else {
+ /*
+ * Coalescing forward failed, so insert a new node. Drop
+ * dss_mtx during node allocation, since it is possible that a
+ * new base chunk will be allocated.
+ */
+ malloc_mutex_unlock(&dss_mtx);
+ node = base_node_alloc();
+ malloc_mutex_lock(&dss_mtx);
+ if (node == NULL)
+ return (NULL);
+ node->addr = chunk;
+ node->size = size;
+ extent_tree_ad_insert(&dss_chunks_ad, node);
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ }
+
+ /* Try to coalesce backward. */
+ prev = extent_tree_ad_prev(&dss_chunks_ad, node);
+ if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+ chunk) {
+ /*
+ * Coalesce chunk with the previous address range. This does
+ * not change the position within dss_chunks_ad, so only
+ * remove/insert node from/into dss_chunks_szad.
+ */
+ extent_tree_szad_remove(&dss_chunks_szad, prev);
+ extent_tree_ad_remove(&dss_chunks_ad, prev);
+
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ node->addr = prev->addr;
+ node->size += prev->size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+
+ base_node_dealloc(prev);
+ }
+
+ return (node);
+}
+
+static bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+
+ malloc_mutex_lock(&dss_mtx);
+ if ((uintptr_t)chunk >= (uintptr_t)dss_base
+ && (uintptr_t)chunk < (uintptr_t)dss_max) {
+ extent_node_t *node;
+
+ /* Try to coalesce with other unused chunks. */
+ node = chunk_dealloc_dss_record(chunk, size);
+ if (node != NULL) {
+ chunk = node->addr;
+ size = node->size;
+ }
+
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Try to shrink the DSS if this chunk is at the end of the
+ * DSS. The sbrk() call here is subject to a race condition
+ * with threads that use brk(2) or sbrk(2) directly, but the
+ * alternative would be to leak memory for the sake of poorly
+ * designed multi-threaded programs.
+ */
+ if ((void *)((uintptr_t)chunk + size) == dss_max
+ && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
+
+ if (node != NULL) {
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ extent_tree_ad_remove(&dss_chunks_ad, node);
+ base_node_dealloc(node);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+ } else {
+ malloc_mutex_unlock(&dss_mtx);
+ madvise(chunk, size, MADV_DONTNEED);
+ }
+
+ return (false);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (true);
+}
+#endif
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+ pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (size / chunksize);
+#endif
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (chunk_dealloc_dss(chunk, size) == false)
+ return;
+ }
+
+ if (opt_mmap)
+#endif
+ chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (__isthreaded == false) {
+ /* Avoid the overhead of TLS for single-threaded operation. */
+ return (arenas[0]);
+ }
+
+ ret = arenas_map;
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ assert(ret != NULL);
+ }
+#else
+ if (__isthreaded && narenas > 1) {
+ unsigned long ind;
+
+ /*
+ * Hash pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient pthread_self() values. Without specific
+ * knowledge of how pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(__isthreaded);
+
+#ifdef MALLOC_BALANCE
+ /* Seed the PRNG used for arena load balancing. */
+ SPRN(balance, (uint32_t)(uintptr_t)(pthread_self()));
+#endif
+
+ if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+ unsigned ind;
+
+ ind = PRN(balance, narenas_2pow);
+ if ((ret = arenas[ind]) == NULL) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[ind]) == NULL)
+ ret = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+#else
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+#endif
+ } else
+ ret = arenas[0];
+
+ arenas_map = ret;
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+ uintptr_t a_chunk = (uintptr_t)a;
+ uintptr_t b_chunk = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+ arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ uintptr_t a_mapelm = (uintptr_t)a;
+ uintptr_t b_mapelm = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
+ link, arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ int ret;
+ size_t a_size = a->bits & ~pagesize_mask;
+ size_t b_size = b->bits & ~pagesize_mask;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_mapelm, b_mapelm;
+
+ if ((a->bits & CHUNK_MAP_KEY) == 0)
+ a_mapelm = (uintptr_t)a;
+ else {
+ /*
+ * Treat keys as though they are lower than anything
+ * else.
+ */
+ a_mapelm = 0;
+ }
+ b_mapelm = (uintptr_t)b;
+
+ ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_avail_tree_, arena_avail_tree_t,
+ arena_chunk_map_t, link, arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ assert(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ unsigned diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+ if ((size & (size - 1)) == 0) {
+ /*
+ * log2_table allows fast division of a power of two in the
+ * [1..128] range.
+ *
+ * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+ */
+ static const unsigned char log2_table[] = {
+ 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+ };
+
+ if (size <= 128)
+ regind = (diff >> log2_table[size - 1]);
+ else if (size <= 32768)
+ regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+ else
+ regind = diff / size;
+ } else if (size < qspace_max) {
+ /*
+ * To divide by a number D that is not a power of two we
+ * multiply by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
+ * >> SIZE_INV_SHIFT
+ *
+ * We can omit the first three elements, because we never
+ * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
+ * two, which are handled above.
+ */
+#define SIZE_INV_SHIFT 21
+#define QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
+ static const unsigned qsize_invs[] = {
+ QSIZE_INV(3),
+ QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
+#if (QUANTUM_2POW < 4)
+ ,
+ QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
+ QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
+#endif
+ };
+ assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
+ >= (1U << QSPACE_MAX_2POW_DEFAULT));
+
+ if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
+ QUANTUM_2POW)) {
+ regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else
+ regind = diff / size;
+#undef QSIZE_INV
+ } else if (size < cspace_max) {
+#define CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
+ static const unsigned csize_invs[] = {
+ CSIZE_INV(3),
+ CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
+ };
+ assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
+ 3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
+
+ if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
+ CACHELINE_2POW)) {
+ regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
+ diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else
+ regind = diff / size;
+#undef CSIZE_INV
+ } else {
+#define SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
+ static const unsigned ssize_invs[] = {
+ SSIZE_INV(3),
+ SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
+ SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
+ SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
+#if (PAGESIZE_2POW == 13)
+ ,
+ SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
+ SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
+ SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
+ SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
+#endif
+ };
+ assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
+ >= (1U << PAGESIZE_2POW));
+
+ if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
+ SUBPAGE_2POW)) {
+ regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else
+ regind = diff / size;
+#undef SSIZE_INV
+ }
+#undef SIZE_INV_SHIFT
+ assert(diff == regind * size);
+ assert(regind < bin->nregs);
+
+ elm = regind >> (SIZEOF_INT_2POW + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+ assert((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ old_ndirty = chunk->ndirty;
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+ pagesize_2pow;
+ need_pages = (size >> pagesize_2pow);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ chunk->map[run_ind+need_pages].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+ pagesize_mask);
+ chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+ pagesize_mask);
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[run_ind+need_pages]);
+ }
+
+ for (i = 0; i < need_pages; i++) {
+ /* Zero if necessary. */
+ if (zero) {
+ if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+ == 0) {
+ memset((void *)((uintptr_t)chunk + ((run_ind
+ + i) << pagesize_2pow)), 0, pagesize);
+ /* CHUNK_MAP_ZEROED is cleared below. */
+ }
+ }
+
+ /* Update dirty page accounting. */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+ chunk->ndirty--;
+ arena->ndirty--;
+ /* CHUNK_MAP_DIRTY is cleared below. */
+ }
+
+ /* Initialize the chunk map. */
+ if (large) {
+ chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+ } else {
+ chunk->map[run_ind + i].bits = (size_t)run
+ | CHUNK_MAP_ALLOCATED;
+ }
+ }
+
+ /*
+ * Set the run size only in the first element for large runs. This is
+ * primarily a debugging aid, since the lack of size info for trailing
+ * pages only matters if the application tries to operate on an
+ * interior pointer.
+ */
+ if (large)
+ chunk->map[run_ind].bits |= size;
+
+ if (chunk->ndirty == 0 && old_ndirty > 0)
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i;
+
+ if (arena->spare != NULL) {
+ chunk = arena->spare;
+ arena->spare = NULL;
+ } else {
+ chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
+ if (chunk == NULL)
+ return (NULL);
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+
+ /*
+ * Claim that no pages are in use, since the header is merely
+ * overhead.
+ */
+ chunk->ndirty = 0;
+
+ /*
+ * Initialize the map to contain one maximal free untouched run.
+ */
+ for (i = 0; i < arena_chunk_header_npages; i++)
+ chunk->map[i].bits = 0;
+ chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
+ for (i++; i < chunk_npages-1; i++) {
+ chunk->map[i].bits = CHUNK_MAP_ZEROED;
+ }
+ chunk->map[chunk_npages-1].bits = arena_maxclass |
+ CHUNK_MAP_ZEROED;
+ }
+
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ if (arena->spare != NULL) {
+ if (arena->spare->ndirty > 0) {
+ arena_chunk_tree_dirty_remove(
+ &chunk->arena->chunks_dirty, arena->spare);
+ arena->ndirty -= arena->spare->ndirty;
+ }
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+
+ /*
+ * Remove run from runs_avail, regardless of whether this chunk
+ * will be cached, so that the arena does not use it. Dirty page
+ * flushing only uses the chunks_dirty tree, so leaving this chunk in
+ * the chunks_* trees is sufficient for that purpose.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
+{
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_chunk_map_t *mapelm, key;
+
+ assert(size <= arena_maxclass);
+ assert((size & pagesize_mask) == 0);
+
+ /* Search the arena's chunks for the lowest best fit. */
+ key.bits = size | CHUNK_MAP_KEY;
+ mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+ if (mapelm != NULL) {
+ arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
+ size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
+ / sizeof(arena_chunk_map_t);
+
+ run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+ << pagesize_2pow));
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate the run.
+ */
+ chunk = arena_chunk_alloc(arena);
+ if (chunk == NULL)
+ return (NULL);
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ pagesize_2pow));
+ /* Update page map. */
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i, npages;
+#ifdef MALLOC_DEBUG
+ size_t ndirty = 0;
+
+ rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+ chunk) {
+ ndirty += chunk->ndirty;
+ } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+ assert(ndirty == arena->ndirty);
+#endif
+ assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+ arena->stats.npurge++;
+#endif
+
+ /*
+ * Iterate downward through chunks until enough dirty memory has been
+ * purged. Terminate as soon as possible in order to minimize the
+ * number of system calls, even if a chunk has only been partially
+ * purged.
+ */
+ while (arena->ndirty > (opt_dirty_max >> 1)) {
+ chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+ assert(chunk != NULL);
+
+ for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+ assert(i >= arena_chunk_header_npages);
+
+ if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+ chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+ /* Find adjacent dirty run(s). */
+ for (npages = 1; i > arena_chunk_header_npages
+ && (chunk->map[i - 1].bits &
+ CHUNK_MAP_DIRTY); npages++) {
+ i--;
+ chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+ }
+ chunk->ndirty -= npages;
+ arena->ndirty -= npages;
+
+ madvise((void *)((uintptr_t)chunk + (i <<
+ pagesize_2pow)), (npages << pagesize_2pow),
+ MADV_DONTNEED);
+#ifdef MALLOC_STATS
+ arena->stats.nmadvise++;
+ arena->stats.purged += npages;
+#endif
+ if (arena->ndirty <= (opt_dirty_max >> 1))
+ break;
+ }
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+ chunk);
+ }
+ }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+ arena_chunk_t *chunk;
+ size_t size, run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ assert(run_ind >= arena_chunk_header_npages);
+ assert(run_ind < chunk_npages);
+ if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+ size = chunk->map[run_ind].bits & ~pagesize_mask;
+ else
+ size = run->bin->run_size;
+ run_pages = (size >> pagesize_2pow);
+
+ /* Mark pages as unallocated in the chunk map. */
+ if (dirty) {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+ == 0);
+ chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ }
+ chunk->ndirty += run_pages;
+ arena->ndirty += run_pages;
+ } else {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED);
+ }
+ }
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+ /* Try to coalesce forward. */
+ if (run_ind + run_pages < chunk_npages &&
+ (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+ size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+ ~pagesize_mask;
+
+ /*
+ * Remove successor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind+run_pages]);
+
+ size += nrun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+ == nrun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Try to coalesce backward. */
+ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+ CHUNK_MAP_ALLOCATED) == 0) {
+ size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+ run_ind -= prun_size >> pagesize_2pow;
+
+ /*
+ * Remove predecessor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind]);
+
+ size += prun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
+ prun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Insert into runs_avail, now that coalescing is complete. */
+ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Deallocate chunk if it is now completely unused. */
+ if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+ CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+ arena_chunk_dealloc(arena, chunk);
+
+ /* Enforce opt_dirty_max. */
+ if (arena->ndirty > opt_dirty_max)
+ arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * leading run as separately allocated.
+ */
+ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize, bool dirty)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = newsize >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * trailing run as separately allocated.
+ */
+ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+ dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_chunk_map_t *mapelm;
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ mapelm = arena_run_tree_first(&bin->runs);
+ if (mapelm != NULL) {
+ /* run is guaranteed to have available space. */
+ arena_run_tree_remove(&bin->runs, mapelm);
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin->run_size, false, false);
+ if (run == NULL)
+ return (NULL);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+ if (remainder == 0)
+ run->regs_mask[i] = UINT_MAX;
+ else {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ assert(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+ assert(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= pagesize);
+ assert(min_run_size <= arena_maxclass);
+ assert(min_run_size <= RUN_MAX_SMALL);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += pagesize;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+ unsigned contention;
+
+ contention = malloc_spin_lock(&arena->lock);
+ if (narenas > 1) {
+ /*
+ * Calculate the exponentially averaged contention for this
+ * arena. Due to integer math always rounding down, this value
+ * decays somewhat faster than normal.
+ */
+ arena->contention = (((uint64_t)arena->contention
+ * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+ if (arena->contention >= opt_balance_threshold)
+ arena_lock_balance_hard(arena);
+ }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+ uint32_t ind;
+
+ arena->contention = 0;
+#ifdef MALLOC_STATS
+ arena->stats.nbalance++;
+#endif
+ ind = PRN(balance, narenas_2pow);
+ if (arenas[ind] != NULL)
+ arenas_map = arenas[ind];
+ else {
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] != NULL)
+ arenas_map = arenas[ind];
+ else
+ arenas_map = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+}
+#endif
+
+#ifdef MALLOC_MAG
+static inline void *
+mag_alloc(mag_t *mag)
+{
+
+ if (mag->nrounds == 0)
+ return (NULL);
+ mag->nrounds--;
+
+ return (mag->rounds[mag->nrounds]);
+}
+
+static void
+mag_load(mag_t *mag)
+{
+ arena_t *arena;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ void *round;
+ size_t i;
+
+ arena = choose_arena();
+ bin = &arena->bins[mag->binind];
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ for (i = mag->nrounds; i < max_rounds; i++) {
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ round = arena_bin_malloc_easy(arena, bin, run);
+ else
+ round = arena_bin_malloc_hard(arena, bin);
+ if (round == NULL)
+ break;
+ mag->rounds[i] = round;
+ }
+#ifdef MALLOC_STATS
+ bin->stats.nmags++;
+ arena->stats.nmalloc_small += (i - mag->nrounds);
+ arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ mag->nrounds = i;
+}
+
+static inline void *
+mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
+{
+ void *ret;
+ bin_mags_t *bin_mags;
+ mag_t *mag;
+ size_t binind;
+
+ binind = size2bin[size];
+ assert(binind < nbins);
+ bin_mags = &rack->bin_mags[binind];
+
+ mag = bin_mags->curmag;
+ if (mag == NULL) {
+ /* Create an initial magazine for this size class. */
+ assert(bin_mags->sparemag == NULL);
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL)
+ return (NULL);
+ bin_mags->curmag = mag;
+ mag_load(mag);
+ }
+
+ ret = mag_alloc(mag);
+ if (ret == NULL) {
+ if (bin_mags->sparemag != NULL) {
+ if (bin_mags->sparemag->nrounds > 0) {
+ /* Swap magazines. */
+ bin_mags->curmag = bin_mags->sparemag;
+ bin_mags->sparemag = mag;
+ mag = bin_mags->curmag;
+ } else {
+ /* Reload the current magazine. */
+ mag_load(mag);
+ }
+ } else {
+ /* Create a second magazine. */
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL)
+ return (NULL);
+ mag_load(mag);
+ bin_mags->sparemag = bin_mags->curmag;
+ bin_mags->curmag = mag;
+ }
+ ret = mag_alloc(mag);
+ if (ret == NULL)
+ return (NULL);
+ }
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ size_t binind;
+
+ binind = size2bin[size];
+ assert(binind < nbins);
+ bin = &arena->bins[binind];
+ size = bin->reg_size;
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, size, true, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ }
+
+ return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+#ifdef MALLOC_MAG
+ if (__isthreaded && opt_mag) {
+ mag_rack_t *rack = mag_rack;
+ if (rack == NULL) {
+ rack = mag_rack_create(arena);
+ if (rack == NULL)
+ return (NULL);
+ mag_rack = rack;
+ }
+ return (mag_rack_alloc(rack, size, zero));
+ } else
+#endif
+ return (arena_malloc_small(arena, size, zero));
+ } else
+ return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, false));
+ else
+ return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, true));
+ else
+ return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+
+ assert((size & pagesize_mask) == 0);
+ assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & pagesize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0)
+ arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
+ else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ if (leadsize > 0) {
+ arena_run_trim_head(arena, chunk, ret, alloc_size,
+ alloc_size - leadsize);
+ ret = (void *)((uintptr_t)ret + leadsize);
+ }
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_run_trim_tail(arena, chunk, ret, size + trailsize,
+ size, false);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= pagesize || (alignment <= pagesize
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(choose_arena(), ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve subpage alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * pagesize of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - pagesize;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract pagesize, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - pagesize;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(alignment, ceil_size);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapbits = chunk->map[pageind].bits;
+ assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+ arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else {
+ ret = mapbits & ~pagesize_mask;
+ assert(ret != 0);
+ }
+
+ return (ret);
+}
+
+static inline size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ extent_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm)
+{
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs) {
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ arena_run_tree_remove(&bin->runs, run_mapelm);
+ }
+#ifdef MALLOC_DEBUG
+ run->magic = 0;
+#endif
+ arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+ } else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ arena_chunk_t *runcur_chunk =
+ CHUNK_ADDR2BASE(bin->runcur);
+ size_t runcur_pageind =
+ (((uintptr_t)bin->runcur -
+ (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *runcur_mapelm =
+ &runcur_chunk->map[runcur_pageind];
+
+ /* Insert runcur. */
+ arena_run_tree_insert(&bin->runs,
+ runcur_mapelm);
+ }
+ bin->runcur = run;
+ } else {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ NULL);
+ arena_run_tree_insert(&bin->runs, run_mapelm);
+ }
+ }
+#ifdef MALLOC_STATS
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+#endif
+}
+
+#ifdef MALLOC_MAG
+static void
+mag_unload(mag_t *mag)
+{
+ arena_chunk_t *chunk;
+ arena_t *arena;
+ void *round;
+ size_t i, ndeferred, nrounds;
+
+ for (ndeferred = mag->nrounds; ndeferred > 0;) {
+ nrounds = ndeferred;
+ /* Lock the arena associated with the first round. */
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
+ arena = chunk->arena;
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ /* Deallocate every round that belongs to the locked arena. */
+ for (i = ndeferred = 0; i < nrounds; i++) {
+ round = mag->rounds[i];
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
+ if (chunk->arena == arena) {
+ size_t pageind = (((uintptr_t)round -
+ (uintptr_t)chunk) >> pagesize_2pow);
+ arena_chunk_map_t *mapelm =
+ &chunk->map[pageind];
+ arena_dalloc_small(arena, chunk, round, mapelm);
+ } else {
+ /*
+ * This round was allocated via a different
+ * arena than the one that is currently locked.
+ * Stash the round, so that it can be handled
+ * in a future pass.
+ */
+ mag->rounds[ndeferred] = round;
+ ndeferred++;
+ }
+ }
+ malloc_spin_unlock(&arena->lock);
+ }
+
+ mag->nrounds = 0;
+}
+
+static inline void
+mag_rack_dalloc(mag_rack_t *rack, void *ptr)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_bin_t *bin;
+ bin_mags_t *bin_mags;
+ mag_t *mag;
+ size_t pageind, binind;
+ arena_chunk_map_t *mapelm;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
+ sizeof(arena_bin_t);
+ assert(binind < nbins);
+
+ if (opt_junk)
+ memset(ptr, 0x5a, arena->bins[binind].reg_size);
+
+ bin_mags = &rack->bin_mags[binind];
+ mag = bin_mags->curmag;
+ if (mag == NULL) {
+ /* Create an initial magazine for this size class. */
+ assert(bin_mags->sparemag == NULL);
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ return;
+ }
+ bin_mags->curmag = mag;
+ }
+
+ if (mag->nrounds == max_rounds) {
+ if (bin_mags->sparemag != NULL) {
+ if (bin_mags->sparemag->nrounds < max_rounds) {
+ /* Swap magazines. */
+ bin_mags->curmag = bin_mags->sparemag;
+ bin_mags->sparemag = mag;
+ mag = bin_mags->curmag;
+ } else {
+ /* Unload the current magazine. */
+ mag_unload(mag);
+ }
+ } else {
+ /* Create a second magazine. */
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL) {
+ mag = rack->bin_mags[binind].curmag;
+ mag_unload(mag);
+ } else {
+ bin_mags->sparemag = bin_mags->curmag;
+ bin_mags->curmag = mag;
+ }
+ }
+ assert(mag->nrounds < max_rounds);
+ }
+ mag->rounds[mag->nrounds] = ptr;
+ mag->nrounds++;
+}
+#endif
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ /* Large allocation. */
+ malloc_spin_lock(&arena->lock);
+
+#ifndef MALLOC_STATS
+ if (opt_junk)
+#endif
+ {
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+ pagesize_2pow;
+ size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_STATS
+ if (opt_junk)
+#endif
+ memset(ptr, 0x5a, size);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= size;
+#endif
+ }
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+#endif
+
+ arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+ malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(chunk->arena == arena);
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+ /* Small allocation. */
+#ifdef MALLOC_MAG
+ if (__isthreaded && opt_mag) {
+ mag_rack_t *rack = mag_rack;
+ if (rack == NULL) {
+ rack = mag_rack_create(arena);
+ if (rack == NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr,
+ mapelm);
+ malloc_spin_unlock(&arena->lock);
+ }
+ mag_rack = rack;
+ }
+ mag_rack_dalloc(rack, ptr);
+ } else {
+#endif
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+#ifdef MALLOC_MAG
+ }
+#endif
+ } else
+ arena_dalloc_large(arena, chunk, ptr);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr)
+ arena_dalloc(chunk->arena, chunk, ptr);
+ else
+ huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+
+ assert(size < oldsize);
+
+ /*
+ * Shrink the run, and make trailing pages available for other
+ * allocations.
+ */
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+ true);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= oldsize - size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = oldsize >> pagesize_2pow;
+
+ assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+ /* Try to extend the run. */
+ assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+ & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+ ~pagesize_mask) >= size - oldsize) {
+ /*
+ * The next run is available and sufficiently large. Split the
+ * following run, then merge the first part with the existing
+ * allocation.
+ */
+ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+ ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+ false);
+
+ chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large += size - oldsize;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ return (false);
+ }
+ malloc_spin_unlock(&arena->lock);
+
+ return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying. This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+ size_t psize;
+
+ psize = PAGE_CEILING(size);
+ if (psize == oldsize) {
+ /* Same size class. */
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+ size);
+ }
+ return (false);
+ } else {
+ arena_chunk_t *chunk;
+ arena_t *arena;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ assert(arena->magic == ARENA_MAGIC);
+
+ if (psize < oldsize) {
+ /* Fill before shrinking in order avoid a race. */
+ if (opt_junk) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a,
+ oldsize - size);
+ }
+ arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+ oldsize);
+ return (false);
+ } else {
+ bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+ psize, oldsize);
+ if (ret == false && opt_zero) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0,
+ size - oldsize);
+ }
+ return (ret);
+ }
+ }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Try to avoid moving the allocation. */
+ if (size <= bin_maxclass) {
+ if (oldsize <= bin_maxclass && size2bin[size] ==
+ size2bin[oldsize])
+ goto IN_PLACE;
+ } else {
+ if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+ assert(size > bin_maxclass);
+ if (arena_ralloc_large(ptr, size, oldsize) == false)
+ return (ptr);
+ }
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to move the object. In that case, fall back to allocating new
+ * space and copying.
+ */
+ ret = arena_malloc(choose_arena(), size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+ if (opt_junk && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+ return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+ if (size <= arena_maxclass)
+ return (arena_ralloc(ptr, size, oldsize));
+ else
+ return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+ /* Initialize chunks. */
+ arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+ arena->spare = NULL;
+
+ arena->ndirty = 0;
+
+ arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+ arena->contention = 0;
+#endif
+
+ /* Initialize bins. */
+ prev_run_size = pagesize;
+
+ i = 0;
+#ifdef MALLOC_TINY
+ /* (2^n)-spaced tiny bins. */
+ for (; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+#endif
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Cacheline-spaced bins. */
+ for (; i < ntbins + nqbins + ncbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
+ CACHELINE_2POW);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Subpage-spaced bins. */
+ for (; i < nbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
+ << SUBPAGE_2POW);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#ifdef MALLOC_DEBUG
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (nbins - 1)));
+ if (ret != NULL && arena_new(ret) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+#ifdef MALLOC_MAG
+static mag_t *
+mag_create(arena_t *arena, size_t binind)
+{
+ mag_t *ret;
+
+ if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+ bin_maxclass) {
+ ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
+ * (max_rounds - 1)), false);
+ } else {
+ ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
+ 1)));
+ }
+ if (ret == NULL)
+ return (NULL);
+ ret->binind = binind;
+ ret->nrounds = 0;
+
+ return (ret);
+}
+
+static void
+mag_destroy(mag_t *mag)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ chunk = CHUNK_ADDR2BASE(mag);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+
+ assert(mag->nrounds == 0);
+ if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+ bin_maxclass) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, mag, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ idalloc(mag);
+}
+
+static mag_rack_t *
+mag_rack_create(arena_t *arena)
+{
+
+ assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
+ bin_maxclass);
+ return (arena_malloc_small(arena, sizeof(mag_rack_t) +
+ (sizeof(bin_mags_t) * (nbins - 1)), true));
+}
+
+static void
+mag_rack_destroy(mag_rack_t *rack)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ bin_mags_t *bin_mags;
+ size_t i, pageind;
+ arena_chunk_map_t *mapelm;
+
+ for (i = 0; i < nbins; i++) {
+ bin_mags = &rack->bin_mags[i];
+ if (bin_mags->curmag != NULL) {
+ assert(bin_mags->curmag->binind == i);
+ mag_unload(bin_mags->curmag);
+ mag_destroy(bin_mags->curmag);
+ }
+ if (bin_mags->sparemag != NULL) {
+ assert(bin_mags->sparemag->binind == i);
+ mag_unload(bin_mags->sparemag);
+ mag_destroy(bin_mags->sparemag);
+ }
+ }
+
+ chunk = CHUNK_ADDR2BASE(rack);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, rack, mapelm);
+ malloc_spin_unlock(&arena->lock);
+}
+#endif
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ void *ret;
+ size_t csize;
+ extent_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize, zero);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ node->size = csize;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += csize;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, csize);
+ else if (opt_zero)
+ memset(ret, 0, csize);
+ }
+
+ return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t alloc_size, chunk_size, offset;
+ extent_node_t *node;
+
+ /*
+ * This allocation requires alignment that is even larger than chunk
+ * alignment. This means that huge_malloc() isn't good enough.
+ *
+ * Allocate almost twice as many chunks as are demanded by the size or
+ * alignment, in order to assure the alignment can be achieved, then
+ * unmap leading and trailing chunks.
+ */
+ assert(alignment >= chunksize);
+
+ chunk_size = CHUNK_CEILING(size);
+
+ if (size >= alignment)
+ alloc_size = chunk_size + alignment - chunksize;
+ else
+ alloc_size = (alignment << 1) - chunksize;
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(alloc_size, false);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & chunksize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0) {
+ /* Trim trailing space. */
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+ - chunk_size);
+ } else {
+ size_t trailsize;
+
+ /* Trim leading space. */
+ chunk_dealloc(ret, alignment - offset);
+
+ ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+ trailsize = alloc_size - (alignment - offset) - chunk_size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+ trailsize);
+ }
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ node->size = chunk_size;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += chunk_size;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+ if (opt_junk)
+ memset(ret, 0xa5, chunk_size);
+ else if (opt_zero)
+ memset(ret, 0, chunk_size);
+
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Avoid moving the allocation if the size class would not change. */
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+ - size);
+ } else if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ extent_node_t *node, key;
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = ptr;
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->addr == ptr);
+ extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Unmap chunk. */
+#ifdef MALLOC_DSS
+ if (opt_dss && opt_junk)
+ memset(node->addr, 0x5a, node->size);
+#endif
+ chunk_dealloc(node->addr, node->size);
+
+ base_node_dealloc(node);
+}
+
+static void
+malloc_print_stats(void)
+{
+
+ if (opt_print_stats) {
+ char s[UMAX2S_BUFSIZE];
+ _malloc_message("___ Begin malloc statistics ___\n", "", "",
+ "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ",
+ opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+#ifdef MALLOC_MAG
+ _malloc_message(opt_mag ? "G" : "g", "", "", "");
+#endif
+ _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+ _malloc_message(opt_utrace ? "PU" : "Pu",
+ opt_sysv ? "V" : "v",
+ opt_xmalloc ? "X" : "x",
+ opt_zero ? "Z\n" : "z\n");
+
+ _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+ _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_BALANCE
+ _malloc_message("Arena balance threshold: ",
+ umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+ "\n", "");
+ _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
+ _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
+ s), "\n", "");
+#ifdef MALLOC_TINY
+ _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
+ TINY_MIN_2POW), s), "..", "");
+ _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
+#endif
+ _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
+ s), "..", "");
+ _malloc_message(umax2s(qspace_max, s), "]\n", "", "");
+ _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
+ s), "..", "");
+ _malloc_message(umax2s(cspace_max, s), "]\n", "", "");
+ _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
+ s), "..", "");
+ _malloc_message(umax2s(sspace_max, s), "]\n", "", "");
+#ifdef MALLOC_MAG
+ _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
+ "\n", "");
+#endif
+ _malloc_message("Max dirty pages per arena: ",
+ umax2s(opt_dirty_max, s), "\n", "");
+
+ _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+ _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+ uint64_t nbalance = 0;
+#endif
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated +=
+ arenas[i]->stats.allocated_small;
+ allocated +=
+ arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+ nbalance += arenas[i]->stats.nbalance;
+#endif
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&huge_mtx);
+ allocated += huge_allocated;
+ mapped = stats_chunks.curchunks * chunksize;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_printf("Allocated: %zu, mapped: %zu\n",
+ allocated, mapped);
+
+#ifdef MALLOC_BALANCE
+ malloc_printf("Arena balance reassignments: %llu\n",
+ nbalance);
+#endif
+
+ /* Print chunk stats. */
+ {
+ chunk_stats_t chunks_stats;
+
+ malloc_mutex_lock(&huge_mtx);
+ chunks_stats = stats_chunks;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_printf("chunks: nchunks "
+ "highchunks curchunks\n");
+ malloc_printf(" %13llu%13lu%13lu\n",
+ chunks_stats.nchunks,
+ chunks_stats.highchunks,
+ chunks_stats.curchunks);
+ }
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+ malloc_printf(" %12llu %12llu %12zu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf(
+ "\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+ }
+}
+
+#ifdef MALLOC_DEBUG
+static void
+size2bin_validate(void)
+{
+ size_t i, size, binind;
+
+ assert(size2bin[0] == 0xffU);
+ i = 1;
+# ifdef MALLOC_TINY
+ /* Tiny. */
+ for (; i < (1U << TINY_MIN_2POW); i++) {
+ size = pow2_ceil(1U << TINY_MIN_2POW);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ assert(size2bin[i] == binind);
+ }
+ for (; i < qspace_min; i++) {
+ size = pow2_ceil(i);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ assert(size2bin[i] == binind);
+ }
+# endif
+ /* Quantum-spaced. */
+ for (; i <= qspace_max; i++) {
+ size = QUANTUM_CEILING(i);
+ binind = ntbins + (size >> QUANTUM_2POW) - 1;
+ assert(size2bin[i] == binind);
+ }
+ /* Cacheline-spaced. */
+ for (; i <= cspace_max; i++) {
+ size = CACHELINE_CEILING(i);
+ binind = ntbins + nqbins + ((size - cspace_min) >>
+ CACHELINE_2POW);
+ assert(size2bin[i] == binind);
+ }
+ /* Sub-page. */
+ for (; i <= sspace_max; i++) {
+ size = SUBPAGE_CEILING(i);
+ binind = ntbins + nqbins + ncbins + ((size - sspace_min)
+ >> SUBPAGE_2POW);
+ assert(size2bin[i] == binind);
+ }
+}
+#endif
+
+static bool
+size2bin_init(void)
+{
+
+ if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+ || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
+ return (size2bin_init_hard());
+
+ size2bin = const_size2bin;
+#ifdef MALLOC_DEBUG
+ assert(sizeof(const_size2bin) == bin_maxclass + 1);
+ size2bin_validate();
+#endif
+ return (false);
+}
+
+static bool
+size2bin_init_hard(void)
+{
+ size_t i, size, binind;
+ uint8_t *custom_size2bin;
+
+ assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+ || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
+
+ custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
+ if (custom_size2bin == NULL)
+ return (true);
+
+ custom_size2bin[0] = 0xffU;
+ i = 1;
+#ifdef MALLOC_TINY
+ /* Tiny. */
+ for (; i < (1U << TINY_MIN_2POW); i++) {
+ size = pow2_ceil(1U << TINY_MIN_2POW);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ custom_size2bin[i] = binind;
+ }
+ for (; i < qspace_min; i++) {
+ size = pow2_ceil(i);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ custom_size2bin[i] = binind;
+ }
+#endif
+ /* Quantum-spaced. */
+ for (; i <= qspace_max; i++) {
+ size = QUANTUM_CEILING(i);
+ binind = ntbins + (size >> QUANTUM_2POW) - 1;
+ custom_size2bin[i] = binind;
+ }
+ /* Cacheline-spaced. */
+ for (; i <= cspace_max; i++) {
+ size = CACHELINE_CEILING(i);
+ binind = ntbins + nqbins + ((size - cspace_min) >>
+ CACHELINE_2POW);
+ custom_size2bin[i] = binind;
+ }
+ /* Sub-page. */
+ for (; i <= sspace_max; i++) {
+ size = SUBPAGE_CEILING(i);
+ binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
+ SUBPAGE_2POW);
+ custom_size2bin[i] = binind;
+ }
+
+ size2bin = custom_size2bin;
+#ifdef MALLOC_DEBUG
+ size2bin_validate();
+#endif
+ return (false);
+}
+
+static unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int fd, nread, column;
+ char buf[1];
+ static const char matchstr[] = "processor\t:";
+
+ /*
+ * sysconf(3) would be the preferred method for determining the number
+ * of CPUs, but it uses malloc internally, which causes untennable
+ * recursion during malloc initialization.
+ */
+ fd = open("/proc/cpuinfo", O_RDONLY);
+ if (fd == -1)
+ return (1); /* Error. */
+ /*
+ * Count the number of occurrences of matchstr at the beginnings of
+ * lines. This treats hyperthreaded CPUs as multiple processors.
+ */
+ column = 0;
+ ret = 0;
+ while (true) {
+ nread = read(fd, &buf, sizeof(buf));
+ if (nread <= 0)
+ break; /* EOF or error. */
+
+ if (buf[0] == '\n')
+ column = 0;
+ else if (column != -1) {
+ if (buf[0] == matchstr[column]) {
+ column++;
+ if (column == sizeof(matchstr) - 1) {
+ column = -1;
+ ret++;
+ }
+ } else
+ column = -1;
+ }
+ }
+ if (ret == 0)
+ ret = 1; /* Something went wrong in the parser. */
+ close(fd);
+
+ return (ret);
+}
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+
+static bool
+malloc_init_hard(void)
+{
+ unsigned i;
+ int linklen;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+
+ malloc_mutex_lock(&init_lock);
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+ }
+
+ /* Get number of CPUs. */
+ ncpus = malloc_ncpus();
+
+ /* Get page size. */
+ {
+ long result;
+
+ result = sysconf(_SC_PAGESIZE);
+ assert(result != -1);
+ pagesize = (unsigned)result;
+
+ /*
+ * We assume that pagesize is a power of 2 when calculating
+ * pagesize_mask and pagesize_2pow.
+ */
+ assert(((result - 1) & result) == 0);
+ pagesize_mask = result - 1;
+ pagesize_2pow = ffs((int)result) - 1;
+ }
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if (issetugid() == 0 && (opts =
+ getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the
+ * program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ assert(false);
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto MALLOC_OUT;
+ }
+ }
+MALLOC_OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'b':
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold >>= 1;
+#endif
+ break;
+ case 'B':
+#ifdef MALLOC_BALANCE
+ if (opt_balance_threshold == 0)
+ opt_balance_threshold = 1;
+ else if ((opt_balance_threshold << 1)
+ > opt_balance_threshold)
+ opt_balance_threshold <<= 1;
+#endif
+ break;
+ case 'c':
+ if (opt_cspace_max_2pow - 1 >
+ opt_qspace_max_2pow &&
+ opt_cspace_max_2pow >
+ CACHELINE_2POW)
+ opt_cspace_max_2pow--;
+ break;
+ case 'C':
+ if (opt_cspace_max_2pow < pagesize_2pow
+ - 1)
+ opt_cspace_max_2pow++;
+ break;
+ case 'd':
+#ifdef MALLOC_DSS
+ opt_dss = false;
+#endif
+ break;
+ case 'D':
+#ifdef MALLOC_DSS
+ opt_dss = true;
+#endif
+ break;
+ case 'f':
+ opt_dirty_max >>= 1;
+ break;
+ case 'F':
+ if (opt_dirty_max == 0)
+ opt_dirty_max = 1;
+ else if ((opt_dirty_max << 1) != 0)
+ opt_dirty_max <<= 1;
+ break;
+#ifdef MALLOC_MAG
+ case 'g':
+ opt_mag = false;
+ break;
+ case 'G':
+ opt_mag = true;
+ break;
+#endif
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, so chunks can never be
+ * smaller than two pages.
+ */
+ if (opt_chunk_2pow > pagesize_2pow + 1)
+ opt_chunk_2pow--;
+ break;
+ case 'K':
+ if (opt_chunk_2pow + 1 <
+ (sizeof(size_t) << 3))
+ opt_chunk_2pow++;
+ break;
+ case 'm':
+#ifdef MALLOC_DSS
+ opt_mmap = false;
+#endif
+ break;
+ case 'M':
+#ifdef MALLOC_DSS
+ opt_mmap = true;
+#endif
+ break;
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+ case 'p':
+ opt_print_stats = false;
+ break;
+ case 'P':
+ opt_print_stats = true;
+ break;
+ case 'q':
+ if (opt_qspace_max_2pow > QUANTUM_2POW)
+ opt_qspace_max_2pow--;
+ break;
+ case 'Q':
+ if (opt_qspace_max_2pow + 1 <
+ opt_cspace_max_2pow)
+ opt_qspace_max_2pow++;
+ break;
+#ifdef MALLOC_MAG
+ case 'R':
+ if (opt_mag_size_2pow + 1 < (8U <<
+ SIZEOF_PTR_2POW))
+ opt_mag_size_2pow++;
+ break;
+ case 'r':
+ /*
+ * Make sure there's always at least
+ * one round per magazine.
+ */
+ if ((1U << (opt_mag_size_2pow-1)) >=
+ sizeof(mag_t))
+ opt_mag_size_2pow--;
+ break;
+#endif
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+#ifdef MALLOC_DSS
+ /* Make sure that there is some method for acquiring memory. */
+ if (opt_dss == false && opt_mmap == false)
+ opt_mmap = true;
+#endif
+
+ /* Take care to call atexit() only once. */
+ if (opt_print_stats) {
+ /* Print statistics at exit. */
+ atexit(malloc_print_stats);
+ }
+
+ /* Register fork handlers. */
+ pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
+
+#ifdef MALLOC_MAG
+ /*
+ * Calculate the actual number of rounds per magazine, taking into
+ * account header overhead.
+ */
+ max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
+ (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
+#endif
+
+ /* Set variables according to the value of opt_[qc]space_max_2pow. */
+ qspace_max = (1U << opt_qspace_max_2pow);
+ cspace_min = CACHELINE_CEILING(qspace_max);
+ if (cspace_min == qspace_max)
+ cspace_min += CACHELINE;
+ cspace_max = (1U << opt_cspace_max_2pow);
+ sspace_min = SUBPAGE_CEILING(cspace_max);
+ if (sspace_min == cspace_max)
+ sspace_min += SUBPAGE;
+ assert(sspace_min < pagesize);
+ sspace_max = pagesize - SUBPAGE;
+
+#ifdef MALLOC_TINY
+ assert(QUANTUM_2POW >= TINY_MIN_2POW);
+#endif
+ assert(ntbins <= QUANTUM_2POW);
+ nqbins = qspace_max >> QUANTUM_2POW;
+ ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
+ nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
+ nbins = ntbins + nqbins + ncbins + nsbins;
+
+ if (size2bin_init()) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+
+ /* Set variables according to the value of opt_chunk_2pow. */
+ chunksize = (1LU << opt_chunk_2pow);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> pagesize_2pow);
+ {
+ size_t header_size;
+
+ /*
+ * Compute the header size such that it is large enough to
+ * contain the page map.
+ */
+ header_size = sizeof(arena_chunk_t) +
+ (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+ arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+ ((header_size & pagesize_mask) != 0);
+ }
+ arena_maxclass = chunksize - (arena_chunk_header_npages <<
+ pagesize_2pow);
+
+ UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+ memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+ /* Various sanity checks that regard configuration. */
+ assert(chunksize >= pagesize);
+
+ /* Initialize chunks data. */
+ if (malloc_mutex_init(&huge_mtx)) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+ extent_tree_ad_new(&huge);
+#ifdef MALLOC_DSS
+ if (malloc_mutex_init(&dss_mtx)) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+ dss_base = sbrk(0);
+ dss_prev = dss_base;
+ dss_max = dss_base;
+ extent_tree_szad_new(&dss_chunks_szad);
+ extent_tree_ad_new(&dss_chunks_ad);
+#endif
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+#endif
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+ /*
+ * Allocate a base chunk here, since it doesn't actually have to be
+ * chunk-aligned. Doing this before allocating any other chunks allows
+ * the use of space that would otherwise be wasted.
+ */
+ if (opt_dss)
+ base_pages_alloc(0);
+#endif
+ base_nodes = NULL;
+ if (malloc_mutex_init(&base_mtx)) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create twice as many arenas as there are
+ * CPUs by default.
+ */
+ opt_narenas_lshift++;
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+#ifdef MALLOC_BALANCE
+ assert(narenas != 0);
+ for (narenas_2pow = 0;
+ (narenas >> (narenas_2pow + 1)) != 0;
+ narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+# ifndef MALLOC_BALANCE
+ next_arena = 0;
+# endif
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+ arenas_map = arenas[0];
+#endif
+ /*
+ * Seed here for the initial thread, since choose_arena_hard() is only
+ * called for other threads. The seed value doesn't really matter.
+ */
+#ifdef MALLOC_BALANCE
+ SPRN(balance, 42);
+#endif
+
+ malloc_spin_init(&arenas_lock);
+
+ malloc_initialized = true;
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+}
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+void *
+malloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ ret = imalloc(size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+ int ret;
+ void *result;
+
+ if (malloc_init())
+ result = NULL;
+ else {
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0
+ || alignment < sizeof(void *)) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+ result = NULL;
+ ret = EINVAL;
+ goto RETURN;
+ }
+
+ result = ipalloc(alignment, size);
+ }
+
+ if (result == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): out of memory\n",
+ "", "");
+ abort();
+ }
+ ret = ENOMEM;
+ goto RETURN;
+ }
+
+ *memptr = result;
+ ret = 0;
+
+RETURN:
+ UTRACE(0, size, result);
+ return (ret);
+}
+
+void *
+calloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+ num_size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+void *
+realloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ }
+
+RETURN:
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+void
+free(void *ptr)
+{
+
+ UTRACE(ptr, 0, 0);
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ idalloc(ptr);
+ }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions.
+ */
+
+/******************************************************************************/
+/*
+ * Begin thread cache.
+ */
+
+/*
+ * We provide an unpublished interface in order to receive notifications from
+ * the pthreads library whenever a thread exits. This allows us to clean up
+ * thread caches.
+ */
+void
+_malloc_thread_cleanup(void)
+{
+
+#ifdef MALLOC_MAG
+ if (mag_rack != NULL) {
+ assert(mag_rack != (void *)-1);
+ mag_rack_destroy(mag_rack);
+#ifdef MALLOC_DEBUG
+ mag_rack = (void *)-1;
+#endif
+ }
+#endif
+}
+
+/*
+ * The following functions are used by threading libraries for protection of
+ * malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&huge_mtx);
+
+#ifdef MALLOC_DSS
+ malloc_mutex_lock(&dss_mtx);
+#endif
+}
+
+void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+#ifdef MALLOC_DSS
+ malloc_mutex_unlock(&dss_mtx);
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
--- /dev/null
+.\" Copyright (c) 1980, 1991, 1993
+.\" The Regents of the University of California. All rights reserved.
+.\"
+.\" This code is derived from software contributed to Berkeley by
+.\" the American National Standards Committee X3, on Information
+.\" Processing Systems.
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\" notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\" notice, this list of conditions and the following disclaimer in the
+.\" documentation and/or other materials provided with the distribution.
+.\" 3. Neither the name of the University nor the names of its contributors
+.\" may be used to endorse or promote products derived from this software
+.\" without specific prior written permission.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+.\" SUCH DAMAGE.
+.\"
+.\" @(#)malloc.3 8.1 (Berkeley) 6/4/93
+.\" $FreeBSD: head/lib/libc/stdlib/malloc.3 182225 2008-08-27 02:00:53Z jasone $
+.\"
+.Dd August 26, 2008
+.Dt MALLOC 3
+.Os
+.Sh NAME
+.Nm malloc , calloc , realloc , free , reallocf , malloc_usable_size
+.Nd general purpose memory allocation functions
+.Sh LIBRARY
+.Lb libc
+.Sh SYNOPSIS
+.In stdlib.h
+.Ft void *
+.Fn malloc "size_t size"
+.Ft void *
+.Fn calloc "size_t number" "size_t size"
+.Ft void *
+.Fn realloc "void *ptr" "size_t size"
+.Ft void *
+.Fn reallocf "void *ptr" "size_t size"
+.Ft void
+.Fn free "void *ptr"
+.Ft const char *
+.Va _malloc_options ;
+.Ft void
+.Fo \*(lp*_malloc_message\*(rp
+.Fa "const char *p1" "const char *p2" "const char *p3" "const char *p4"
+.Fc
+.In malloc_np.h
+.Ft size_t
+.Fn malloc_usable_size "const void *ptr"
+.Sh DESCRIPTION
+The
+.Fn malloc
+function allocates
+.Fa size
+bytes of uninitialized memory.
+The allocated space is suitably aligned (after possible pointer coercion)
+for storage of any type of object.
+.Pp
+The
+.Fn calloc
+function allocates space for
+.Fa number
+objects,
+each
+.Fa size
+bytes in length.
+The result is identical to calling
+.Fn malloc
+with an argument of
+.Dq "number * size" ,
+with the exception that the allocated memory is explicitly initialized
+to zero bytes.
+.Pp
+The
+.Fn realloc
+function changes the size of the previously allocated memory referenced by
+.Fa ptr
+to
+.Fa size
+bytes.
+The contents of the memory are unchanged up to the lesser of the new and
+old sizes.
+If the new size is larger,
+the contents of the newly allocated portion of the memory are undefined.
+Upon success, the memory referenced by
+.Fa ptr
+is freed and a pointer to the newly allocated memory is returned.
+Note that
+.Fn realloc
+and
+.Fn reallocf
+may move the memory allocation, resulting in a different return value than
+.Fa ptr .
+If
+.Fa ptr
+is
+.Dv NULL ,
+the
+.Fn realloc
+function behaves identically to
+.Fn malloc
+for the specified size.
+.Pp
+The
+.Fn reallocf
+function is identical to the
+.Fn realloc
+function, except that it
+will free the passed pointer when the requested memory cannot be allocated.
+This is a
+.Fx
+specific API designed to ease the problems with traditional coding styles
+for realloc causing memory leaks in libraries.
+.Pp
+The
+.Fn free
+function causes the allocated memory referenced by
+.Fa ptr
+to be made available for future allocations.
+If
+.Fa ptr
+is
+.Dv NULL ,
+no action occurs.
+.Pp
+The
+.Fn malloc_usable_size
+function returns the usable size of the allocation pointed to by
+.Fa ptr .
+The return value may be larger than the size that was requested during
+allocation.
+The
+.Fn malloc_usable_size
+function is not a mechanism for in-place
+.Fn realloc ;
+rather it is provided solely as a tool for introspection purposes.
+Any discrepancy between the requested allocation size and the size reported by
+.Fn malloc_usable_size
+should not be depended on, since such behavior is entirely
+implementation-dependent.
+.Sh TUNING
+Once, when the first call is made to one of these memory allocation
+routines, various flags will be set or reset, which affects the
+workings of this allocator implementation.
+.Pp
+The
+.Dq name
+of the file referenced by the symbolic link named
+.Pa /etc/malloc.conf ,
+the value of the environment variable
+.Ev MALLOC_OPTIONS ,
+and the string pointed to by the global variable
+.Va _malloc_options
+will be interpreted, in that order, from left to right as flags.
+.Pp
+Each flag is a single letter, optionally prefixed by a non-negative base 10
+integer repetition count.
+For example,
+.Dq 3N
+is equivalent to
+.Dq NNN .
+Some flags control parameter magnitudes, where uppercase increases the
+magnitude, and lowercase decreases the magnitude.
+Other flags control boolean parameters, where uppercase indicates that a
+behavior is set, or on, and lowercase means that a behavior is not set, or off.
+.Bl -tag -width indent
+.It A
+All warnings (except for the warning about unknown
+flags being set) become fatal.
+The process will call
+.Xr abort 3
+in these cases.
+.It B
+Double/halve the per-arena lock contention threshold at which a thread is
+randomly re-assigned to an arena.
+This dynamic load balancing tends to push threads away from highly contended
+arenas, which avoids worst case contention scenarios in which threads
+disproportionately utilize arenas.
+However, due to the highly dynamic load that applications may place on the
+allocator, it is impossible for the allocator to know in advance how sensitive
+it should be to contention over arenas.
+Therefore, some applications may benefit from increasing or decreasing this
+threshold parameter.
+This option is not available for some configurations (non-PIC).
+.It C
+Double/halve the size of the maximum size class that is a multiple of the
+cacheline size (64).
+Above this size, subpage spacing (256 bytes) is used for size classes.
+The default value is 512 bytes.
+.It D
+Use
+.Xr sbrk 2
+to acquire memory in the data storage segment (DSS).
+This option is enabled by default.
+See the
+.Dq M
+option for related information and interactions.
+.It F
+Double/halve the per-arena maximum number of dirty unused pages that are
+allowed to accumulate before informing the kernel about at least half of those
+pages via
+.Xr madvise 2 .
+This provides the kernel with sufficient information to recycle dirty pages if
+physical memory becomes scarce and the pages remain unused.
+The default is 512 pages per arena;
+.Ev MALLOC_OPTIONS=10f
+will prevent any dirty unused pages from accumulating.
+.It G
+When there are multiple threads, use thread-specific caching for objects that
+are smaller than one page.
+This option is enabled by default.
+Thread-specific caching allows many allocations to be satisfied without
+performing any thread synchronization, at the cost of increased memory use.
+See the
+.Dq R
+option for related tuning information.
+This option is not available for some configurations (non-PIC).
+.It J
+Each byte of new memory allocated by
+.Fn malloc ,
+.Fn realloc
+or
+.Fn reallocf
+will be initialized to 0xa5.
+All memory returned by
+.Fn free ,
+.Fn realloc
+or
+.Fn reallocf
+will be initialized to 0x5a.
+This is intended for debugging and will impact performance negatively.
+.It K
+Double/halve the virtual memory chunk size.
+The default chunk size is 1 MB.
+.It M
+Use
+.Xr mmap 2
+to acquire anonymously mapped memory.
+This option is enabled by default.
+If both the
+.Dq D
+and
+.Dq M
+options are enabled, the allocator prefers the DSS over anonymous mappings,
+but allocation only fails if memory cannot be acquired via either method.
+If neither option is enabled, then the
+.Dq M
+option is implicitly enabled in order to assure that there is a method for
+acquiring memory.
+.It N
+Double/halve the number of arenas.
+The default number of arenas is two times the number of CPUs, or one if there
+is a single CPU.
+.It P
+Various statistics are printed at program exit via an
+.Xr atexit 3
+function.
+This has the potential to cause deadlock for a multi-threaded process that exits
+while one or more threads are executing in the memory allocation functions.
+Therefore, this option should only be used with care; it is primarily intended
+as a performance tuning aid during application development.
+.It Q
+Double/halve the size of the maximum size class that is a multiple of the
+quantum (8 or 16 bytes, depending on architecture).
+Above this size, cacheline spacing is used for size classes.
+The default value is 128 bytes.
+.It R
+Double/halve magazine size, which approximately doubles/halves the number of
+rounds in each magazine.
+Magazines are used by the thread-specific caching machinery to acquire and
+release objects in bulk.
+Increasing the magazine size decreases locking overhead, at the expense of
+increased memory usage.
+This option is not available for some configurations (non-PIC).
+.It U
+Generate
+.Dq utrace
+entries for
+.Xr ktrace 1 ,
+for all operations.
+Consult the source for details on this option.
+.It V
+Attempting to allocate zero bytes will return a
+.Dv NULL
+pointer instead of
+a valid pointer.
+(The default behavior is to make a minimal allocation and return a
+pointer to it.)
+This option is provided for System V compatibility.
+This option is incompatible with the
+.Dq X
+option.
+.It X
+Rather than return failure for any allocation function,
+display a diagnostic message on
+.Dv stderr
+and cause the program to drop
+core (using
+.Xr abort 3 ) .
+This option should be set at compile time by including the following in
+the source code:
+.Bd -literal -offset indent
+_malloc_options = "X";
+.Ed
+.It Z
+Each byte of new memory allocated by
+.Fn malloc ,
+.Fn realloc
+or
+.Fn reallocf
+will be initialized to 0.
+Note that this initialization only happens once for each byte, so
+.Fn realloc
+and
+.Fn reallocf
+calls do not zero memory that was previously allocated.
+This is intended for debugging and will impact performance negatively.
+.El
+.Pp
+The
+.Dq J
+and
+.Dq Z
+options are intended for testing and debugging.
+An application which changes its behavior when these options are used
+is flawed.
+.Sh IMPLEMENTATION NOTES
+Traditionally, allocators have used
+.Xr sbrk 2
+to obtain memory, which is suboptimal for several reasons, including race
+conditions, increased fragmentation, and artificial limitations on maximum
+usable memory.
+This allocator uses both
+.Xr sbrk 2
+and
+.Xr mmap 2
+by default, but it can be configured at run time to use only one or the other.
+If resource limits are not a primary concern, the preferred configuration is
+.Ev MALLOC_OPTIONS=dM
+or
+.Ev MALLOC_OPTIONS=DM .
+When so configured, the
+.Ar datasize
+resource limit has little practical effect for typical applications; use
+.Ev MALLOC_OPTIONS=Dm
+if that is a concern.
+Regardless of allocator configuration, the
+.Ar vmemoryuse
+resource limit can be used to bound the total virtual memory used by a
+process, as described in
+.Xr limits 1 .
+.Pp
+This allocator uses multiple arenas in order to reduce lock contention for
+threaded programs on multi-processor systems.
+This works well with regard to threading scalability, but incurs some costs.
+There is a small fixed per-arena overhead, and additionally, arenas manage
+memory completely independently of each other, which means a small fixed
+increase in overall memory fragmentation.
+These overheads are not generally an issue, given the number of arenas normally
+used.
+Note that using substantially more arenas than the default is not likely to
+improve performance, mainly due to reduced cache performance.
+However, it may make sense to reduce the number of arenas if an application
+does not make much use of the allocation functions.
+.Pp
+In addition to multiple arenas, this allocator supports thread-specific
+caching for small objects (smaller than one page), in order to make it
+possible to completely avoid synchronization for most small allocation requests.
+Such caching allows very fast allocation in the common case, but it increases
+memory usage and fragmentation, since a bounded number of objects can remain
+allocated in each thread cache.
+.Pp
+Memory is conceptually broken into equal-sized chunks, where the chunk size is
+a power of two that is greater than the page size.
+Chunks are always aligned to multiples of the chunk size.
+This alignment makes it possible to find metadata for user objects very
+quickly.
+.Pp
+User objects are broken into three categories according to size: small, large,
+and huge.
+Small objects are smaller than one page.
+Large objects are smaller than the chunk size.
+Huge objects are a multiple of the chunk size.
+Small and large objects are managed by arenas; huge objects are managed
+separately in a single data structure that is shared by all threads.
+Huge objects are used by applications infrequently enough that this single
+data structure is not a scalability issue.
+.Pp
+Each chunk that is managed by an arena tracks its contents as runs of
+contiguous pages (unused, backing a set of small objects, or backing one large
+object).
+The combination of chunk alignment and chunk page maps makes it possible to
+determine all metadata regarding small and large allocations in constant time.
+.Pp
+Small objects are managed in groups by page runs.
+Each run maintains a bitmap that tracks which regions are in use.
+Allocation requests that are no more than half the quantum (8 or 16, depending
+on architecture) are rounded up to the nearest power of two.
+Allocation requests that are more than half the quantum, but no more than the
+minimum cacheline-multiple size class (see the
+.Dq Q
+option) are rounded up to the nearest multiple of the quantum.
+Allocation requests that are more than the minumum cacheline-multiple size
+class, but no more than the minimum subpage-multiple size class (see the
+.Dq C
+option) are rounded up to the nearest multiple of the cacheline size (64).
+Allocation requests that are more than the minimum subpage-multiple size class
+are rounded up to the nearest multiple of the subpage size (256).
+Allocation requests that are more than one page, but small enough to fit in
+an arena-managed chunk (see the
+.Dq K
+option), are rounded up to the nearest run size.
+Allocation requests that are too large to fit in an arena-managed chunk are
+rounded up to the nearest multiple of the chunk size.
+.Pp
+Allocations are packed tightly together, which can be an issue for
+multi-threaded applications.
+If you need to assure that allocations do not suffer from cacheline sharing,
+round your allocation requests up to the nearest multiple of the cacheline
+size.
+.Sh DEBUGGING MALLOC PROBLEMS
+The first thing to do is to set the
+.Dq A
+option.
+This option forces a coredump (if possible) at the first sign of trouble,
+rather than the normal policy of trying to continue if at all possible.
+.Pp
+It is probably also a good idea to recompile the program with suitable
+options and symbols for debugger support.
+.Pp
+If the program starts to give unusual results, coredump or generally behave
+differently without emitting any of the messages mentioned in the next
+section, it is likely because it depends on the storage being filled with
+zero bytes.
+Try running it with the
+.Dq Z
+option set;
+if that improves the situation, this diagnosis has been confirmed.
+If the program still misbehaves,
+the likely problem is accessing memory outside the allocated area.
+.Pp
+Alternatively, if the symptoms are not easy to reproduce, setting the
+.Dq J
+option may help provoke the problem.
+.Pp
+In truly difficult cases, the
+.Dq U
+option, if supported by the kernel, can provide a detailed trace of
+all calls made to these functions.
+.Pp
+Unfortunately this implementation does not provide much detail about
+the problems it detects; the performance impact for storing such information
+would be prohibitive.
+There are a number of allocator implementations available on the Internet
+which focus on detecting and pinpointing problems by trading performance for
+extra sanity checks and detailed diagnostics.
+.Sh DIAGNOSTIC MESSAGES
+If any of the memory allocation/deallocation functions detect an error or
+warning condition, a message will be printed to file descriptor
+.Dv STDERR_FILENO .
+Errors will result in the process dumping core.
+If the
+.Dq A
+option is set, all warnings are treated as errors.
+.Pp
+The
+.Va _malloc_message
+variable allows the programmer to override the function which emits
+the text strings forming the errors and warnings if for some reason
+the
+.Dv stderr
+file descriptor is not suitable for this.
+Please note that doing anything which tries to allocate memory in
+this function is likely to result in a crash or deadlock.
+.Pp
+All messages are prefixed by
+.Dq Ao Ar progname Ac Ns Li : (malloc) .
+.Sh RETURN VALUES
+The
+.Fn malloc
+and
+.Fn calloc
+functions return a pointer to the allocated memory if successful; otherwise
+a
+.Dv NULL
+pointer is returned and
+.Va errno
+is set to
+.Er ENOMEM .
+.Pp
+The
+.Fn realloc
+and
+.Fn reallocf
+functions return a pointer, possibly identical to
+.Fa ptr ,
+to the allocated memory
+if successful; otherwise a
+.Dv NULL
+pointer is returned, and
+.Va errno
+is set to
+.Er ENOMEM
+if the error was the result of an allocation failure.
+The
+.Fn realloc
+function always leaves the original buffer intact
+when an error occurs, whereas
+.Fn reallocf
+deallocates it in this case.
+.Pp
+The
+.Fn free
+function returns no value.
+.Pp
+The
+.Fn malloc_usable_size
+function returns the usable size of the allocation pointed to by
+.Fa ptr .
+.Sh ENVIRONMENT
+The following environment variables affect the execution of the allocation
+functions:
+.Bl -tag -width ".Ev MALLOC_OPTIONS"
+.It Ev MALLOC_OPTIONS
+If the environment variable
+.Ev MALLOC_OPTIONS
+is set, the characters it contains will be interpreted as flags to the
+allocation functions.
+.El
+.Sh EXAMPLES
+To dump core whenever a problem occurs:
+.Pp
+.Bd -literal -offset indent
+ln -s 'A' /etc/malloc.conf
+.Ed
+.Pp
+To specify in the source that a program does no return value checking
+on calls to these functions:
+.Bd -literal -offset indent
+_malloc_options = "X";
+.Ed
+.Sh SEE ALSO
+.Xr limits 1 ,
+.Xr madvise 2 ,
+.Xr mmap 2 ,
+.Xr sbrk 2 ,
+.Xr alloca 3 ,
+.Xr atexit 3 ,
+.Xr getpagesize 3 ,
+.Xr memory 3 ,
+.Xr posix_memalign 3
+.Sh STANDARDS
+The
+.Fn malloc ,
+.Fn calloc ,
+.Fn realloc
+and
+.Fn free
+functions conform to
+.St -isoC .
+.Sh HISTORY
+The
+.Fn reallocf
+function first appeared in
+.Fx 3.0 .
+.Pp
+The
+.Fn malloc_usable_size
+function first appeared in
+.Fx 7.0 .
--- /dev/null
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Thread-specific caching is used if there are multiple threads, which
+ * reduces the amount of locking.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ * |=======================================|
+ * | Category | Subcategory | Size |
+ * |=======================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |------------------+---------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 96 |
+ * | | | 112 |
+ * | | | 128 |
+ * | |------------------+---------|
+ * | | Cacheline-spaced | 192 |
+ * | | | 256 |
+ * | | | 320 |
+ * | | | 384 |
+ * | | | 448 |
+ * | | | 512 |
+ * | |------------------+---------|
+ * | | Sub-page | 760 |
+ * | | | 1024 |
+ * | | | 1280 |
+ * | | | ... |
+ * | | | 3328 |
+ * | | | 3584 |
+ * | | | 3840 |
+ * |=======================================|
+ * | Large | 4 kB |
+ * | | 8 kB |
+ * | | 12 kB |
+ * | | ... |
+ * | | 1012 kB |
+ * | | 1016 kB |
+ * | | 1020 kB |
+ * |=======================================|
+ * | Huge | 1 MB |
+ * | | 2 MB |
+ * | | 3 MB |
+ * | | ... |
+ * |=======================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ * Small : Each size class is segregated into its own set of runs. Each run
+ * maintains a bitmap of which regions are free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+/* #define MALLOC_PRODUCTION */
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* MALLOC_STATS enables statistics calculation. */
+# define MALLOC_STATS
+#endif
+
+/*
+ * MALLOC_TINY enables support for tiny objects, which are smaller than one
+ * quantum.
+ */
+#define MALLOC_TINY
+
+/*
+ * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
+ * objects. This makes it possible to allocate/deallocate objects without any
+ * locking when the cache is in the steady state.
+ */
+#define MALLOC_MAG
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+#define MALLOC_BALANCE
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS). In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+#define MALLOC_DSS
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $");
+
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+# define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#include <sys/mman.h>
+#include <sys/param.h>
+#include <sys/stddef.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#include <sys/uio.h>
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/cpufunc.h>
+#include <machine/vmparam.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <pthread.h>
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <strings.h>
+#include <unistd.h>
+
+#include "un-namespace.h"
+
+#ifdef MALLOC_DEBUG
+# ifdef NDEBUG
+# undef NDEBUG
+# endif
+#else
+# ifndef NDEBUG
+# define NDEBUG
+# endif
+#endif
+#include <assert.h>
+
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/*
+ * The const_size2bin table is sized according to PAGESIZE_2POW, but for
+ * correctness reasons, we never assume that
+ * (pagesize == (1U << * PAGESIZE_2POW)).
+ *
+ * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
+ */
+#ifdef __i386__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+#endif
+#ifdef __alpha__
+# define PAGESIZE_2POW 13
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define PAGESIZE_2POW 13
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __amd64__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __mips__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __powerpc__
+# define PAGESIZE_2POW 12
+# define QUANTUM_2POW 4
+# define SIZEOF_PTR_2POW 2
+#endif
+
+#define QUANTUM ((size_t)(1U << QUANTUM_2POW))
+#define QUANTUM_MASK (QUANTUM - 1)
+
+#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_MAG requires TLS. */
+# ifdef MALLOC_MAG
+# undef MALLOC_MAG
+# endif
+ /* MALLOC_BALANCE requires TLS. */
+# ifdef MALLOC_BALANCE
+# undef MALLOC_BALANCE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define CHUNK_2POW_DEFAULT 20
+
+/* Maximum number of dirty pages per arena. */
+#define DIRTY_MAX_DEFAULT (1U << 9)
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing.
+ * In addition, this controls the spacing of cacheline-spaced size classes.
+ */
+#define CACHELINE_2POW 6
+#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
+#define CACHELINE_MASK (CACHELINE - 1)
+
+/*
+ * Subpages are an artificially designated partitioning of pages. Their only
+ * purpose is to support subpage-spaced size classes.
+ *
+ * There must be at least 4 subpages per page, due to the way size classes are
+ * handled.
+ */
+#define SUBPAGE_2POW 8
+#define SUBPAGE ((size_t)(1U << SUBPAGE_2POW))
+#define SUBPAGE_MASK (SUBPAGE - 1)
+
+#ifdef MALLOC_TINY
+ /* Smallest size class to support. */
+# define TINY_MIN_2POW 1
+#endif
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define QSPACE_MAX_2POW_DEFAULT 7
+
+/*
+ * Maximum size class that is a multiple of the cacheline, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define CSPACE_MAX_2POW_DEFAULT 9
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
+#define RUN_MAX_SMALL (12 * pagesize)
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define SPIN_LIMIT_2POW 11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define BLOCK_COST_2POW 4
+
+#ifdef MALLOC_MAG
+ /*
+ * Default magazine size, in bytes. max_rounds is calculated to make
+ * optimal use of the space, leaving just enough room for the magazine
+ * header.
+ */
+# define MAG_SIZE_2POW_DEFAULT 9
+#endif
+
+#ifdef MALLOC_BALANCE
+ /*
+ * We use an exponential moving average to track recent lock contention,
+ * where the size of the history window is N, and alpha=2/(N+1).
+ *
+ * Due to integer math rounding, very small values here can cause
+ * substantial degradation in accuracy, thus making the moving average decay
+ * faster than it would with precise calculation.
+ */
+# define BALANCE_ALPHA_INV_2POW 9
+
+ /*
+ * Threshold value for the exponential moving contention average at which to
+ * re-assign a thread.
+ */
+# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+typedef struct {
+ spinlock_t lock;
+} malloc_mutex_t;
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+/* Used to avoid initialization races. */
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+#ifdef MALLOC_MAG
+ /* Number of magazine reloads from this bin. */
+ uint64_t nmags;
+#endif
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ unsigned long highruns;
+
+ /* Current number of runs in this bin. */
+ unsigned long curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /*
+ * Total number of purge sweeps, total number of madvise calls made,
+ * and total pages purged in order to keep dirty unused memory under
+ * control.
+ */
+ uint64_t npurge;
+ uint64_t nmadvise;
+ uint64_t purged;
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+ /* Number of times this arena reassigned a thread due to contention. */
+ uint64_t nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+ /* Number of chunks that were allocated. */
+ uint64_t nchunks;
+
+ /* High-water mark for number of chunks allocated. */
+ unsigned long highchunks;
+
+ /*
+ * Current number of chunks allocated. This value isn't maintained for
+ * any other purpose, so keep track of it in order to be able to set
+ * highchunks.
+ */
+ unsigned long curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+#ifdef MALLOC_DSS
+ /* Linkage for the size/address-ordered tree. */
+ rb_node(extent_node_t) link_szad;
+#endif
+
+ /* Linkage for the address-ordered tree. */
+ rb_node(extent_node_t) link_ad;
+
+ /* Pointer to the extent that this tree node is responsible for. */
+ void *addr;
+
+ /* Total region size. */
+ size_t size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Linkage for run trees. There are two disjoint uses:
+ *
+ * 1) arena_t's runs_avail tree.
+ * 2) arena_run_t conceptually uses this linkage for in-use non-full
+ * runs, rather than directly embedding linkage.
+ */
+ rb_node(arena_chunk_map_t) link;
+
+ /*
+ * Run address (or size) and various flags are stored together. The bit
+ * layout looks like (assuming 32-bit system):
+ *
+ * ???????? ???????? ????---- ---kdzla
+ *
+ * ? : Unallocated: Run address for first/last pages, unset for internal
+ * pages.
+ * Small: Run address.
+ * Large: Run size for first page, unset for trailing pages.
+ * - : Unused.
+ * k : key?
+ * d : dirty?
+ * z : zeroed?
+ * l : large?
+ * a : allocated?
+ *
+ * Following are example bit patterns for the three types of runs.
+ *
+ * r : run address
+ * s : run size
+ * x : don't care
+ * - : 0
+ * [dzla] : bit set
+ *
+ * Unallocated:
+ * ssssssss ssssssss ssss---- --------
+ * xxxxxxxx xxxxxxxx xxxx---- ----d---
+ * ssssssss ssssssss ssss---- -----z--
+ *
+ * Small:
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ *
+ * Large:
+ * ssssssss ssssssss ssss---- ------la
+ * -------- -------- -------- ------la
+ * -------- -------- -------- ------la
+ */
+ size_t bits;
+#define CHUNK_MAP_KEY ((size_t)0x10U)
+#define CHUNK_MAP_DIRTY ((size_t)0x08U)
+#define CHUNK_MAP_ZEROED ((size_t)0x04U)
+#define CHUNK_MAP_LARGE ((size_t)0x02U)
+#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunks_dirty tree. */
+ rb_node(arena_chunk_t) link_dirty;
+
+ /* Number of dirty pages. */
+ size_t ndirty;
+
+ /* Map of pages within chunk that keeps track of free/large/small. */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+ pthread_mutex_t lock;
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+#endif
+
+ /* Tree of dirty-page-containing chunks this arena manages. */
+ arena_chunk_tree_t chunks_dirty;
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. The spare is left in the arena's chunk trees
+ * until it is deleted.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+ /*
+ * Current count of pages within unused runs that are potentially
+ * dirty, and for which madvise(... MADV_FREE) has not been called. By
+ * tracking this, we can institute a limit on how much dirty unused
+ * memory is mapped for each arena.
+ */
+ size_t ndirty;
+
+ /*
+ * Size/address-ordered tree of this arena's available runs. This tree
+ * is used for first-best-fit run allocation.
+ */
+ arena_avail_tree_t runs_avail;
+
+#ifdef MALLOC_BALANCE
+ /*
+ * The arena load balancing machinery needs to keep track of how much
+ * lock contention there is. This value is exponentially averaged.
+ */
+ uint32_t contention;
+#endif
+
+ /*
+ * bins is used to store rings of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * 6 | 64 |
+ * : :
+ * : :
+ * 33 | 496 |
+ * 34 | 512 |
+ * --------+------+
+ * 35 | 1024 |
+ * 36 | 2048 |
+ * --------+------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Magazine data structures.
+ */
+
+#ifdef MALLOC_MAG
+typedef struct mag_s mag_t;
+struct mag_s {
+ size_t binind; /* Index of associated bin. */
+ size_t nrounds;
+ void *rounds[1]; /* Dynamically sized. */
+};
+
+/*
+ * Magazines are lazily allocated, but once created, they remain until the
+ * associated mag_rack is destroyed.
+ */
+typedef struct bin_mags_s bin_mags_t;
+struct bin_mags_s {
+ mag_t *curmag;
+ mag_t *sparemag;
+};
+
+typedef struct mag_rack_s mag_rack_t;
+struct mag_rack_s {
+ bin_mags_t bin_mags[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned ncpus;
+
+/* VM page size. */
+static size_t pagesize;
+static size_t pagesize_mask;
+static size_t pagesize_2pow;
+
+/* Various bin-related settings. */
+#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
+# define ntbins ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
+#else
+# define ntbins 0
+#endif
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned ncbins; /* Number of cacheline-spaced bins. */
+static unsigned nsbins; /* Number of subpage-spaced bins. */
+static unsigned nbins;
+#ifdef MALLOC_TINY
+# define tspace_max ((size_t)(QUANTUM >> 1))
+#endif
+#define qspace_min QUANTUM
+static size_t qspace_max;
+static size_t cspace_min;
+static size_t cspace_max;
+static size_t sspace_min;
+static size_t sspace_max;
+#define bin_maxclass sspace_max
+
+static uint8_t const *size2bin;
+/*
+ * const_size2bin is a static constant lookup table that in the common case can
+ * be used as-is for size2bin. For dynamically linked programs, this avoids
+ * a page of memory overhead per process.
+ */
+#define S2B_1(i) i,
+#define S2B_2(i) S2B_1(i) S2B_1(i)
+#define S2B_4(i) S2B_2(i) S2B_2(i)
+#define S2B_8(i) S2B_4(i) S2B_4(i)
+#define S2B_16(i) S2B_8(i) S2B_8(i)
+#define S2B_32(i) S2B_16(i) S2B_16(i)
+#define S2B_64(i) S2B_32(i) S2B_32(i)
+#define S2B_128(i) S2B_64(i) S2B_64(i)
+#define S2B_256(i) S2B_128(i) S2B_128(i)
+static const uint8_t const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
+ S2B_1(0xffU) /* 0 */
+#if (QUANTUM_2POW == 4)
+/* 64-bit system ************************/
+# ifdef MALLOC_TINY
+ S2B_2(0) /* 2 */
+ S2B_2(1) /* 4 */
+ S2B_4(2) /* 8 */
+ S2B_8(3) /* 16 */
+# define S2B_QMIN 3
+# else
+ S2B_16(0) /* 16 */
+# define S2B_QMIN 0
+# endif
+ S2B_16(S2B_QMIN + 1) /* 32 */
+ S2B_16(S2B_QMIN + 2) /* 48 */
+ S2B_16(S2B_QMIN + 3) /* 64 */
+ S2B_16(S2B_QMIN + 4) /* 80 */
+ S2B_16(S2B_QMIN + 5) /* 96 */
+ S2B_16(S2B_QMIN + 6) /* 112 */
+ S2B_16(S2B_QMIN + 7) /* 128 */
+# define S2B_CMIN (S2B_QMIN + 8)
+#else
+/* 32-bit system ************************/
+# ifdef MALLOC_TINY
+ S2B_2(0) /* 2 */
+ S2B_2(1) /* 4 */
+ S2B_4(2) /* 8 */
+# define S2B_QMIN 2
+# else
+ S2B_8(0) /* 8 */
+# define S2B_QMIN 0
+# endif
+ S2B_8(S2B_QMIN + 1) /* 16 */
+ S2B_8(S2B_QMIN + 2) /* 24 */
+ S2B_8(S2B_QMIN + 3) /* 32 */
+ S2B_8(S2B_QMIN + 4) /* 40 */
+ S2B_8(S2B_QMIN + 5) /* 48 */
+ S2B_8(S2B_QMIN + 6) /* 56 */
+ S2B_8(S2B_QMIN + 7) /* 64 */
+ S2B_8(S2B_QMIN + 8) /* 72 */
+ S2B_8(S2B_QMIN + 9) /* 80 */
+ S2B_8(S2B_QMIN + 10) /* 88 */
+ S2B_8(S2B_QMIN + 11) /* 96 */
+ S2B_8(S2B_QMIN + 12) /* 104 */
+ S2B_8(S2B_QMIN + 13) /* 112 */
+ S2B_8(S2B_QMIN + 14) /* 120 */
+ S2B_8(S2B_QMIN + 15) /* 128 */
+# define S2B_CMIN (S2B_QMIN + 16)
+#endif
+/****************************************/
+ S2B_64(S2B_CMIN + 0) /* 192 */
+ S2B_64(S2B_CMIN + 1) /* 256 */
+ S2B_64(S2B_CMIN + 2) /* 320 */
+ S2B_64(S2B_CMIN + 3) /* 384 */
+ S2B_64(S2B_CMIN + 4) /* 448 */
+ S2B_64(S2B_CMIN + 5) /* 512 */
+# define S2B_SMIN (S2B_CMIN + 6)
+ S2B_256(S2B_SMIN + 0) /* 768 */
+ S2B_256(S2B_SMIN + 1) /* 1024 */
+ S2B_256(S2B_SMIN + 2) /* 1280 */
+ S2B_256(S2B_SMIN + 3) /* 1536 */
+ S2B_256(S2B_SMIN + 4) /* 1792 */
+ S2B_256(S2B_SMIN + 5) /* 2048 */
+ S2B_256(S2B_SMIN + 6) /* 2304 */
+ S2B_256(S2B_SMIN + 7) /* 2560 */
+ S2B_256(S2B_SMIN + 8) /* 2816 */
+ S2B_256(S2B_SMIN + 9) /* 3072 */
+ S2B_256(S2B_SMIN + 10) /* 3328 */
+ S2B_256(S2B_SMIN + 11) /* 3584 */
+ S2B_256(S2B_SMIN + 12) /* 3840 */
+#if (PAGESIZE_2POW == 13)
+ S2B_256(S2B_SMIN + 13) /* 4096 */
+ S2B_256(S2B_SMIN + 14) /* 4352 */
+ S2B_256(S2B_SMIN + 15) /* 4608 */
+ S2B_256(S2B_SMIN + 16) /* 4864 */
+ S2B_256(S2B_SMIN + 17) /* 5120 */
+ S2B_256(S2B_SMIN + 18) /* 5376 */
+ S2B_256(S2B_SMIN + 19) /* 5632 */
+ S2B_256(S2B_SMIN + 20) /* 5888 */
+ S2B_256(S2B_SMIN + 21) /* 6144 */
+ S2B_256(S2B_SMIN + 22) /* 6400 */
+ S2B_256(S2B_SMIN + 23) /* 6656 */
+ S2B_256(S2B_SMIN + 24) /* 6912 */
+ S2B_256(S2B_SMIN + 25) /* 7168 */
+ S2B_256(S2B_SMIN + 26) /* 7424 */
+ S2B_256(S2B_SMIN + 27) /* 7680 */
+ S2B_256(S2B_SMIN + 28) /* 7936 */
+#endif
+};
+#undef S2B_1
+#undef S2B_2
+#undef S2B_4
+#undef S2B_8
+#undef S2B_16
+#undef S2B_32
+#undef S2B_64
+#undef S2B_128
+#undef S2B_256
+#undef S2B_QMIN
+#undef S2B_CMIN
+#undef S2B_SMIN
+
+#ifdef MALLOC_MAG
+static size_t max_rounds;
+#endif
+
+/* Various chunk-related settings. */
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static size_t chunk_npages;
+static size_t arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls. This avoids malloc races among threads, though it
+ * does not protect against races with threads that call sbrk() directly.
+ */
+static malloc_mutex_t dss_mtx;
+/* Base address of the DSS. */
+static void *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void *dss_max;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering). These are used when allocating chunks, in an attempt to re-use
+ * address space. Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_t dss_chunks_szad;
+static extent_tree_t dss_chunks_ad;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t *base_nodes;
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+#ifndef NO_TLS
+# ifdef MALLOC_BALANCE
+static unsigned narenas_2pow;
+# else
+static unsigned next_arena;
+# endif
+#endif
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+static __thread arena_t *arenas_map;
+#endif
+
+#ifdef MALLOC_MAG
+/*
+ * Map of thread-specific magazine racks, used for thread-specific object
+ * caching.
+ */
+static __thread mag_rack_t *mag_rack;
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+static bool opt_junk = true;
+#else
+static bool opt_abort = false;
+static bool opt_junk = false;
+#endif
+#ifdef MALLOC_DSS
+static bool opt_dss = true;
+static bool opt_mmap = true;
+#endif
+#ifdef MALLOC_MAG
+static bool opt_mag = true;
+static size_t opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
+#endif
+static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool opt_print_stats = false;
+static size_t opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
+static size_t opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
+static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static bool opt_utrace = false;
+static bool opt_sysv = false;
+static bool opt_xmalloc = false;
+static bool opt_zero = false;
+static int opt_narenas_lshift = 0;
+
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ utrace(&ut, sizeof(ut)); \
+ }
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static void malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(pthread_mutex_t *lock);
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+static void malloc_printf(const char *format, ...);
+#endif
+static char *umax2s(uintmax_t x, char *s);
+#ifdef MALLOC_DSS
+static bool base_pages_alloc_dss(size_t minsize);
+#endif
+static bool base_pages_alloc_mmap(size_t minsize);
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void base_node_dealloc(extent_node_t *node);
+#ifdef MALLOC_STATS
+static void stats_print(arena_t *arena);
+#endif
+static void *pages_map(void *addr, size_t size);
+static void pages_unmap(void *addr, size_t size);
+#ifdef MALLOC_DSS
+static void *chunk_alloc_dss(size_t size);
+static void *chunk_recycle_dss(size_t size, bool zero);
+#endif
+static void *chunk_alloc_mmap(size_t size);
+static void *chunk_alloc(size_t size, bool zero);
+#ifdef MALLOC_DSS
+static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
+static bool chunk_dealloc_dss(void *chunk, size_t size);
+#endif
+static void chunk_dealloc_mmap(void *chunk, size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool large, bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
+ bool zero);
+static void arena_purge(arena_t *arena);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize);
+static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void arena_lock_balance_hard(arena_t *arena);
+#endif
+#ifdef MALLOC_MAG
+static void mag_load(mag_t *mag);
+#endif
+static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static size_t arena_salloc(const void *ptr);
+#ifdef MALLOC_MAG
+static void mag_unload(mag_t *mag);
+#endif
+static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr);
+static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+#ifdef MALLOC_MAG
+static mag_t *mag_create(arena_t *arena, size_t binind);
+static void mag_destroy(mag_t *mag);
+static mag_rack_t *mag_rack_create(arena_t *arena);
+static void mag_rack_destroy(mag_rack_t *rack);
+#endif
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t alignment, size_t size);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void malloc_print_stats(void);
+#ifdef MALLOC_DEBUG
+static void size2bin_validate(void);
+#endif
+static bool size2bin_init(void);
+static bool size2bin_init_hard(void);
+static bool malloc_init_hard(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+/*
+ * Begin mutex. We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static void
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+ static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+ mutex->lock = lock;
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ _SPINLOCK(&mutex->lock);
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ _SPINUNLOCK(&mutex->lock);
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+ _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+
+ return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+ unsigned ret = 0;
+
+ if (__isthreaded) {
+ if (_pthread_mutex_trylock(lock) != 0) {
+ unsigned i;
+ volatile unsigned j;
+
+ /* Exponentially back off. */
+ for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+ for (j = 0; j < (1U << i); j++) {
+ ret++;
+ CPU_SPINWAIT;
+ }
+
+ if (_pthread_mutex_trylock(lock) == 0)
+ return (ret);
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ _pthread_mutex_lock(lock);
+ assert((ret << BLOCK_COST_2POW) != 0);
+ return (ret << BLOCK_COST_2POW);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded)
+ _pthread_mutex_unlock(lock);
+}
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
+
+/* Return the smallest subpage multiple that is >= s. */
+#define SUBPAGE_CEILING(s) \
+ (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + pagesize_mask) & ~pagesize_mask)
+
+#ifdef MALLOC_TINY
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+#endif
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+# define PRN_DEFINE(suffix, var, a, c) \
+static inline void \
+sprn_##suffix(uint32_t seed) \
+{ \
+ var = seed; \
+} \
+ \
+static inline uint32_t \
+prn_##suffix(uint32_t lg_range) \
+{ \
+ uint32_t ret, x; \
+ \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ x = (var * (a)) + (c); \
+ var = x; \
+ ret = x >> (32 - lg_range); \
+ \
+ return (ret); \
+}
+# define SPRN(suffix, seed) sprn_##suffix(seed)
+# define PRN(suffix, lg_range) prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+
+ _write(STDERR_FILENO, p1, strlen(p1));
+ _write(STDERR_FILENO, p2, strlen(p2));
+ _write(STDERR_FILENO, p3, strlen(p3));
+ _write(STDERR_FILENO, p4, strlen(p4));
+}
+
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+}
+#endif
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries. umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited to
+ * MALLOC_STATS code.
+ */
+#define UMAX2S_BUFSIZE 21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+ unsigned i;
+
+ /* Make sure UMAX2S_BUFSIZE is large enough. */
+ assert(sizeof(uintmax_t) <= 8);
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+
+ return (&s[i]);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+ /*
+ * Do special DSS allocation here, since base allocations don't need to
+ * be chunk-aligned.
+ */
+ malloc_mutex_lock(&dss_mtx);
+ if (dss_prev != (void *)-1) {
+ intptr_t incr;
+ size_t csize = CHUNK_CEILING(minsize);
+
+ do {
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS. Don't worry about
+ * dss_max not being chunk-aligned though.
+ */
+ incr = (intptr_t)chunksize
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+ assert(incr >= 0);
+ if ((size_t)incr < minsize)
+ incr += csize;
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev + incr);
+ base_pages = dss_prev;
+ base_next_addr = base_pages;
+ base_past_addr = dss_max;
+#ifdef MALLOC_STATS
+ base_mapped += incr;
+#endif
+ malloc_mutex_unlock(&dss_mtx);
+ return (false);
+ }
+ } while (dss_prev != (void *)-1);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (true);
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+ size_t csize;
+
+ assert(minsize != 0);
+ csize = PAGE_CEILING(minsize);
+ base_pages = pages_map(NULL, csize);
+ if (base_pages == NULL)
+ return (true);
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+ base_mapped += csize;
+#endif
+
+ return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (base_pages_alloc_dss(minsize) == false)
+ return (false);
+ }
+
+ if (opt_mmap && minsize != 0)
+#endif
+ {
+ if (base_pages_alloc_mmap(minsize) == false)
+ return (false);
+ }
+
+ return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ malloc_mutex_unlock(&base_mtx);
+ return (NULL);
+ }
+ }
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+ malloc_mutex_unlock(&base_mtx);
+
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+ extent_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_nodes != NULL) {
+ ret = base_nodes;
+ base_nodes = *(extent_node_t **)ret;
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ *(extent_node_t **)node = base_nodes;
+ base_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+ unsigned i, gap_start;
+
+ malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+ " %llu madvise%s, %llu page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12zu %12llu %12llu\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12zu\n", arena->stats.mapped);
+
+#ifdef MALLOC_MAG
+ if (__isthreaded && opt_mag) {
+ malloc_printf("bins: bin size regs pgs mags "
+ "newruns reruns maxruns curruns\n");
+ } else {
+#endif
+ malloc_printf("bins: bin size regs pgs requests "
+ "newruns reruns maxruns curruns\n");
+#ifdef MALLOC_MAG
+ }
+#endif
+ for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
+ if (arena->bins[i].stats.nruns == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+ "%13u %1s %4u %4u %3u %9llu %9llu"
+ " %9llu %7lu %7lu\n",
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
+ i < ntbins + nqbins + ncbins ? "C" : "S",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> pagesize_2pow,
+#ifdef MALLOC_MAG
+ (__isthreaded && opt_mag) ?
+ arena->bins[i].stats.nmags :
+#endif
+ arena->bins[i].stats.nrequests,
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+#ifdef MALLOC_DSS
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+ int ret;
+ size_t a_size = a->size;
+ size_t b_size = b->size;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ ret = (a_addr > b_addr) - (a_addr < b_addr);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
+ link_szad, extent_szad_comp)
+#endif
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+ extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+static void *
+pages_map(void *addr, size_t size)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ -1, 0);
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else if (addr != NULL && ret != addr) {
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+
+#ifdef MALLOC_DSS
+static void *
+chunk_alloc_dss(size_t size)
+{
+
+ /*
+ * sbrk() uses a signed increment argument, so take care not to
+ * interpret a huge allocation request as a negative increment.
+ */
+ if ((intptr_t)size < 0)
+ return (NULL);
+
+ malloc_mutex_lock(&dss_mtx);
+ if (dss_prev != (void *)-1) {
+ intptr_t incr;
+
+ /*
+ * The loop is necessary to recover from races with other
+ * threads that are using the DSS for something other than
+ * malloc.
+ */
+ do {
+ void *ret;
+
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS.
+ */
+ incr = (intptr_t)size
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+ if (incr == (intptr_t)size)
+ ret = dss_max;
+ else {
+ ret = (void *)((intptr_t)dss_max + incr);
+ incr += size;
+ }
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev + incr);
+ malloc_mutex_unlock(&dss_mtx);
+ return (ret);
+ }
+ } while (dss_prev != (void *)-1);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (NULL);
+}
+
+static void *
+chunk_recycle_dss(size_t size, bool zero)
+{
+ extent_node_t *node, key;
+
+ key.addr = NULL;
+ key.size = size;
+ malloc_mutex_lock(&dss_mtx);
+ node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
+ if (node != NULL) {
+ void *ret = node->addr;
+
+ /* Remove node from the tree. */
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ if (node->size == size) {
+ extent_tree_ad_remove(&dss_chunks_ad, node);
+ base_node_dealloc(node);
+ } else {
+ /*
+ * Insert the remainder of node's address range as a
+ * smaller chunk. Its position within dss_chunks_ad
+ * does not change.
+ */
+ assert(node->size > size);
+ node->addr = (void *)((uintptr_t)node->addr + size);
+ node->size -= size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ if (zero)
+ memset(ret, 0, size);
+ return (ret);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (NULL);
+}
+#endif
+
+static void *
+chunk_alloc_mmap(size_t size)
+{
+ void *ret;
+ size_t offset;
+
+ /*
+ * Ideally, there would be a way to specify alignment to mmap() (like
+ * NetBSD has), but in the absence of such a feature, we have to work
+ * hard to efficiently create aligned mappings. The reliable, but
+ * expensive method is to create a mapping that is over-sized, then
+ * trim the excess. However, that always results in at least one call
+ * to pages_unmap().
+ *
+ * A more optimistic approach is to try mapping precisely the right
+ * amount, then try to append another mapping if alignment is off. In
+ * practice, this works out well as long as the application is not
+ * interleaving mappings via direct mmap() calls. If we do run into a
+ * situation where there is an interleaved mapping and we are unable to
+ * extend an unaligned mapping, our best option is to momentarily
+ * revert to the reliable-but-expensive method. This will tend to
+ * leave a gap in the memory map that is too small to cause later
+ * problems for the optimistic method.
+ */
+
+ ret = pages_map(NULL, size);
+ if (ret == NULL)
+ return (NULL);
+
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Try to extend chunk boundary. */
+ if (pages_map((void *)((uintptr_t)ret + size),
+ chunksize - offset) == NULL) {
+ /*
+ * Extension failed. Clean up, then revert to the
+ * reliable-but-expensive method.
+ */
+ pages_unmap(ret, size);
+
+ /* Beware size_t wrap-around. */
+ if (size + chunksize <= size)
+ return NULL;
+
+ ret = pages_map(NULL, size + chunksize);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Clean up unneeded leading/trailing space. */
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Leading space. */
+ pages_unmap(ret, chunksize - offset);
+
+ ret = (void *)((uintptr_t)ret +
+ (chunksize - offset));
+
+ /* Trailing space. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ offset);
+ } else {
+ /* Trailing space only. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ chunksize);
+ }
+ } else {
+ /* Clean up unneeded leading space. */
+ pages_unmap(ret, chunksize - offset);
+ ret = (void *)((uintptr_t)ret + (chunksize - offset));
+ }
+ }
+
+ return (ret);
+}
+
+static void *
+chunk_alloc(size_t size, bool zero)
+{
+ void *ret;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ ret = chunk_recycle_dss(size, zero);
+ if (ret != NULL) {
+ goto RETURN;
+ }
+
+ ret = chunk_alloc_dss(size);
+ if (ret != NULL)
+ goto RETURN;
+ }
+
+ if (opt_mmap)
+#endif
+ {
+ ret = chunk_alloc_mmap(size);
+ if (ret != NULL)
+ goto RETURN;
+ }
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+ if (ret != NULL) {
+ stats_chunks.nchunks += (size / chunksize);
+ stats_chunks.curchunks += (size / chunksize);
+ }
+ if (stats_chunks.curchunks > stats_chunks.highchunks)
+ stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+#ifdef MALLOC_DSS
+static extent_node_t *
+chunk_dealloc_dss_record(void *chunk, size_t size)
+{
+ extent_node_t *node, *prev, key;
+
+ key.addr = (void *)((uintptr_t)chunk + size);
+ node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
+ /* Try to coalesce forward. */
+ if (node != NULL && node->addr == key.addr) {
+ /*
+ * Coalesce chunk with the following address range. This does
+ * not change the position within dss_chunks_ad, so only
+ * remove/insert from/into dss_chunks_szad.
+ */
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ node->addr = chunk;
+ node->size += size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ } else {
+ /*
+ * Coalescing forward failed, so insert a new node. Drop
+ * dss_mtx during node allocation, since it is possible that a
+ * new base chunk will be allocated.
+ */
+ malloc_mutex_unlock(&dss_mtx);
+ node = base_node_alloc();
+ malloc_mutex_lock(&dss_mtx);
+ if (node == NULL)
+ return (NULL);
+ node->addr = chunk;
+ node->size = size;
+ extent_tree_ad_insert(&dss_chunks_ad, node);
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ }
+
+ /* Try to coalesce backward. */
+ prev = extent_tree_ad_prev(&dss_chunks_ad, node);
+ if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+ chunk) {
+ /*
+ * Coalesce chunk with the previous address range. This does
+ * not change the position within dss_chunks_ad, so only
+ * remove/insert node from/into dss_chunks_szad.
+ */
+ extent_tree_szad_remove(&dss_chunks_szad, prev);
+ extent_tree_ad_remove(&dss_chunks_ad, prev);
+
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ node->addr = prev->addr;
+ node->size += prev->size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+
+ base_node_dealloc(prev);
+ }
+
+ return (node);
+}
+
+static bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+
+ malloc_mutex_lock(&dss_mtx);
+ if ((uintptr_t)chunk >= (uintptr_t)dss_base
+ && (uintptr_t)chunk < (uintptr_t)dss_max) {
+ extent_node_t *node;
+
+ /* Try to coalesce with other unused chunks. */
+ node = chunk_dealloc_dss_record(chunk, size);
+ if (node != NULL) {
+ chunk = node->addr;
+ size = node->size;
+ }
+
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Try to shrink the DSS if this chunk is at the end of the
+ * DSS. The sbrk() call here is subject to a race condition
+ * with threads that use brk(2) or sbrk(2) directly, but the
+ * alternative would be to leak memory for the sake of poorly
+ * designed multi-threaded programs.
+ */
+ if ((void *)((uintptr_t)chunk + size) == dss_max
+ && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
+
+ if (node != NULL) {
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ extent_tree_ad_remove(&dss_chunks_ad, node);
+ base_node_dealloc(node);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+ } else {
+ malloc_mutex_unlock(&dss_mtx);
+ madvise(chunk, size, MADV_FREE);
+ }
+
+ return (false);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (true);
+}
+#endif
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+ pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (size / chunksize);
+#endif
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (chunk_dealloc_dss(chunk, size) == false)
+ return;
+ }
+
+ if (opt_mmap)
+#endif
+ chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (__isthreaded == false) {
+ /* Avoid the overhead of TLS for single-threaded operation. */
+ return (arenas[0]);
+ }
+
+ ret = arenas_map;
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ assert(ret != NULL);
+ }
+#else
+ if (__isthreaded && narenas > 1) {
+ unsigned long ind;
+
+ /*
+ * Hash _pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient _pthread_self() values. Without specific
+ * knowledge of how _pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) _pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(__isthreaded);
+
+#ifdef MALLOC_BALANCE
+ /* Seed the PRNG used for arena load balancing. */
+ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+ if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+ unsigned ind;
+
+ ind = PRN(balance, narenas_2pow);
+ if ((ret = arenas[ind]) == NULL) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[ind]) == NULL)
+ ret = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+#else
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+#endif
+ } else
+ ret = arenas[0];
+
+ arenas_map = ret;
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+ uintptr_t a_chunk = (uintptr_t)a;
+ uintptr_t b_chunk = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+ arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ uintptr_t a_mapelm = (uintptr_t)a;
+ uintptr_t b_mapelm = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
+ link, arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ int ret;
+ size_t a_size = a->bits & ~pagesize_mask;
+ size_t b_size = b->bits & ~pagesize_mask;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_mapelm, b_mapelm;
+
+ if ((a->bits & CHUNK_MAP_KEY) == 0)
+ a_mapelm = (uintptr_t)a;
+ else {
+ /*
+ * Treat keys as though they are lower than anything
+ * else.
+ */
+ a_mapelm = 0;
+ }
+ b_mapelm = (uintptr_t)b;
+
+ ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t,
+ arena_chunk_map_t, link, arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ assert(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ unsigned diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+ if ((size & (size - 1)) == 0) {
+ /*
+ * log2_table allows fast division of a power of two in the
+ * [1..128] range.
+ *
+ * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+ */
+ static const unsigned char log2_table[] = {
+ 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+ };
+
+ if (size <= 128)
+ regind = (diff >> log2_table[size - 1]);
+ else if (size <= 32768)
+ regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+ else
+ regind = diff / size;
+ } else if (size < qspace_max) {
+ /*
+ * To divide by a number D that is not a power of two we
+ * multiply by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
+ * >> SIZE_INV_SHIFT
+ *
+ * We can omit the first three elements, because we never
+ * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
+ * two, which are handled above.
+ */
+#define SIZE_INV_SHIFT 21
+#define QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
+ static const unsigned qsize_invs[] = {
+ QSIZE_INV(3),
+ QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
+#if (QUANTUM_2POW < 4)
+ ,
+ QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
+ QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
+#endif
+ };
+ assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
+ >= (1U << QSPACE_MAX_2POW_DEFAULT));
+
+ if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
+ QUANTUM_2POW)) {
+ regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else
+ regind = diff / size;
+#undef QSIZE_INV
+ } else if (size < cspace_max) {
+#define CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
+ static const unsigned csize_invs[] = {
+ CSIZE_INV(3),
+ CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
+ };
+ assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
+ 3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
+
+ if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
+ CACHELINE_2POW)) {
+ regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
+ diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else
+ regind = diff / size;
+#undef CSIZE_INV
+ } else {
+#define SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
+ static const unsigned ssize_invs[] = {
+ SSIZE_INV(3),
+ SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
+ SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
+ SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
+#if (PAGESIZE_2POW == 13)
+ ,
+ SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
+ SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
+ SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
+ SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
+#endif
+ };
+ assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
+ >= (1U << PAGESIZE_2POW));
+
+ if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
+ SUBPAGE_2POW)) {
+ regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else
+ regind = diff / size;
+#undef SSIZE_INV
+ }
+#undef SIZE_INV_SHIFT
+ assert(diff == regind * size);
+ assert(regind < bin->nregs);
+
+ elm = regind >> (SIZEOF_INT_2POW + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+ assert((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ old_ndirty = chunk->ndirty;
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+ pagesize_2pow;
+ need_pages = (size >> pagesize_2pow);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ chunk->map[run_ind+need_pages].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+ pagesize_mask);
+ chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+ pagesize_mask);
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[run_ind+need_pages]);
+ }
+
+ for (i = 0; i < need_pages; i++) {
+ /* Zero if necessary. */
+ if (zero) {
+ if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+ == 0) {
+ memset((void *)((uintptr_t)chunk + ((run_ind
+ + i) << pagesize_2pow)), 0, pagesize);
+ /* CHUNK_MAP_ZEROED is cleared below. */
+ }
+ }
+
+ /* Update dirty page accounting. */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+ chunk->ndirty--;
+ arena->ndirty--;
+ /* CHUNK_MAP_DIRTY is cleared below. */
+ }
+
+ /* Initialize the chunk map. */
+ if (large) {
+ chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+ } else {
+ chunk->map[run_ind + i].bits = (size_t)run
+ | CHUNK_MAP_ALLOCATED;
+ }
+ }
+
+ /*
+ * Set the run size only in the first element for large runs. This is
+ * primarily a debugging aid, since the lack of size info for trailing
+ * pages only matters if the application tries to operate on an
+ * interior pointer.
+ */
+ if (large)
+ chunk->map[run_ind].bits |= size;
+
+ if (chunk->ndirty == 0 && old_ndirty > 0)
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i;
+
+ if (arena->spare != NULL) {
+ chunk = arena->spare;
+ arena->spare = NULL;
+ } else {
+ chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
+ if (chunk == NULL)
+ return (NULL);
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+
+ /*
+ * Claim that no pages are in use, since the header is merely
+ * overhead.
+ */
+ chunk->ndirty = 0;
+
+ /*
+ * Initialize the map to contain one maximal free untouched run.
+ */
+ for (i = 0; i < arena_chunk_header_npages; i++)
+ chunk->map[i].bits = 0;
+ chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
+ for (i++; i < chunk_npages-1; i++) {
+ chunk->map[i].bits = CHUNK_MAP_ZEROED;
+ }
+ chunk->map[chunk_npages-1].bits = arena_maxclass |
+ CHUNK_MAP_ZEROED;
+ }
+
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ if (arena->spare != NULL) {
+ if (arena->spare->ndirty > 0) {
+ arena_chunk_tree_dirty_remove(
+ &chunk->arena->chunks_dirty, arena->spare);
+ arena->ndirty -= arena->spare->ndirty;
+ }
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+
+ /*
+ * Remove run from runs_avail, regardless of whether this chunk
+ * will be cached, so that the arena does not use it. Dirty page
+ * flushing only uses the chunks_dirty tree, so leaving this chunk in
+ * the chunks_* trees is sufficient for that purpose.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
+{
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_chunk_map_t *mapelm, key;
+
+ assert(size <= arena_maxclass);
+ assert((size & pagesize_mask) == 0);
+
+ /* Search the arena's chunks for the lowest best fit. */
+ key.bits = size | CHUNK_MAP_KEY;
+ mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+ if (mapelm != NULL) {
+ arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
+ size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
+ / sizeof(arena_chunk_map_t);
+
+ run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+ << pagesize_2pow));
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate the run.
+ */
+ chunk = arena_chunk_alloc(arena);
+ if (chunk == NULL)
+ return (NULL);
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ pagesize_2pow));
+ /* Update page map. */
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i, npages;
+#ifdef MALLOC_DEBUG
+ size_t ndirty = 0;
+
+ rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+ chunk) {
+ ndirty += chunk->ndirty;
+ } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+ assert(ndirty == arena->ndirty);
+#endif
+ assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+ arena->stats.npurge++;
+#endif
+
+ /*
+ * Iterate downward through chunks until enough dirty memory has been
+ * purged. Terminate as soon as possible in order to minimize the
+ * number of system calls, even if a chunk has only been partially
+ * purged.
+ */
+ while (arena->ndirty > (opt_dirty_max >> 1)) {
+ chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+ assert(chunk != NULL);
+
+ for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+ assert(i >= arena_chunk_header_npages);
+
+ if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+ chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+ /* Find adjacent dirty run(s). */
+ for (npages = 1; i > arena_chunk_header_npages
+ && (chunk->map[i - 1].bits &
+ CHUNK_MAP_DIRTY); npages++) {
+ i--;
+ chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+ }
+ chunk->ndirty -= npages;
+ arena->ndirty -= npages;
+
+ madvise((void *)((uintptr_t)chunk + (i <<
+ pagesize_2pow)), (npages << pagesize_2pow),
+ MADV_FREE);
+#ifdef MALLOC_STATS
+ arena->stats.nmadvise++;
+ arena->stats.purged += npages;
+#endif
+ if (arena->ndirty <= (opt_dirty_max >> 1))
+ break;
+ }
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+ chunk);
+ }
+ }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+ arena_chunk_t *chunk;
+ size_t size, run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ assert(run_ind >= arena_chunk_header_npages);
+ assert(run_ind < chunk_npages);
+ if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+ size = chunk->map[run_ind].bits & ~pagesize_mask;
+ else
+ size = run->bin->run_size;
+ run_pages = (size >> pagesize_2pow);
+
+ /* Mark pages as unallocated in the chunk map. */
+ if (dirty) {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+ == 0);
+ chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ }
+ chunk->ndirty += run_pages;
+ arena->ndirty += run_pages;
+ } else {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED);
+ }
+ }
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+ /* Try to coalesce forward. */
+ if (run_ind + run_pages < chunk_npages &&
+ (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+ size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+ ~pagesize_mask;
+
+ /*
+ * Remove successor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind+run_pages]);
+
+ size += nrun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+ == nrun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Try to coalesce backward. */
+ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+ CHUNK_MAP_ALLOCATED) == 0) {
+ size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+ run_ind -= prun_size >> pagesize_2pow;
+
+ /*
+ * Remove predecessor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind]);
+
+ size += prun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
+ prun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Insert into runs_avail, now that coalescing is complete. */
+ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Deallocate chunk if it is now completely unused. */
+ if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+ CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+ arena_chunk_dealloc(arena, chunk);
+
+ /* Enforce opt_dirty_max. */
+ if (arena->ndirty > opt_dirty_max)
+ arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * leading run as separately allocated.
+ */
+ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize, bool dirty)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = newsize >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * trailing run as separately allocated.
+ */
+ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+ dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_chunk_map_t *mapelm;
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ mapelm = arena_run_tree_first(&bin->runs);
+ if (mapelm != NULL) {
+ /* run is guaranteed to have available space. */
+ arena_run_tree_remove(&bin->runs, mapelm);
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin->run_size, false, false);
+ if (run == NULL)
+ return (NULL);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+ if (remainder == 0)
+ run->regs_mask[i] = UINT_MAX;
+ else {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ assert(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+ assert(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= pagesize);
+ assert(min_run_size <= arena_maxclass);
+ assert(min_run_size <= RUN_MAX_SMALL);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += pagesize;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+ unsigned contention;
+
+ contention = malloc_spin_lock(&arena->lock);
+ if (narenas > 1) {
+ /*
+ * Calculate the exponentially averaged contention for this
+ * arena. Due to integer math always rounding down, this value
+ * decays somewhat faster than normal.
+ */
+ arena->contention = (((uint64_t)arena->contention
+ * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+ if (arena->contention >= opt_balance_threshold)
+ arena_lock_balance_hard(arena);
+ }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+ uint32_t ind;
+
+ arena->contention = 0;
+#ifdef MALLOC_STATS
+ arena->stats.nbalance++;
+#endif
+ ind = PRN(balance, narenas_2pow);
+ if (arenas[ind] != NULL)
+ arenas_map = arenas[ind];
+ else {
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] != NULL)
+ arenas_map = arenas[ind];
+ else
+ arenas_map = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+}
+#endif
+
+#ifdef MALLOC_MAG
+static inline void *
+mag_alloc(mag_t *mag)
+{
+
+ if (mag->nrounds == 0)
+ return (NULL);
+ mag->nrounds--;
+
+ return (mag->rounds[mag->nrounds]);
+}
+
+static void
+mag_load(mag_t *mag)
+{
+ arena_t *arena;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ void *round;
+ size_t i;
+
+ arena = choose_arena();
+ bin = &arena->bins[mag->binind];
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ for (i = mag->nrounds; i < max_rounds; i++) {
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ round = arena_bin_malloc_easy(arena, bin, run);
+ else
+ round = arena_bin_malloc_hard(arena, bin);
+ if (round == NULL)
+ break;
+ mag->rounds[i] = round;
+ }
+#ifdef MALLOC_STATS
+ bin->stats.nmags++;
+ arena->stats.nmalloc_small += (i - mag->nrounds);
+ arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ mag->nrounds = i;
+}
+
+static inline void *
+mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
+{
+ void *ret;
+ bin_mags_t *bin_mags;
+ mag_t *mag;
+ size_t binind;
+
+ binind = size2bin[size];
+ assert(binind < nbins);
+ bin_mags = &rack->bin_mags[binind];
+
+ mag = bin_mags->curmag;
+ if (mag == NULL) {
+ /* Create an initial magazine for this size class. */
+ assert(bin_mags->sparemag == NULL);
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL)
+ return (NULL);
+ bin_mags->curmag = mag;
+ mag_load(mag);
+ }
+
+ ret = mag_alloc(mag);
+ if (ret == NULL) {
+ if (bin_mags->sparemag != NULL) {
+ if (bin_mags->sparemag->nrounds > 0) {
+ /* Swap magazines. */
+ bin_mags->curmag = bin_mags->sparemag;
+ bin_mags->sparemag = mag;
+ mag = bin_mags->curmag;
+ } else {
+ /* Reload the current magazine. */
+ mag_load(mag);
+ }
+ } else {
+ /* Create a second magazine. */
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL)
+ return (NULL);
+ mag_load(mag);
+ bin_mags->sparemag = bin_mags->curmag;
+ bin_mags->curmag = mag;
+ }
+ ret = mag_alloc(mag);
+ if (ret == NULL)
+ return (NULL);
+ }
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ size_t binind;
+
+ binind = size2bin[size];
+ assert(binind < nbins);
+ bin = &arena->bins[binind];
+ size = bin->reg_size;
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, size, true, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ }
+
+ return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+#ifdef MALLOC_MAG
+ if (__isthreaded && opt_mag) {
+ mag_rack_t *rack = mag_rack;
+ if (rack == NULL) {
+ rack = mag_rack_create(arena);
+ if (rack == NULL)
+ return (NULL);
+ mag_rack = rack;
+ }
+ return (mag_rack_alloc(rack, size, zero));
+ } else
+#endif
+ return (arena_malloc_small(arena, size, zero));
+ } else
+ return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, false));
+ else
+ return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, true));
+ else
+ return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+
+ assert((size & pagesize_mask) == 0);
+ assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & pagesize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0)
+ arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
+ else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ if (leadsize > 0) {
+ arena_run_trim_head(arena, chunk, ret, alloc_size,
+ alloc_size - leadsize);
+ ret = (void *)((uintptr_t)ret + leadsize);
+ }
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_run_trim_tail(arena, chunk, ret, size + trailsize,
+ size, false);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= pagesize || (alignment <= pagesize
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(choose_arena(), ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve subpage alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * pagesize of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - pagesize;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract pagesize, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - pagesize;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(alignment, ceil_size);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapbits = chunk->map[pageind].bits;
+ assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+ arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else {
+ ret = mapbits & ~pagesize_mask;
+ assert(ret != 0);
+ }
+
+ return (ret);
+}
+
+static inline size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ extent_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm)
+{
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs) {
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ arena_run_tree_remove(&bin->runs, run_mapelm);
+ }
+#ifdef MALLOC_DEBUG
+ run->magic = 0;
+#endif
+ arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+ } else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ arena_chunk_t *runcur_chunk =
+ CHUNK_ADDR2BASE(bin->runcur);
+ size_t runcur_pageind =
+ (((uintptr_t)bin->runcur -
+ (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *runcur_mapelm =
+ &runcur_chunk->map[runcur_pageind];
+
+ /* Insert runcur. */
+ arena_run_tree_insert(&bin->runs,
+ runcur_mapelm);
+ }
+ bin->runcur = run;
+ } else {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ NULL);
+ arena_run_tree_insert(&bin->runs, run_mapelm);
+ }
+ }
+#ifdef MALLOC_STATS
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+#endif
+}
+
+#ifdef MALLOC_MAG
+static void
+mag_unload(mag_t *mag)
+{
+ arena_chunk_t *chunk;
+ arena_t *arena;
+ void *round;
+ size_t i, ndeferred, nrounds;
+
+ for (ndeferred = mag->nrounds; ndeferred > 0;) {
+ nrounds = ndeferred;
+ /* Lock the arena associated with the first round. */
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
+ arena = chunk->arena;
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ /* Deallocate every round that belongs to the locked arena. */
+ for (i = ndeferred = 0; i < nrounds; i++) {
+ round = mag->rounds[i];
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
+ if (chunk->arena == arena) {
+ size_t pageind = (((uintptr_t)round -
+ (uintptr_t)chunk) >> pagesize_2pow);
+ arena_chunk_map_t *mapelm =
+ &chunk->map[pageind];
+ arena_dalloc_small(arena, chunk, round, mapelm);
+ } else {
+ /*
+ * This round was allocated via a different
+ * arena than the one that is currently locked.
+ * Stash the round, so that it can be handled
+ * in a future pass.
+ */
+ mag->rounds[ndeferred] = round;
+ ndeferred++;
+ }
+ }
+ malloc_spin_unlock(&arena->lock);
+ }
+
+ mag->nrounds = 0;
+}
+
+static inline void
+mag_rack_dalloc(mag_rack_t *rack, void *ptr)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_bin_t *bin;
+ bin_mags_t *bin_mags;
+ mag_t *mag;
+ size_t pageind, binind;
+ arena_chunk_map_t *mapelm;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
+ sizeof(arena_bin_t);
+ assert(binind < nbins);
+
+ if (opt_junk)
+ memset(ptr, 0x5a, arena->bins[binind].reg_size);
+
+ bin_mags = &rack->bin_mags[binind];
+ mag = bin_mags->curmag;
+ if (mag == NULL) {
+ /* Create an initial magazine for this size class. */
+ assert(bin_mags->sparemag == NULL);
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ return;
+ }
+ bin_mags->curmag = mag;
+ }
+
+ if (mag->nrounds == max_rounds) {
+ if (bin_mags->sparemag != NULL) {
+ if (bin_mags->sparemag->nrounds < max_rounds) {
+ /* Swap magazines. */
+ bin_mags->curmag = bin_mags->sparemag;
+ bin_mags->sparemag = mag;
+ mag = bin_mags->curmag;
+ } else {
+ /* Unload the current magazine. */
+ mag_unload(mag);
+ }
+ } else {
+ /* Create a second magazine. */
+ mag = mag_create(choose_arena(), binind);
+ if (mag == NULL) {
+ mag = rack->bin_mags[binind].curmag;
+ mag_unload(mag);
+ } else {
+ bin_mags->sparemag = bin_mags->curmag;
+ bin_mags->curmag = mag;
+ }
+ }
+ assert(mag->nrounds < max_rounds);
+ }
+ mag->rounds[mag->nrounds] = ptr;
+ mag->nrounds++;
+}
+#endif
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ /* Large allocation. */
+ malloc_spin_lock(&arena->lock);
+
+#ifndef MALLOC_STATS
+ if (opt_junk)
+#endif
+ {
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+ pagesize_2pow;
+ size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_STATS
+ if (opt_junk)
+#endif
+ memset(ptr, 0x5a, size);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= size;
+#endif
+ }
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+#endif
+
+ arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+ malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(chunk->arena == arena);
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+ /* Small allocation. */
+#ifdef MALLOC_MAG
+ if (__isthreaded && opt_mag) {
+ mag_rack_t *rack = mag_rack;
+ if (rack == NULL) {
+ rack = mag_rack_create(arena);
+ if (rack == NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr,
+ mapelm);
+ malloc_spin_unlock(&arena->lock);
+ }
+ mag_rack = rack;
+ }
+ mag_rack_dalloc(rack, ptr);
+ } else {
+#endif
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+#ifdef MALLOC_MAG
+ }
+#endif
+ } else
+ arena_dalloc_large(arena, chunk, ptr);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr)
+ arena_dalloc(chunk->arena, chunk, ptr);
+ else
+ huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+
+ assert(size < oldsize);
+
+ /*
+ * Shrink the run, and make trailing pages available for other
+ * allocations.
+ */
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+ true);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= oldsize - size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = oldsize >> pagesize_2pow;
+
+ assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+ /* Try to extend the run. */
+ assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+ & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+ ~pagesize_mask) >= size - oldsize) {
+ /*
+ * The next run is available and sufficiently large. Split the
+ * following run, then merge the first part with the existing
+ * allocation.
+ */
+ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+ ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+ false);
+
+ chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large += size - oldsize;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ return (false);
+ }
+ malloc_spin_unlock(&arena->lock);
+
+ return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying. This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+ size_t psize;
+
+ psize = PAGE_CEILING(size);
+ if (psize == oldsize) {
+ /* Same size class. */
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+ size);
+ }
+ return (false);
+ } else {
+ arena_chunk_t *chunk;
+ arena_t *arena;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ assert(arena->magic == ARENA_MAGIC);
+
+ if (psize < oldsize) {
+ /* Fill before shrinking in order avoid a race. */
+ if (opt_junk) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a,
+ oldsize - size);
+ }
+ arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+ oldsize);
+ return (false);
+ } else {
+ bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+ psize, oldsize);
+ if (ret == false && opt_zero) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0,
+ size - oldsize);
+ }
+ return (ret);
+ }
+ }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Try to avoid moving the allocation. */
+ if (size <= bin_maxclass) {
+ if (oldsize <= bin_maxclass && size2bin[size] ==
+ size2bin[oldsize])
+ goto IN_PLACE;
+ } else {
+ if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+ assert(size > bin_maxclass);
+ if (arena_ralloc_large(ptr, size, oldsize) == false)
+ return (ptr);
+ }
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to move the object. In that case, fall back to allocating new
+ * space and copying.
+ */
+ ret = arena_malloc(choose_arena(), size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+ if (opt_junk && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+ return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+ if (size <= arena_maxclass)
+ return (arena_ralloc(ptr, size, oldsize));
+ else
+ return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+ /* Initialize chunks. */
+ arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+ arena->spare = NULL;
+
+ arena->ndirty = 0;
+
+ arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+ arena->contention = 0;
+#endif
+
+ /* Initialize bins. */
+ prev_run_size = pagesize;
+
+ i = 0;
+#ifdef MALLOC_TINY
+ /* (2^n)-spaced tiny bins. */
+ for (; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+#endif
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Cacheline-spaced bins. */
+ for (; i < ntbins + nqbins + ncbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
+ CACHELINE_2POW);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Subpage-spaced bins. */
+ for (; i < nbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
+ << SUBPAGE_2POW);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#ifdef MALLOC_DEBUG
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (nbins - 1)));
+ if (ret != NULL && arena_new(ret) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+#ifdef MALLOC_MAG
+static mag_t *
+mag_create(arena_t *arena, size_t binind)
+{
+ mag_t *ret;
+
+ if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+ bin_maxclass) {
+ ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
+ * (max_rounds - 1)), false);
+ } else {
+ ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
+ 1)));
+ }
+ if (ret == NULL)
+ return (NULL);
+ ret->binind = binind;
+ ret->nrounds = 0;
+
+ return (ret);
+}
+
+static void
+mag_destroy(mag_t *mag)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ chunk = CHUNK_ADDR2BASE(mag);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+
+ assert(mag->nrounds == 0);
+ if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
+ bin_maxclass) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, mag, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ idalloc(mag);
+}
+
+static mag_rack_t *
+mag_rack_create(arena_t *arena)
+{
+
+ assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
+ bin_maxclass);
+ return (arena_malloc_small(arena, sizeof(mag_rack_t) +
+ (sizeof(bin_mags_t) * (nbins - 1)), true));
+}
+
+static void
+mag_rack_destroy(mag_rack_t *rack)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ bin_mags_t *bin_mags;
+ size_t i, pageind;
+ arena_chunk_map_t *mapelm;
+
+ for (i = 0; i < nbins; i++) {
+ bin_mags = &rack->bin_mags[i];
+ if (bin_mags->curmag != NULL) {
+ assert(bin_mags->curmag->binind == i);
+ mag_unload(bin_mags->curmag);
+ mag_destroy(bin_mags->curmag);
+ }
+ if (bin_mags->sparemag != NULL) {
+ assert(bin_mags->sparemag->binind == i);
+ mag_unload(bin_mags->sparemag);
+ mag_destroy(bin_mags->sparemag);
+ }
+ }
+
+ chunk = CHUNK_ADDR2BASE(rack);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, rack, mapelm);
+ malloc_spin_unlock(&arena->lock);
+}
+#endif
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ void *ret;
+ size_t csize;
+ extent_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize, zero);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ node->size = csize;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += csize;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, csize);
+ else if (opt_zero)
+ memset(ret, 0, csize);
+ }
+
+ return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t alloc_size, chunk_size, offset;
+ extent_node_t *node;
+
+ /*
+ * This allocation requires alignment that is even larger than chunk
+ * alignment. This means that huge_malloc() isn't good enough.
+ *
+ * Allocate almost twice as many chunks as are demanded by the size or
+ * alignment, in order to assure the alignment can be achieved, then
+ * unmap leading and trailing chunks.
+ */
+ assert(alignment >= chunksize);
+
+ chunk_size = CHUNK_CEILING(size);
+
+ if (size >= alignment)
+ alloc_size = chunk_size + alignment - chunksize;
+ else
+ alloc_size = (alignment << 1) - chunksize;
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(alloc_size, false);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & chunksize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0) {
+ /* Trim trailing space. */
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+ - chunk_size);
+ } else {
+ size_t trailsize;
+
+ /* Trim leading space. */
+ chunk_dealloc(ret, alignment - offset);
+
+ ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+ trailsize = alloc_size - (alignment - offset) - chunk_size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+ trailsize);
+ }
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ node->size = chunk_size;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += chunk_size;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+ if (opt_junk)
+ memset(ret, 0xa5, chunk_size);
+ else if (opt_zero)
+ memset(ret, 0, chunk_size);
+
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Avoid moving the allocation if the size class would not change. */
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+ - size);
+ } else if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ extent_node_t *node, key;
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = ptr;
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->addr == ptr);
+ extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Unmap chunk. */
+#ifdef MALLOC_DSS
+ if (opt_dss && opt_junk)
+ memset(node->addr, 0x5a, node->size);
+#endif
+ chunk_dealloc(node->addr, node->size);
+
+ base_node_dealloc(node);
+}
+
+static void
+malloc_print_stats(void)
+{
+
+ if (opt_print_stats) {
+ char s[UMAX2S_BUFSIZE];
+ _malloc_message("___ Begin malloc statistics ___\n", "", "",
+ "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ",
+ opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+#ifdef MALLOC_MAG
+ _malloc_message(opt_mag ? "G" : "g", "", "", "");
+#endif
+ _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+ _malloc_message(opt_utrace ? "PU" : "Pu",
+ opt_sysv ? "V" : "v",
+ opt_xmalloc ? "X" : "x",
+ opt_zero ? "Z\n" : "z\n");
+
+ _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+ _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_BALANCE
+ _malloc_message("Arena balance threshold: ",
+ umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+ "\n", "");
+ _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
+ _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
+ s), "\n", "");
+#ifdef MALLOC_TINY
+ _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
+ TINY_MIN_2POW), s), "..", "");
+ _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
+#endif
+ _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
+ s), "..", "");
+ _malloc_message(umax2s(qspace_max, s), "]\n", "", "");
+ _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
+ s), "..", "");
+ _malloc_message(umax2s(cspace_max, s), "]\n", "", "");
+ _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
+ s), "..", "");
+ _malloc_message(umax2s(sspace_max, s), "]\n", "", "");
+#ifdef MALLOC_MAG
+ _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
+ "\n", "");
+#endif
+ _malloc_message("Max dirty pages per arena: ",
+ umax2s(opt_dirty_max, s), "\n", "");
+
+ _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+ _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+ uint64_t nbalance = 0;
+#endif
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated +=
+ arenas[i]->stats.allocated_small;
+ allocated +=
+ arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+ nbalance += arenas[i]->stats.nbalance;
+#endif
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&huge_mtx);
+ allocated += huge_allocated;
+ mapped = stats_chunks.curchunks * chunksize;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_printf("Allocated: %zu, mapped: %zu\n",
+ allocated, mapped);
+
+#ifdef MALLOC_BALANCE
+ malloc_printf("Arena balance reassignments: %llu\n",
+ nbalance);
+#endif
+
+ /* Print chunk stats. */
+ {
+ chunk_stats_t chunks_stats;
+
+ malloc_mutex_lock(&huge_mtx);
+ chunks_stats = stats_chunks;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_printf("chunks: nchunks "
+ "highchunks curchunks\n");
+ malloc_printf(" %13llu%13lu%13lu\n",
+ chunks_stats.nchunks,
+ chunks_stats.highchunks,
+ chunks_stats.curchunks);
+ }
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+ malloc_printf(" %12llu %12llu %12zu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf(
+ "\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+ }
+}
+
+#ifdef MALLOC_DEBUG
+static void
+size2bin_validate(void)
+{
+ size_t i, size, binind;
+
+ assert(size2bin[0] == 0xffU);
+ i = 1;
+# ifdef MALLOC_TINY
+ /* Tiny. */
+ for (; i < (1U << TINY_MIN_2POW); i++) {
+ size = pow2_ceil(1U << TINY_MIN_2POW);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ assert(size2bin[i] == binind);
+ }
+ for (; i < qspace_min; i++) {
+ size = pow2_ceil(i);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ assert(size2bin[i] == binind);
+ }
+# endif
+ /* Quantum-spaced. */
+ for (; i <= qspace_max; i++) {
+ size = QUANTUM_CEILING(i);
+ binind = ntbins + (size >> QUANTUM_2POW) - 1;
+ assert(size2bin[i] == binind);
+ }
+ /* Cacheline-spaced. */
+ for (; i <= cspace_max; i++) {
+ size = CACHELINE_CEILING(i);
+ binind = ntbins + nqbins + ((size - cspace_min) >>
+ CACHELINE_2POW);
+ assert(size2bin[i] == binind);
+ }
+ /* Sub-page. */
+ for (; i <= sspace_max; i++) {
+ size = SUBPAGE_CEILING(i);
+ binind = ntbins + nqbins + ncbins + ((size - sspace_min)
+ >> SUBPAGE_2POW);
+ assert(size2bin[i] == binind);
+ }
+}
+#endif
+
+static bool
+size2bin_init(void)
+{
+
+ if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+ || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
+ return (size2bin_init_hard());
+
+ size2bin = const_size2bin;
+#ifdef MALLOC_DEBUG
+ assert(sizeof(const_size2bin) == bin_maxclass + 1);
+ size2bin_validate();
+#endif
+ return (false);
+}
+
+static bool
+size2bin_init_hard(void)
+{
+ size_t i, size, binind;
+ uint8_t *custom_size2bin;
+
+ assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
+ || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
+
+ custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
+ if (custom_size2bin == NULL)
+ return (true);
+
+ custom_size2bin[0] = 0xffU;
+ i = 1;
+#ifdef MALLOC_TINY
+ /* Tiny. */
+ for (; i < (1U << TINY_MIN_2POW); i++) {
+ size = pow2_ceil(1U << TINY_MIN_2POW);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ custom_size2bin[i] = binind;
+ }
+ for (; i < qspace_min; i++) {
+ size = pow2_ceil(i);
+ binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
+ custom_size2bin[i] = binind;
+ }
+#endif
+ /* Quantum-spaced. */
+ for (; i <= qspace_max; i++) {
+ size = QUANTUM_CEILING(i);
+ binind = ntbins + (size >> QUANTUM_2POW) - 1;
+ custom_size2bin[i] = binind;
+ }
+ /* Cacheline-spaced. */
+ for (; i <= cspace_max; i++) {
+ size = CACHELINE_CEILING(i);
+ binind = ntbins + nqbins + ((size - cspace_min) >>
+ CACHELINE_2POW);
+ custom_size2bin[i] = binind;
+ }
+ /* Sub-page. */
+ for (; i <= sspace_max; i++) {
+ size = SUBPAGE_CEILING(i);
+ binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
+ SUBPAGE_2POW);
+ custom_size2bin[i] = binind;
+ }
+
+ size2bin = custom_size2bin;
+#ifdef MALLOC_DEBUG
+ size2bin_validate();
+#endif
+ return (false);
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+
+static bool
+malloc_init_hard(void)
+{
+ unsigned i;
+ int linklen;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+
+ malloc_mutex_lock(&init_lock);
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+ }
+
+ /* Get number of CPUs. */
+ {
+ int mib[2];
+ size_t len;
+
+ mib[0] = CTL_HW;
+ mib[1] = HW_NCPU;
+ len = sizeof(ncpus);
+ if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
+ /* Error. */
+ ncpus = 1;
+ }
+ }
+
+ /* Get page size. */
+ {
+ long result;
+
+ result = sysconf(_SC_PAGESIZE);
+ assert(result != -1);
+ pagesize = (unsigned)result;
+
+ /*
+ * We assume that pagesize is a power of 2 when calculating
+ * pagesize_mask and pagesize_2pow.
+ */
+ assert(((result - 1) & result) == 0);
+ pagesize_mask = result - 1;
+ pagesize_2pow = ffs((int)result) - 1;
+ }
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if (issetugid() == 0 && (opts =
+ getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the
+ * program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ assert(false);
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto MALLOC_OUT;
+ }
+ }
+MALLOC_OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'b':
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold >>= 1;
+#endif
+ break;
+ case 'B':
+#ifdef MALLOC_BALANCE
+ if (opt_balance_threshold == 0)
+ opt_balance_threshold = 1;
+ else if ((opt_balance_threshold << 1)
+ > opt_balance_threshold)
+ opt_balance_threshold <<= 1;
+#endif
+ break;
+ case 'c':
+ if (opt_cspace_max_2pow - 1 >
+ opt_qspace_max_2pow &&
+ opt_cspace_max_2pow >
+ CACHELINE_2POW)
+ opt_cspace_max_2pow--;
+ break;
+ case 'C':
+ if (opt_cspace_max_2pow < pagesize_2pow
+ - 1)
+ opt_cspace_max_2pow++;
+ break;
+ case 'd':
+#ifdef MALLOC_DSS
+ opt_dss = false;
+#endif
+ break;
+ case 'D':
+#ifdef MALLOC_DSS
+ opt_dss = true;
+#endif
+ break;
+ case 'f':
+ opt_dirty_max >>= 1;
+ break;
+ case 'F':
+ if (opt_dirty_max == 0)
+ opt_dirty_max = 1;
+ else if ((opt_dirty_max << 1) != 0)
+ opt_dirty_max <<= 1;
+ break;
+#ifdef MALLOC_MAG
+ case 'g':
+ opt_mag = false;
+ break;
+ case 'G':
+ opt_mag = true;
+ break;
+#endif
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, so chunks can never be
+ * smaller than two pages.
+ */
+ if (opt_chunk_2pow > pagesize_2pow + 1)
+ opt_chunk_2pow--;
+ break;
+ case 'K':
+ if (opt_chunk_2pow + 1 <
+ (sizeof(size_t) << 3))
+ opt_chunk_2pow++;
+ break;
+ case 'm':
+#ifdef MALLOC_DSS
+ opt_mmap = false;
+#endif
+ break;
+ case 'M':
+#ifdef MALLOC_DSS
+ opt_mmap = true;
+#endif
+ break;
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+ case 'p':
+ opt_print_stats = false;
+ break;
+ case 'P':
+ opt_print_stats = true;
+ break;
+ case 'q':
+ if (opt_qspace_max_2pow > QUANTUM_2POW)
+ opt_qspace_max_2pow--;
+ break;
+ case 'Q':
+ if (opt_qspace_max_2pow + 1 <
+ opt_cspace_max_2pow)
+ opt_qspace_max_2pow++;
+ break;
+#ifdef MALLOC_MAG
+ case 'R':
+ if (opt_mag_size_2pow + 1 < (8U <<
+ SIZEOF_PTR_2POW))
+ opt_mag_size_2pow++;
+ break;
+ case 'r':
+ /*
+ * Make sure there's always at least
+ * one round per magazine.
+ */
+ if ((1U << (opt_mag_size_2pow-1)) >=
+ sizeof(mag_t))
+ opt_mag_size_2pow--;
+ break;
+#endif
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+#ifdef MALLOC_DSS
+ /* Make sure that there is some method for acquiring memory. */
+ if (opt_dss == false && opt_mmap == false)
+ opt_mmap = true;
+#endif
+
+ /* Take care to call atexit() only once. */
+ if (opt_print_stats) {
+ /* Print statistics at exit. */
+ atexit(malloc_print_stats);
+ }
+
+#ifdef MALLOC_MAG
+ /*
+ * Calculate the actual number of rounds per magazine, taking into
+ * account header overhead.
+ */
+ max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
+ (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
+#endif
+
+ /* Set variables according to the value of opt_[qc]space_max_2pow. */
+ qspace_max = (1U << opt_qspace_max_2pow);
+ cspace_min = CACHELINE_CEILING(qspace_max);
+ if (cspace_min == qspace_max)
+ cspace_min += CACHELINE;
+ cspace_max = (1U << opt_cspace_max_2pow);
+ sspace_min = SUBPAGE_CEILING(cspace_max);
+ if (sspace_min == cspace_max)
+ sspace_min += SUBPAGE;
+ assert(sspace_min < pagesize);
+ sspace_max = pagesize - SUBPAGE;
+
+#ifdef MALLOC_TINY
+ assert(QUANTUM_2POW >= TINY_MIN_2POW);
+#endif
+ assert(ntbins <= QUANTUM_2POW);
+ nqbins = qspace_max >> QUANTUM_2POW;
+ ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
+ nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
+ nbins = ntbins + nqbins + ncbins + nsbins;
+
+ if (size2bin_init()) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+
+ /* Set variables according to the value of opt_chunk_2pow. */
+ chunksize = (1LU << opt_chunk_2pow);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> pagesize_2pow);
+ {
+ size_t header_size;
+
+ /*
+ * Compute the header size such that it is large enough to
+ * contain the page map.
+ */
+ header_size = sizeof(arena_chunk_t) +
+ (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+ arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+ ((header_size & pagesize_mask) != 0);
+ }
+ arena_maxclass = chunksize - (arena_chunk_header_npages <<
+ pagesize_2pow);
+
+ UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+ memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+ /* Various sanity checks that regard configuration. */
+ assert(chunksize >= pagesize);
+
+ /* Initialize chunks data. */
+ malloc_mutex_init(&huge_mtx);
+ extent_tree_ad_new(&huge);
+#ifdef MALLOC_DSS
+ malloc_mutex_init(&dss_mtx);
+ dss_base = sbrk(0);
+ dss_prev = dss_base;
+ dss_max = dss_base;
+ extent_tree_szad_new(&dss_chunks_szad);
+ extent_tree_ad_new(&dss_chunks_ad);
+#endif
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+#endif
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+ /*
+ * Allocate a base chunk here, since it doesn't actually have to be
+ * chunk-aligned. Doing this before allocating any other chunks allows
+ * the use of space that would otherwise be wasted.
+ */
+ if (opt_dss)
+ base_pages_alloc(0);
+#endif
+ base_nodes = NULL;
+ malloc_mutex_init(&base_mtx);
+
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create twice as many arenas as there are
+ * CPUs by default.
+ */
+ opt_narenas_lshift++;
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+#ifdef MALLOC_BALANCE
+ assert(narenas != 0);
+ for (narenas_2pow = 0;
+ (narenas >> (narenas_2pow + 1)) != 0;
+ narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+# ifndef MALLOC_BALANCE
+ next_arena = 0;
+# endif
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+ arenas_map = arenas[0];
+#endif
+ /*
+ * Seed here for the initial thread, since choose_arena_hard() is only
+ * called for other threads. The seed value doesn't really matter.
+ */
+#ifdef MALLOC_BALANCE
+ SPRN(balance, 42);
+#endif
+
+ malloc_spin_init(&arenas_lock);
+
+ malloc_initialized = true;
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+}
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+void *
+malloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ ret = imalloc(size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+ int ret;
+ void *result;
+
+ if (malloc_init())
+ result = NULL;
+ else {
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0
+ || alignment < sizeof(void *)) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+ result = NULL;
+ ret = EINVAL;
+ goto RETURN;
+ }
+
+ result = ipalloc(alignment, size);
+ }
+
+ if (result == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): out of memory\n",
+ "", "");
+ abort();
+ }
+ ret = ENOMEM;
+ goto RETURN;
+ }
+
+ *memptr = result;
+ ret = 0;
+
+RETURN:
+ UTRACE(0, size, result);
+ return (ret);
+}
+
+void *
+calloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+ num_size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+void *
+realloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ }
+
+RETURN:
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+void
+free(void *ptr)
+{
+
+ UTRACE(ptr, 0, 0);
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ idalloc(ptr);
+ }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions.
+ */
+
+/******************************************************************************/
+/*
+ * Begin thread cache.
+ */
+
+/*
+ * We provide an unpublished interface in order to receive notifications from
+ * the pthreads library whenever a thread exits. This allows us to clean up
+ * thread caches.
+ */
+void
+_malloc_thread_cleanup(void)
+{
+
+#ifdef MALLOC_MAG
+ if (mag_rack != NULL) {
+ assert(mag_rack != (void *)-1);
+ mag_rack_destroy(mag_rack);
+#ifdef MALLOC_DEBUG
+ mag_rack = (void *)-1;
+#endif
+ }
+#endif
+}
+
+/*
+ * The following functions are used by threading libraries for protection of
+ * malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&huge_mtx);
+
+#ifdef MALLOC_DSS
+ malloc_mutex_lock(&dss_mtx);
+#endif
+}
+
+void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+#ifdef MALLOC_DSS
+ malloc_mutex_unlock(&dss_mtx);
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
--- /dev/null
+/******************************************************************************
+ *
+ * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ *
+ * cpp macro implementation of left-leaning red-black trees.
+ *
+ * Usage:
+ *
+ * (Optional, see assert(3).)
+ * #define NDEBUG
+ *
+ * (Required.)
+ * #include <assert.h>
+ * #include <rb.h>
+ * ...
+ *
+ * All operations are done non-recursively. Parent pointers are not used, and
+ * color bits are stored in the least significant bit of right-child pointers,
+ * thus making node linkage as compact as is possible for red-black trees.
+ *
+ * Some macros use a comparison function pointer, which is expected to have the
+ * following prototype:
+ *
+ * int (a_cmp *)(a_type *a_node, a_type *a_other);
+ * ^^^^^^
+ * or a_key
+ *
+ * Interpretation of comparision function return values:
+ *
+ * -1 : a_node < a_other
+ * 0 : a_node == a_other
+ * 1 : a_node > a_other
+ *
+ * In all cases, the a_node or a_key macro argument is the first argument to the
+ * comparison function, which makes it possible to write comparison functions
+ * that treat the first argument specially.
+ *
+ ******************************************************************************/
+
+#ifndef RB_H_
+#define RB_H_
+
+//__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
+
+/* Node structure. */
+#define rb_node(a_type) \
+struct { \
+ a_type *rbn_left; \
+ a_type *rbn_right_red; \
+}
+
+/* Root structure. */
+#define rb_tree(a_type) \
+struct { \
+ a_type *rbt_root; \
+ a_type rbt_nil; \
+}
+
+/* Left accessors. */
+#define rbp_left_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_left)
+#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
+ (a_node)->a_field.rbn_left = a_left; \
+} while (0)
+
+/* Right accessors. */
+#define rbp_right_get(a_type, a_field, a_node) \
+ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((ssize_t)-2)))
+#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
+ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
+} while (0)
+
+/* Color accessors. */
+#define rbp_red_get(a_type, a_field, a_node) \
+ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((size_t)1)))
+#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
+ | ((ssize_t)a_red)); \
+} while (0)
+#define rbp_red_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
+ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
+} while (0)
+#define rbp_black_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
+} while (0)
+
+/* Node initializer. */
+#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
+ rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+/* Tree initializer. */
+#define rb_new(a_type, a_field, a_tree) do { \
+ (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
+ rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
+} while (0)
+
+/* Tree operations. */
+#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
+ a_type *rbp_bh_t; \
+ for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
+ rbp_bh_t != &(a_tree)->rbt_nil; \
+ rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
+ if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
+ (r_height)++; \
+ } \
+ } \
+} while (0)
+
+#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_right_get(a_type, a_field, (a_node)) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_n_t = (a_tree)->rbt_root; \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
+ if (rbp_n_cmp < 0) { \
+ (r_node) = rbp_n_t; \
+ rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
+ } else if (rbp_n_cmp > 0) { \
+ rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
+ rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_p_t = (a_tree)->rbt_root; \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
+ if (rbp_p_cmp < 0) { \
+ rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
+ } else if (rbp_p_cmp > 0) { \
+ (r_node) = rbp_p_t; \
+ rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rb_first(a_type, a_field, a_tree, r_node) do { \
+ rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_last(a_type, a_field, a_tree, r_node) do { \
+ rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ int rbp_se_cmp; \
+ (r_node) = (a_tree)->rbt_root; \
+ while ((r_node) != &(a_tree)->rbt_nil \
+ && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
+ if (rbp_se_cmp < 0) { \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
+ } else { \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
+ } \
+ } \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the next greater node, if one
+ * exists.
+ */
+#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ns_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ns_t != &(a_tree)->rbt_nil) { \
+ int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
+ if (rbp_ns_cmp < 0) { \
+ (r_node) = rbp_ns_t; \
+ rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
+ } else if (rbp_ns_cmp > 0) { \
+ rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
+ } else { \
+ (r_node) = rbp_ns_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the previous lesser node, if one
+ * exists.
+ */
+#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ps_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ps_t != &(a_tree)->rbt_nil) { \
+ int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
+ if (rbp_ps_cmp < 0) { \
+ rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
+ } else if (rbp_ps_cmp > 0) { \
+ (r_node) = rbp_ps_t; \
+ rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
+ } else { \
+ (r_node) = rbp_ps_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_right_set(a_type, a_field, (a_node), \
+ rbp_left_get(a_type, a_field, (r_node))); \
+ rbp_left_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_left_set(a_type, a_field, (a_node), \
+ rbp_right_get(a_type, a_field, (r_node))); \
+ rbp_right_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
+ bool rbp_ll_red; \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
+ bool rbp_lr_red; \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrl_t, *rbp_mrl_u; \
+ rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_red_set(a_type, a_field, rbp_mrl_t); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
+ rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
+ rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrl_t); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
+ rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
+ } else { \
+ rbp_black_set(a_type, a_field, (a_node)); \
+ } \
+ } else { \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+} while (0)
+
+#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrr_t; \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ a_type *rbp_mrr_u, *rbp_mrr_v; \
+ rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
+ rbp_color_set(a_type, a_field, rbp_mrr_u, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_black_set(a_type, a_field, rbp_mrr_v); \
+ rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
+ rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_color_set(a_type, a_field, rbp_mrr_t, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_red_set(a_type, a_field, rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrr_t); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+ } \
+} while (0)
+
+#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_i_s; \
+ a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
+ int rbp_i_cmp = 0; \
+ rbp_i_g = &(a_tree)->rbt_nil; \
+ rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_i_s); \
+ rbp_i_p = &rbp_i_s; \
+ rbp_i_c = (a_tree)->rbt_root; \
+ /* Iteratively search down the tree for the insertion point, */\
+ /* splitting 4-nodes as they are encountered. At the end of each */\
+ /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
+ /* the tree, assuming a sufficiently deep tree. */\
+ while (rbp_i_c != &(a_tree)->rbt_nil) { \
+ rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ if (rbp_red_get(a_type, a_field, rbp_i_t) \
+ && rbp_red_get(a_type, a_field, rbp_i_u)) { \
+ /* rbp_i_c is the top of a logical 4-node, so split it. */\
+ /* This iteration does not move down the tree, due to the */\
+ /* disruptiveness of node splitting. */\
+ /* */\
+ /* Rotate right. */\
+ rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
+ /* Pass red links up one level. */\
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ rbp_black_set(a_type, a_field, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
+ rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_i_c = rbp_i_t; \
+ } else { \
+ /* rbp_i_c was the right child of rbp_i_p, so rotate */\
+ /* left in order to maintain the left-leaning */\
+ /* invariant. */\
+ assert(rbp_right_get(a_type, a_field, rbp_i_p) \
+ == rbp_i_c); \
+ rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_i_g) \
+ == rbp_i_p); \
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } \
+ rbp_i_p = rbp_i_u; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
+ } \
+ continue; \
+ } \
+ } \
+ rbp_i_g = rbp_i_p; \
+ rbp_i_p = rbp_i_c; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
+ } \
+ } \
+ /* rbp_i_p now refers to the node under which to insert. */\
+ rbp_node_new(a_type, a_field, a_tree, (a_node)); \
+ if (rbp_i_cmp > 0) { \
+ rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } \
+ } else { \
+ rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
+ } \
+ /* Update the root and make sure that it is black. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
+ rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
+} while (0)
+
+#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_r_s; \
+ a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
+ int rbp_r_cmp; \
+ rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_r_s); \
+ rbp_r_p = &rbp_r_s; \
+ rbp_r_c = (a_tree)->rbt_root; \
+ rbp_r_xp = &(a_tree)->rbt_nil; \
+ /* Iterate down the tree, but always transform 2-nodes to 3- or */\
+ /* 4-nodes in order to maintain the invariant that the current */\
+ /* node is not a 2-node. This allows simple deletion once a leaf */\
+ /* is reached. Handle the root specially though, since there may */\
+ /* be no way to convert it from a 2-node to a 3-node. */\
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ /* Apply standard transform to prepare for left move. */\
+ rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_black_set(a_type, a_field, rbp_r_t); \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move left. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete root node (which is also a leaf node). */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ } else { \
+ /* This is the node we want to delete, but we will */\
+ /* instead swap it with its successor and delete the */\
+ /* successor. Record enough information to do the */\
+ /* swap later. rbp_r_xp is the a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
+ } \
+ } \
+ if (rbp_r_cmp == 1) { \
+ if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
+ a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
+ == false) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
+ /* Standard transform. */\
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } else { \
+ /* Root-specific transform. */\
+ rbp_red_set(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
+ rbp_black_set(a_type, a_field, rbp_r_u); \
+ rbp_rotate_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_u); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ rbp_r_u); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move right. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ if (rbp_r_cmp != 0) { \
+ while (true) { \
+ assert(rbp_r_p != &(a_tree)->rbt_nil); \
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_r_t == &(a_tree)->rbt_nil) { \
+ /* rbp_r_c now refers to the successor node to */\
+ /* relocate, and rbp_r_xp/a_node refer to the */\
+ /* context for the relocation. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_xp) \
+ == (a_node)) { \
+ rbp_left_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, \
+ rbp_r_xp) == (a_node)); \
+ rbp_right_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_c, \
+ rbp_left_get(a_type, a_field, (a_node))); \
+ rbp_right_set(a_type, a_field, rbp_r_c, \
+ rbp_right_get(a_type, a_field, (a_node))); \
+ rbp_color_set(a_type, a_field, rbp_r_c, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c); \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } \
+ break; \
+ } \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ /* Check whether to delete this node (it has to be */\
+ /* the correct node and a leaf node). */\
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete leaf node. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ break; \
+ } else { \
+ /* This is the node we want to delete, but we */\
+ /* will instead swap it with its successor */\
+ /* and delete the successor. Record enough */\
+ /* information to do the swap later. */\
+ /* rbp_r_xp is a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ } \
+ } \
+ rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ } \
+ /* Update root. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
+} while (0)
+
+/*
+ * The rb_wrap() macro provides a convenient way to wrap functions around the
+ * cpp macros. The main benefits of wrapping are that 1) repeated macro
+ * expansion can cause code bloat, especially for rb_{insert,remove)(), and
+ * 2) type, linkage, comparison functions, etc. need not be specified at every
+ * call point.
+ */
+
+#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
+a_attr void \
+a_prefix##new(a_tree_type *tree) { \
+ rb_new(a_type, a_field, tree); \
+} \
+a_attr a_type * \
+a_prefix##first(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_first(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##last(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_last(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##next(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_next(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##prev(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##search(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_search(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##psearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr void \
+a_prefix##insert(a_tree_type *tree, a_type *node) { \
+ rb_insert(a_type, a_field, a_cmp, tree, node); \
+} \
+a_attr void \
+a_prefix##remove(a_tree_type *tree, a_type *node) { \
+ rb_remove(a_type, a_field, a_cmp, tree, node); \
+}
+
+/*
+ * The iterators simulate recursion via an array of pointers that store the
+ * current path. This is critical to performance, since a series of calls to
+ * rb_{next,prev}() would require time proportional to (n lg n), whereas this
+ * implementation only requires time proportional to (n).
+ *
+ * Since the iterators cache a path down the tree, any tree modification may
+ * cause the cached path to become invalid. In order to continue iteration,
+ * use something like the following sequence:
+ *
+ * {
+ * a_type *node, *tnode;
+ *
+ * rb_foreach_begin(a_type, a_field, a_tree, node) {
+ * ...
+ * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
+ * rb_remove(a_type, a_field, a_cmp, a_tree, node);
+ * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
+ * ...
+ * } rb_foreach_end(a_type, a_field, a_tree, node)
+ * }
+ *
+ * Note that this idiom is not advised if every iteration modifies the tree,
+ * since in that case there is no algorithmic complexity improvement over a
+ * series of rb_{next,prev}() calls, thus making the setup overhead wasted
+ * effort.
+ */
+
+#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_f_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
+ rbp_f_height *= 3; \
+ { \
+ /* Initialize the path to contain the left spine. */\
+ a_type *rbp_f_path[rbp_f_height]; \
+ a_type *rbp_f_node; \
+ bool rbp_f_synced = false; \
+ unsigned rbp_f_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_f_depth > 0) { \
+ (a_var) = rbp_f_path[rbp_f_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_f_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ rbp_f_node = rbp_f_path[0]; \
+ while (true) { \
+ int rbp_f_cmp = (a_cmp)((a_node), \
+ rbp_f_path[rbp_f_depth-1]); \
+ if (rbp_f_cmp < 0) { \
+ rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else if (rbp_f_cmp > 0) { \
+ rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_f_node != &(a_tree)->rbt_nil); \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ } \
+ rbp_f_synced = true;
+
+#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_f_synced) { \
+ rbp_f_synced = false; \
+ continue; \
+ } \
+ /* Find the successor. */\
+ if ((rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The successor is the left-most node in the right */\
+ /* subtree. */\
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } else { \
+ /* The successor is above the current node. Unwind */\
+ /* until a left-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
+ if (rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]) \
+ == rbp_f_path[rbp_f_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_fr_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
+ rbp_fr_height *= 3; \
+ { \
+ /* Initialize the path to contain the right spine. */\
+ a_type *rbp_fr_path[rbp_fr_height]; \
+ a_type *rbp_fr_node; \
+ bool rbp_fr_synced = false; \
+ unsigned rbp_fr_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_fr_depth > 0) { \
+ (a_var) = rbp_fr_path[rbp_fr_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_fr_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ rbp_fr_node = rbp_fr_path[0]; \
+ while (true) { \
+ int rbp_fr_cmp = (a_cmp)((a_node), \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ if (rbp_fr_cmp < 0) { \
+ rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else if (rbp_fr_cmp > 0) { \
+ rbp_fr_node = rbp_right_get(a_type, a_field,\
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_fr_node != &(a_tree)->rbt_nil); \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ } \
+ rbp_fr_synced = true;
+
+#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_fr_synced) { \
+ rbp_fr_synced = false; \
+ continue; \
+ } \
+ if (rbp_fr_depth == 0) { \
+ /* rb_foreach_reverse_sync() was called with a NULL */\
+ /* a_node. */\
+ break; \
+ } \
+ /* Find the predecessor. */\
+ if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The predecessor is the right-most node in the left */\
+ /* subtree. */\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } else { \
+ /* The predecessor is above the current node. Unwind */\
+ /* until a right-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
+ if (rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]) \
+ == rbp_fr_path[rbp_fr_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#endif /* RB_H_ */