config SYS_SUPPORTS_APM_EMULATION
bool
-#
-# Powerpc uses the slab allocator to manage its ptes and the
-# page structs of ptes are used for splitting the page table
-# lock for configurations supporting more than SPLIT_PTLOCK_CPUS.
-#
-# In that special configuration the page structs of slabs are modified.
-# This setting disables the selection of SLUB as a slab allocator.
-#
-config ARCH_USES_SLAB_PAGE_STRUCT
- bool
- default y
- depends on SPLIT_PTLOCK_CPUS <= NR_CPUS
-
config DEFAULT_UIMAGE
bool
help
memset(addr, 0, kmem_cache_size(cache));
}
-#ifdef CONFIG_PPC_64K_PAGES
-static const unsigned int pgtable_cache_size[3] = {
- PTE_TABLE_SIZE, PMD_TABLE_SIZE, PGD_TABLE_SIZE
-};
-static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
- "pte_pmd_cache", "pmd_cache", "pgd_cache",
-};
-#else
static const unsigned int pgtable_cache_size[2] = {
- PTE_TABLE_SIZE, PMD_TABLE_SIZE
+ PGD_TABLE_SIZE, PMD_TABLE_SIZE
};
static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
- "pgd_pte_cache", "pud_pmd_cache",
-};
+#ifdef CONFIG_PPC_64K_PAGES
+ "pgd_cache", "pmd_cache",
+#else
+ "pgd_cache", "pud_pmd_cache",
#endif /* CONFIG_PPC_64K_PAGES */
+};
#ifdef CONFIG_HUGETLB_PAGE
/* Hugepages need one extra cache, initialized in hugetlbpage.c. We
extern struct kmem_cache *pgtable_cache[];
-#ifdef CONFIG_PPC_64K_PAGES
-#define PTE_CACHE_NUM 0
-#define PMD_CACHE_NUM 1
-#define PGD_CACHE_NUM 2
-#define HUGEPTE_CACHE_NUM 3
-#else
-#define PTE_CACHE_NUM 0
-#define PMD_CACHE_NUM 1
-#define PUD_CACHE_NUM 1
-#define PGD_CACHE_NUM 0
-#define HUGEPTE_CACHE_NUM 2
-#endif
+#define PGD_CACHE_NUM 0
+#define PUD_CACHE_NUM 1
+#define PMD_CACHE_NUM 1
+#define HUGEPTE_CACHE_NUM 2
+#define PTE_NONCACHE_NUM 3 /* from GFP rather than kmem_cache */
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- return kmem_cache_alloc(pgtable_cache[PTE_CACHE_NUM],
- GFP_KERNEL|__GFP_REPEAT);
+ return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
}
static inline struct page *pte_alloc_one(struct mm_struct *mm,
static inline void pte_free_kernel(pte_t *pte)
{
- kmem_cache_free(pgtable_cache[PTE_CACHE_NUM], pte);
+ free_page((unsigned long)pte);
}
static inline void pte_free(struct page *ptepage)
{
- pte_free_kernel(page_address(ptepage));
+ __free_page(ptepage);
}
#define PGF_CACHENUM_MASK 0x3
void *p = (void *)(pgf.val & ~PGF_CACHENUM_MASK);
int cachenum = pgf.val & PGF_CACHENUM_MASK;
- kmem_cache_free(pgtable_cache[cachenum], p);
+ if (cachenum == PTE_NONCACHE_NUM)
+ free_page((unsigned long)p);
+ else
+ kmem_cache_free(pgtable_cache[cachenum], p);
}
extern void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf);
#define __pte_free_tlb(tlb, ptepage) \
pgtable_free_tlb(tlb, pgtable_free_cache(page_address(ptepage), \
- PTE_CACHE_NUM, PTE_TABLE_SIZE-1))
+ PTE_NONCACHE_NUM, PTE_TABLE_SIZE-1))
#define __pmd_free_tlb(tlb, pmd) \
pgtable_free_tlb(tlb, pgtable_free_cache(pmd, \
PMD_CACHE_NUM, PMD_TABLE_SIZE-1))