]> err.no Git - linux-2.6/commitdiff
Merge branch 'master' of /home/tglx/work/kernel/git/mtd-2.6/
authorThomas Gleixner <tglx@cruncher.tec.linutronix.de>
Tue, 23 May 2006 10:37:31 +0000 (12:37 +0200)
committerThomas Gleixner <tglx@cruncher.tec.linutronix.de>
Tue, 23 May 2006 10:37:31 +0000 (12:37 +0200)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
21 files changed:
drivers/mtd/nand/Kconfig
drivers/mtd/nand/Makefile
drivers/mtd/nand/ams-delta.c
drivers/mtd/nand/au1550nd.c
drivers/mtd/nand/autcpu12.c
drivers/mtd/nand/cs553x_nand.c
drivers/mtd/nand/diskonchip.c
drivers/mtd/nand/h1910.c
drivers/mtd/nand/nand_base.c
drivers/mtd/nand/nand_ecc.c
drivers/mtd/nand/nandsim.c
drivers/mtd/nand/ndfc.c [new file with mode: 0644]
drivers/mtd/nand/ppchameleonevb.c
drivers/mtd/nand/rtc_from4.c
drivers/mtd/nand/s3c2410.c
drivers/mtd/nand/sharpsl.c
drivers/mtd/nand/toto.c
drivers/mtd/nand/ts7250.c
fs/jffs2/wbuf.c
include/linux/mtd/nand.h
include/linux/mtd/ndfc.h [new file with mode: 0644]

index 2d0ebad55a4951f440330a68367560a8153b207f..c2cb87fc4cb878f99a6c8665da53292c02d98fe7 100644 (file)
@@ -23,6 +23,14 @@ config MTD_NAND_VERIFY_WRITE
          device thinks the write was successful, a bit could have been
          flipped accidentaly due to device wear or something else.
 
+config MTD_NAND_ECC_SMC
+       bool "NAND ECC Smart Media byte order"
+       depends on MTD_NAND
+       default n
+       help
+         Software ECC according to the Smart Media Specification.
+         The original Linux implementation had byte 0 and 1 swapped.
+
 config MTD_NAND_AUTCPU12
        tristate "SmartMediaCard on autronix autcpu12 board"
        depends on MTD_NAND && ARCH_AUTCPU12
@@ -121,6 +129,12 @@ config MTD_NAND_S3C2410_HWECC
          currently not be able to switch to software, as there is no
          implementation for ECC method used by the S3C2410
 
+config MTD_NAND_NDFC
+       tristate "NDFC NanD Flash Controller"
+       depends on MTD_NAND && 44x
+       help
+        NDFC Nand Flash Controllers are integrated in EP44x SoCs
+
 config MTD_NAND_DISKONCHIP
        tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
        depends on MTD_NAND && EXPERIMENTAL
index 33475087dbff2bf4069235aea15d873971885ebc..f74759351c912a2fd3d7d4cb840e44f428e5fd5f 100644 (file)
@@ -21,5 +21,6 @@ obj-$(CONFIG_MTD_NAND_SHARPSL)                += sharpsl.o
 obj-$(CONFIG_MTD_NAND_TS7250)          += ts7250.o
 obj-$(CONFIG_MTD_NAND_NANDSIM)         += nandsim.o
 obj-$(CONFIG_MTD_NAND_CS553X)          += cs553x_nand.o
+obj-$(CONFIG_MTD_NAND_NDFC)            += ndfc.o
 
 nand-objs = nand_base.o nand_bbt.o
index 5a349eb316f5f6ab7b0bbe75ecb78d1fd439818b..aeaf2dece0954a6a040cfee39391c97b8ee62bd3 100644 (file)
@@ -192,7 +192,7 @@ static int __init ams_delta_init(void)
        }
        /* 25 us command delay time */
        this->chip_delay = 30;
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        /* Set chip enabled, but  */
        ams_delta_latch2_write(NAND_MASK, AMS_DELTA_LATCH2_NAND_NRE |
index 4253b930978964cdbf82751dec59173126e2f892..29dde7dcafa182b86db8ffab4cc875554e5e990e 100644 (file)
@@ -578,7 +578,7 @@ static int __init au1xxx_nand_init(void)
 
        /* 30 us command delay time */
        this->chip_delay = 30;
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        this->options = NAND_NO_AUTOINCR;
 
index 43b296040d7fd9ba2664ccb20be300813e902226..dbb1b6267ade79ee4b740db1a797d25210fb73ca 100644 (file)
@@ -163,7 +163,7 @@ static int __init autcpu12_init(void)
        this->dev_ready = autcpu12_device_ready;
        /* 20 us command delay time */
        this->chip_delay = 20;
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        /* Enable the following for a flash based bad block table */
        /*
index bf251253ea1fff15bfaace0cbb310ecfeef503fc..064f3feadf53cc3be3fb969406caac1e670fa782 100644 (file)
@@ -242,11 +242,13 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
 
        this->chip_delay = 0;
 
-       this->eccmode = NAND_ECC_HW3_256;
-       this->enable_hwecc  = cs_enable_hwecc;
-       this->calculate_ecc = cs_calculate_ecc;
-       this->correct_data  = nand_correct_data;
-       
+       this->ecc.mode = NAND_ECC_HW;
+       this->ecc.size = 256;
+       this->ecc.bytes = 3;
+       this->ecc.hwctl  = cs_enable_hwecc;
+       this->ecc.calculate = cs_calculate_ecc;
+       this->ecc.correct  = nand_correct_data;
+
        /* Enable the following for a flash based bad block table */
        this->options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR;
 
index d160930276d658945b808f5dbe07cb697c788e94..b771608ef84ea81f982e7b589caf2c594275a4a5 100644 (file)
@@ -1674,12 +1674,14 @@ static int __init doc_probe(unsigned long physadr)
        nand->dev_ready         = doc200x_dev_ready;
        nand->waitfunc          = doc200x_wait;
        nand->block_bad         = doc200x_block_bad;
-       nand->enable_hwecc      = doc200x_enable_hwecc;
-       nand->calculate_ecc     = doc200x_calculate_ecc;
-       nand->correct_data      = doc200x_correct_data;
+       nand->ecc.hwctl         = doc200x_enable_hwecc;
+       nand->ecc.calculate     = doc200x_calculate_ecc;
+       nand->ecc.correct       = doc200x_correct_data;
 
        nand->autooob           = &doc200x_oobinfo;
-       nand->eccmode           = NAND_ECC_HW6_512;
+       nand->ecc.mode          = NAND_ECC_HW_SYNDROME;
+       nand->ecc.size          = 512;
+       nand->ecc.bytes         = 6;
        nand->options           = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
 
        doc->physadr            = physadr;
index 9848eb09b8846651ba794833f6de48592c635ae2..06e91fa11b34a5f931581585c9bc5ac2b3c1444c 100644 (file)
@@ -149,7 +149,7 @@ static int __init h1910_init(void)
        this->dev_ready = NULL; /* unknown whether that was correct or not so we will just do it like this */
        /* 15 us command delay time */
        this->chip_delay = 50;
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
        this->options = NAND_NO_AUTOINCR;
 
        /* Scan to find existence of the device */
index cd90a46bf56adffd484500756122c72cd8245869..778535006c83432ceafeff1e2d8e203bcc4c3417 100644 (file)
@@ -10,7 +10,7 @@
  *     http://www.linux-mtd.infradead.org/tech/nand.html
  *
  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
- *               2002 Thomas Gleixner (tglx@linutronix.de)
+ *               2002 Thomas Gleixner (tglx@linutronix.de)
  *
  *  02-08-2004  tglx: support for strange chips, which cannot auto increment
  *             pages on read / read_oob
  *  05-19-2004  tglx: Basic support for Renesas AG-AND chips
  *
  *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared
- *             among multiple independend devices. Suggestions and initial patch
- *             from Ben Dooks <ben-mtd@fluff.org>
- *
- *  12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
- *             Basically, any block not rewritten may lose data when surrounding blocks
- *             are rewritten many times.  JFFS2 ensures this doesn't happen for blocks
- *             it uses, but the Bad Block Table(s) may not be rewritten.  To ensure they
- *             do not lose data, force them to be rewritten when some of the surrounding
- *             blocks are erased.  Rather than tracking a specific nearby block (which
- *             could itself go bad), use a page address 'mask' to select several blocks
- *             in the same area, and rewrite the BBT when any of them are erased.
- *
- *  01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
- *             AG-AND chips.  If there was a sudden loss of power during an erase operation,
- *             a "device recovery" operation must be performed when power is restored
- *             to ensure correct operation.
- *
- *  01-20-2005 dmarlin: added support for optional hardware specific callback routine to
- *             perform extra error status checks on erase and write failures.  This required
- *             adding a wrapper function for nand_read_ecc.
+ *             among multiple independend devices. Suggestions and initial
+ *             patch from Ben Dooks <ben-mtd@fluff.org>
+ *
+ *  12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb"
+ *             issue. Basically, any block not rewritten may lose data when
+ *             surrounding blocks are rewritten many times.  JFFS2 ensures
+ *             this doesn't happen for blocks it uses, but the Bad Block
+ *             Table(s) may not be rewritten.  To ensure they do not lose
+ *             data, force them to be rewritten when some of the surrounding
+ *             blocks are erased.  Rather than tracking a specific nearby
+ *             block (which could itself go bad), use a page address 'mask' to
+ *             select several blocks in the same area, and rewrite the BBT
+ *             when any of them are erased.
+ *
+ *  01-03-2005 dmarlin: added support for the device recovery command sequence
+ *             for Renesas AG-AND chips.  If there was a sudden loss of power
+ *             during an erase operation, a "device recovery" operation must
+ *             be performed when power is restored to ensure correct
+ *             operation.
+ *
+ *  01-20-2005 dmarlin: added support for optional hardware specific callback
+ *             routine to perform extra error status checks on erase and write
+ *             failures.  This required adding a wrapper function for
+ *             nand_read_ecc.
  *
  * 08-20-2005  vwool: suspend/resume added
  *
@@ -72,6 +76,7 @@
 #include <linux/module.h>
 #include <linux/delay.h>
 #include <linux/errno.h>
+#include <linux/err.h>
 #include <linux/sched.h>
 #include <linux/slab.h>
 #include <linux/types.h>
@@ -114,7 +119,7 @@ static struct nand_oobinfo nand_oob_64 = {
 };
 
 /* This is used for padding purposes in nand_write_oob */
-static u_char ffchars[] = {
+static uint8_t ffchars[] = {
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
@@ -128,36 +133,47 @@ static u_char ffchars[] = {
 /*
  * NAND low-level MTD interface functions
  */
-static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
-static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
-static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len);
 
-static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
+                    size_t *retlen, uint8_t *buf);
 static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
-                        size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
-static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
-static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+                        size_t *retlen, uint8_t *buf, uint8_t *eccbuf,
+                        struct nand_oobinfo *oobsel);
+static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
+                        size_t *retlen, uint8_t *buf);
+static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+                     size_t *retlen, const uint8_t *buf);
 static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
-                         size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
-static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
-static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
+                         size_t *retlen, const uint8_t *buf, uint8_t *eccbuf,
+                         struct nand_oobinfo *oobsel);
+static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
+                         size_t *retlen, const uint8_t *buf);
+static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs,
+                      unsigned long count, loff_t to, size_t *retlen);
 static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
-                          unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf,
-                          struct nand_oobinfo *oobsel);
+                          unsigned long count, loff_t to, size_t *retlen,
+                          uint8_t *eccbuf, struct nand_oobinfo *oobsel);
 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr);
 static void nand_sync(struct mtd_info *mtd);
 
 /* Some internal functions */
-static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page, u_char * oob_buf,
+static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this,
+                          int page, uint8_t * oob_buf,
                           struct nand_oobinfo *oobsel, int mode);
 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
-                            u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this,
+                            int page, int numpages, uint8_t *oob_buf,
+                            struct nand_oobinfo *oobsel, int chipnr,
+                            int oobmode);
 #else
 #define nand_verify_pages(...) (0)
 #endif
 
-static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state);
+static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd,
+                          int new_state);
 
 /**
  * nand_release_device - [GENERIC] release chip
@@ -172,20 +188,12 @@ static void nand_release_device(struct mtd_info *mtd)
        /* De-select the NAND device */
        this->select_chip(mtd, -1);
 
-       if (this->controller) {
-               /* Release the controller and the chip */
-               spin_lock(&this->controller->lock);
-               this->controller->active = NULL;
-               this->state = FL_READY;
-               wake_up(&this->controller->wq);
-               spin_unlock(&this->controller->lock);
-       } else {
-               /* Release the chip */
-               spin_lock(&this->chip_lock);
-               this->state = FL_READY;
-               wake_up(&this->wq);
-               spin_unlock(&this->chip_lock);
-       }
+       /* Release the controller and the chip */
+       spin_lock(&this->controller->lock);
+       this->controller->active = NULL;
+       this->state = FL_READY;
+       wake_up(&this->controller->wq);
+       spin_unlock(&this->controller->lock);
 }
 
 /**
@@ -194,7 +202,7 @@ static void nand_release_device(struct mtd_info *mtd)
  *
  * Default read function for 8bit buswith
  */
-static u_char nand_read_byte(struct mtd_info *mtd)
+static uint8_t nand_read_byte(struct mtd_info *mtd)
 {
        struct nand_chip *this = mtd->priv;
        return readb(this->IO_ADDR_R);
@@ -207,7 +215,7 @@ static u_char nand_read_byte(struct mtd_info *mtd)
  *
  * Default write function for 8it buswith
  */
-static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
 {
        struct nand_chip *this = mtd->priv;
        writeb(byte, this->IO_ADDR_W);
@@ -220,10 +228,10 @@ static void nand_write_byte(struct mtd_info *mtd, u_char byte)
  * Default read function for 16bit buswith with
  * endianess conversion
  */
-static u_char nand_read_byte16(struct mtd_info *mtd)
+static uint8_t nand_read_byte16(struct mtd_info *mtd)
 {
        struct nand_chip *this = mtd->priv;
-       return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+       return (uint8_t) cpu_to_le16(readw(this->IO_ADDR_R));
 }
 
 /**
@@ -234,7 +242,7 @@ static u_char nand_read_byte16(struct mtd_info *mtd)
  * Default write function for 16bit buswith with
  * endianess conversion
  */
-static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
 {
        struct nand_chip *this = mtd->priv;
        writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
@@ -298,7 +306,7 @@ static void nand_select_chip(struct mtd_info *mtd, int chip)
  *
  * Default write function for 8bit buswith
  */
-static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
        int i;
        struct nand_chip *this = mtd->priv;
@@ -315,7 +323,7 @@ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
  *
  * Default read function for 8bit buswith
  */
-static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 {
        int i;
        struct nand_chip *this = mtd->priv;
@@ -332,7 +340,7 @@ static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  *
  * Default verify function for 8bit buswith
  */
-static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
        int i;
        struct nand_chip *this = mtd->priv;
@@ -352,7 +360,7 @@ static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
  *
  * Default write function for 16bit buswith
  */
-static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
        int i;
        struct nand_chip *this = mtd->priv;
@@ -372,7 +380,7 @@ static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
  *
  * Default read function for 16bit buswith
  */
-static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 {
        int i;
        struct nand_chip *this = mtd->priv;
@@ -391,7 +399,7 @@ static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
  *
  * Default verify function for 16bit buswith
  */
-static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
        int i;
        struct nand_chip *this = mtd->priv;
@@ -432,14 +440,16 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
                page = (int)ofs;
 
        if (this->options & NAND_BUSWIDTH_16) {
-               this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+               this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE,
+                             page & this->pagemask);
                bad = cpu_to_le16(this->read_word(mtd));
                if (this->badblockpos & 0x1)
                        bad >>= 8;
                if ((bad & 0xFF) != 0xff)
                        res = 1;
        } else {
-               this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+               this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos,
+                             page & this->pagemask);
                if (this->read_byte(mtd) != 0xff)
                        res = 1;
        }
@@ -463,7 +473,7 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 {
        struct nand_chip *this = mtd->priv;
-       u_char buf[2] = { 0, 0 };
+       uint8_t buf[2] = { 0, 0 };
        size_t retlen;
        int block;
 
@@ -506,7 +516,8 @@ static int nand_check_wp(struct mtd_info *mtd)
  * Check, if the block is bad. Either by reading the bad block table or
  * calling of the scan function.
  */
-static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
+                              int allowbbt)
 {
        struct nand_chip *this = mtd->priv;
 
@@ -548,7 +559,8 @@ static void nand_wait_ready(struct mtd_info *mtd)
  * Send command to NAND device. This function is used for small page
  * devices (256/512 Bytes per page)
  */
-static void nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+static void nand_command(struct mtd_info *mtd, unsigned command, int column,
+                        int page_addr)
 {
        register struct nand_chip *this = mtd->priv;
 
@@ -589,11 +601,11 @@ static void nand_command(struct mtd_info *mtd, unsigned command, int column, int
                        this->write_byte(mtd, column);
                }
                if (page_addr != -1) {
-                       this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
-                       this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
+                       this->write_byte(mtd, (uint8_t)(page_addr & 0xff));
+                       this->write_byte(mtd, (uint8_t)((page_addr >> 8) & 0xff));
                        /* One more address cycle for devices > 32MiB */
                        if (this->chipsize > (32 << 20))
-                               this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0x0f));
+                               this->write_byte(mtd, (uint8_t)((page_addr >> 16) & 0x0f));
                }
                /* Latch in address */
                this->hwcontrol(mtd, NAND_CTL_CLRALE);
@@ -681,11 +693,11 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column,
                        this->write_byte(mtd, column >> 8);
                }
                if (page_addr != -1) {
-                       this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
-                       this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
+                       this->write_byte(mtd, (uint8_t)(page_addr & 0xff));
+                       this->write_byte(mtd, (uint8_t)((page_addr >> 8) & 0xff));
                        /* One more address cycle for devices > 128MiB */
                        if (this->chipsize > (128 << 20))
-                               this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0xff));
+                               this->write_byte(mtd, (uint8_t)((page_addr >> 16) & 0xff));
                }
                /* Latch in address */
                this->hwcontrol(mtd, NAND_CTL_CLRALE);
@@ -763,27 +775,21 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column,
  *
  * Get the device and lock it for exclusive access
  */
-static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
+static int
+nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
 {
-       struct nand_chip *active;
-       spinlock_t *lock;
-       wait_queue_head_t *wq;
+       spinlock_t *lock = &this->controller->lock;
+       wait_queue_head_t *wq = &this->controller->wq;
        DECLARE_WAITQUEUE(wait, current);
-
-       lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
-       wq = (this->controller) ? &this->controller->wq : &this->wq;
  retry:
-       active = this;
        spin_lock(lock);
 
        /* Hardware controller shared among independend devices */
-       if (this->controller) {
-               if (this->controller->active)
-                       active = this->controller->active;
-               else
-                       this->controller->active = this;
-       }
-       if (active == this && this->state == FL_READY) {
+       /* Hardware controller shared among independend devices */
+       if (!this->controller->active)
+               this->controller->active = this;
+
+       if (this->controller->active == this && this->state == FL_READY) {
                this->state = new_state;
                spin_unlock(lock);
                return 0;
@@ -869,13 +875,13 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
  * Cached programming is not supported yet.
  */
 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page,
-                          u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
+                          uint8_t *oob_buf, struct nand_oobinfo *oobsel, int cached)
 {
        int i, status;
-       u_char ecc_code[32];
-       int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+       uint8_t ecc_code[32];
+       int eccmode = oobsel->useecc ? this->ecc.mode : NAND_ECC_NONE;
        int *oob_config = oobsel->eccpos;
-       int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+       int datidx = 0, eccidx = 0, eccsteps = this->ecc.steps;
        int eccbytes = 0;
 
        /* FIXME: Enable cached programming */
@@ -895,20 +901,20 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int pag
                /* Software ecc 3/256, write all */
        case NAND_ECC_SOFT:
                for (; eccsteps; eccsteps--) {
-                       this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+                       this->ecc.calculate(mtd, &this->data_poi[datidx], ecc_code);
                        for (i = 0; i < 3; i++, eccidx++)
                                oob_buf[oob_config[eccidx]] = ecc_code[i];
-                       datidx += this->eccsize;
+                       datidx += this->ecc.size;
                }
                this->write_buf(mtd, this->data_poi, mtd->writesize);
                break;
        default:
-               eccbytes = this->eccbytes;
+               eccbytes = this->ecc.bytes;
                for (; eccsteps; eccsteps--) {
                        /* enable hardware ecc logic for write */
-                       this->enable_hwecc(mtd, NAND_ECC_WRITE);
-                       this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
-                       this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+                       this->ecc.hwctl(mtd, NAND_ECC_WRITE);
+                       this->write_buf(mtd, &this->data_poi[datidx], this->ecc.size);
+                       this->ecc.calculate(mtd, &this->data_poi[datidx], ecc_code);
                        for (i = 0; i < eccbytes; i++, eccidx++)
                                oob_buf[oob_config[eccidx]] = ecc_code[i];
                        /* If the hardware ecc provides syndromes then
@@ -916,7 +922,7 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int pag
                         * the data bytes (words) */
                        if (this->options & NAND_HWECC_SYNDROME)
                                this->write_buf(mtd, ecc_code, eccbytes);
-                       datidx += this->eccsize;
+                       datidx += this->ecc.size;
                }
                break;
        }
@@ -957,7 +963,7 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int pag
  * nand_verify_pages - [GENERIC] verify the chip contents after a write
  * @mtd:       MTD device structure
  * @this:      NAND chip structure
- * @page:      startpage inside the chip, must be called with (page & this->pagemask)
+ * @page:      startpage inside the chip, must be called with (page & this->pagemask)
  * @numpages:  number of pages to verify
  * @oob_buf:   out of band data buffer
  * @oobsel:    out of band selecttion structre
@@ -973,12 +979,12 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int pag
  * it early in the page write stage. Better to write no data than invalid data.
  */
 static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
-                            u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+                            uint8_t *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
 {
        int i, j, datidx = 0, oobofs = 0, res = -EIO;
        int eccsteps = this->eccsteps;
        int hweccbytes;
-       u_char oobdata[64];
+       uint8_t oobdata[64];
 
        hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
 
@@ -1073,7 +1079,7 @@ static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int p
  * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
  * and flags = 0xff
  */
-static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf)
 {
        return nand_do_read_ecc(mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
 }
@@ -1091,7 +1097,7 @@ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retl
  * This function simply calls nand_do_read_ecc with flags = 0xff
  */
 static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
-                        size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel)
+                        size_t *retlen, uint8_t *buf, uint8_t *oob_buf, struct nand_oobinfo *oobsel)
 {
        /* use userspace supplied oobinfo, if zero */
        if (oobsel == NULL)
@@ -1116,15 +1122,15 @@ static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
  * NAND read with ECC
  */
 int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
-                    size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel, int flags)
+                    size_t *retlen, uint8_t *buf, uint8_t *oob_buf, struct nand_oobinfo *oobsel, int flags)
 {
 
        int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
        int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
        struct nand_chip *this = mtd->priv;
-       u_char *data_poi, *oob_data = oob_buf;
-       u_char ecc_calc[32];
-       u_char ecc_code[32];
+       uint8_t *data_poi, *oob_data = oob_buf;
+       uint8_t ecc_calc[32];
+       uint8_t ecc_code[32];
        int eccmode, eccsteps;
        int *oob_config, datidx;
        int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
@@ -1149,7 +1155,7 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
        if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
                oobsel = this->autooob;
 
-       eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+       eccmode = oobsel->useecc ? this->ecc.mode : NAND_ECC_NONE;
        oob_config = oobsel->eccpos;
 
        /* Select the NAND device */
@@ -1164,8 +1170,8 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
        col = from & (mtd->writesize - 1);
 
        end = mtd->writesize;
-       ecc = this->eccsize;
-       eccbytes = this->eccbytes;
+       ecc = this->ecc.size;
+       eccbytes = this->ecc.bytes;
 
        if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
                compareecc = 0;
@@ -1210,7 +1216,7 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
                        oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
                        oob_data = &this->data_buf[end];
 
-               eccsteps = this->eccsteps;
+               eccsteps = this->ecc.steps;
 
                switch (eccmode) {
                case NAND_ECC_NONE:{
@@ -1228,12 +1234,12 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
                case NAND_ECC_SOFT:     /* Software ECC 3/256: Read in a page + oob data */
                        this->read_buf(mtd, data_poi, end);
                        for (i = 0, datidx = 0; eccsteps; eccsteps--, i += 3, datidx += ecc)
-                               this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+                               this->ecc.calculate(mtd, &data_poi[datidx], &ecc_calc[i]);
                        break;
 
                default:
                        for (i = 0, datidx = 0; eccsteps; eccsteps--, i += eccbytes, datidx += ecc) {
-                               this->enable_hwecc(mtd, NAND_ECC_READ);
+                               this->ecc.hwctl(mtd, NAND_ECC_READ);
                                this->read_buf(mtd, &data_poi[datidx], ecc);
 
                                /* HW ecc with syndrome calculation must read the
@@ -1241,19 +1247,19 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
                                if (!compareecc) {
                                        /* Some hw ecc generators need to know when the
                                         * syndrome is read from flash */
-                                       this->enable_hwecc(mtd, NAND_ECC_READSYN);
+                                       this->ecc.hwctl(mtd, NAND_ECC_READSYN);
                                        this->read_buf(mtd, &oob_data[i], eccbytes);
                                        /* We calc error correction directly, it checks the hw
                                         * generator for an error, reads back the syndrome and
                                         * does the error correction on the fly */
-                                       ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
+                                       ecc_status = this->ecc.correct(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
                                        if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
                                                DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: "
                                                      "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
                                                ecc_failed++;
                                        }
                                } else {
-                                       this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+                                       this->ecc.calculate(mtd, &data_poi[datidx], &ecc_calc[i]);
                                }
                        }
                        break;
@@ -1271,8 +1277,8 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
                        ecc_code[j] = oob_data[oob_config[j]];
 
                /* correct data, if necessary */
-               for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
-                       ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+               for (i = 0, j = 0, datidx = 0; i < this->ecc.steps; i++, datidx += ecc) {
+                       ecc_status = this->ecc.correct(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
 
                        /* Get next chunk of ecc bytes */
                        j += eccbytes;
@@ -1309,7 +1315,7 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
                                break;
                        case MTD_NANDECC_PLACE:
                                /* YAFFS1 legacy mode */
-                               oob_data += this->eccsteps * sizeof(int);
+                               oob_data += this->ecc.steps * sizeof(int);
                        default:
                                oob_data += mtd->oobsize;
                        }
@@ -1378,7 +1384,7 @@ int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
  *
  * NAND read out-of-band data from the spare area
  */
-static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf)
 {
        int i, col, page, chipnr;
        struct nand_chip *this = mtd->priv;
@@ -1545,7 +1551,7 @@ int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, s
  * forces the 0xff fill before using the buffer again.
  *
 */
-static u_char *nand_prepare_oobbuf(struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+static uint8_t *nand_prepare_oobbuf(struct mtd_info *mtd, uint8_t *fsbuf, struct nand_oobinfo *oobsel,
                                   int autoplace, int numpages)
 {
        struct nand_chip *this = mtd->priv;
@@ -1594,7 +1600,7 @@ static u_char *nand_prepare_oobbuf(struct mtd_info *mtd, u_char *fsbuf, struct n
  * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
  *
 */
-static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
+static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf)
 {
        return (nand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL));
 }
@@ -1612,13 +1618,13 @@ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retle
  * NAND write with ECC
  */
 static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
-                         size_t *retlen, const u_char *buf, u_char *eccbuf,
+                         size_t *retlen, const uint8_t *buf, uint8_t *eccbuf,
                          struct nand_oobinfo *oobsel)
 {
        int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
        int autoplace = 0, numpages, totalpages;
        struct nand_chip *this = mtd->priv;
-       u_char *oobbuf, *bufstart;
+       uint8_t *oobbuf, *bufstart;
        int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
 
        DEBUG(MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
@@ -1675,12 +1681,12 @@ static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
        /* Calc number of pages we can write in one go */
        numpages = min(ppblock - (startpage & (ppblock - 1)), totalpages);
        oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
-       bufstart = (u_char *) buf;
+       bufstart = (uint8_t *) buf;
 
        /* Loop until all data is written */
        while (written < len) {
 
-               this->data_poi = (u_char *) &buf[written];
+               this->data_poi = (uint8_t *) &buf[written];
                /* Write one page. If this is the last page to write
                 * or the last page in this block, then use the
                 * real pageprogram command, else select cached programming
@@ -1759,7 +1765,7 @@ static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
  *
  * NAND write out-of-band
  */
-static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
+static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf)
 {
        int column, page, status, ret = -EIO, chipnr;
        struct nand_chip *this = mtd->priv;
@@ -1879,13 +1885,13 @@ static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned l
  * NAND write with iovec with ecc
  */
 static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
-                          loff_t to, size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+                          loff_t to, size_t *retlen, uint8_t *eccbuf, struct nand_oobinfo *oobsel)
 {
        int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
        int oob, numpages, autoplace = 0, startpage;
        struct nand_chip *this = mtd->priv;
        int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
-       u_char *oobbuf, *bufstart;
+       uint8_t *oobbuf, *bufstart;
 
        /* Preset written len for early exit */
        *retlen = 0;
@@ -1954,7 +1960,7 @@ static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsign
                        /* Do not cross block boundaries */
                        numpages = min(ppblock - (startpage & (ppblock - 1)), numpages);
                        oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
-                       bufstart = (u_char *) vecs->iov_base;
+                       bufstart = (uint8_t *) vecs->iov_base;
                        bufstart += len;
                        this->data_poi = bufstart;
                        oob = 0;
@@ -1985,7 +1991,7 @@ static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsign
                        int cnt = 0;
                        while (cnt < mtd->writesize) {
                                if (vecs->iov_base != NULL && vecs->iov_len)
-                                       this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+                                       this->data_buf[cnt++] = ((uint8_t *) vecs->iov_base)[len++];
                                /* Check, if we have to switch to the next tuple */
                                if (len >= (int)vecs->iov_len) {
                                        vecs++;
@@ -2308,46 +2314,70 @@ static void nand_resume(struct mtd_info *mtd)
        if (this->state == FL_PM_SUSPENDED)
                nand_release_device(mtd);
        else
-               printk(KERN_ERR "resume() called for the chip which is not in suspended state\n");
-
+               printk(KERN_ERR "nand_resume() called for a chip which is not "
+                      "in suspended state\n");
 }
 
-/* module_text_address() isn't exported, and it's mostly a pointless
-   test if this is a module _anyway_ -- they'd have to try _really_ hard
-   to call us from in-kernel code if the core NAND support is modular. */
-#ifdef MODULE
-#define caller_is_module() (1)
-#else
-#define caller_is_module() module_text_address((unsigned long)__builtin_return_address(0))
-#endif
+/*
+ * Free allocated data structures
+ */
+static void nand_free_kmem(struct nand_chip *this)
+{
+       /* Buffer allocated by nand_scan ? */
+       if (this->options & NAND_OOBBUF_ALLOC)
+               kfree(this->oob_buf);
+       /* Buffer allocated by nand_scan ? */
+       if (this->options & NAND_DATABUF_ALLOC)
+               kfree(this->data_buf);
+       /* Controller allocated by nand_scan ? */
+       if (this->options & NAND_CONTROLLER_ALLOC)
+               kfree(this->controller);
+}
 
-/**
- * nand_scan - [NAND Interface] Scan for the NAND device
- * @mtd:       MTD device structure
- * @maxchips:  Number of chips to scan for
- *
- * This fills out all the uninitialized function pointers
- * with the defaults.
- * The flash ID is read and the mtd/chip structures are
- * filled with the appropriate values. Buffers are allocated if
- * they are not provided by the board driver
- * The mtd->owner field must be set to the module of the caller
- *
+/*
+ * Allocate buffers and data structures
  */
-int nand_scan(struct mtd_info *mtd, int maxchips)
+static int nand_allocate_kmem(struct mtd_info *mtd, struct nand_chip *this)
 {
-       int i, nand_maf_id, nand_dev_id, busw, maf_id;
-       struct nand_chip *this = mtd->priv;
+       size_t len;
 
-       /* Many callers got this wrong, so check for it for a while... */
-       if (!mtd->owner && caller_is_module()) {
-               printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
-               BUG();
+       if (!this->oob_buf) {
+               len = mtd->oobsize <<
+                       (this->phys_erase_shift - this->page_shift);
+               this->oob_buf = kmalloc(len, GFP_KERNEL);
+               if (!this->oob_buf)
+                       goto outerr;
+               this->options |= NAND_OOBBUF_ALLOC;
        }
 
-       /* Get buswidth to select the correct functions */
-       busw = this->options & NAND_BUSWIDTH_16;
+       if (!this->data_buf) {
+               len = mtd->writesize + mtd->oobsize;
+               this->data_buf = kmalloc(len, GFP_KERNEL);
+               if (!this->data_buf)
+                       goto outerr;
+               this->options |= NAND_DATABUF_ALLOC;
+       }
+
+       if (!this->controller) {
+               this->controller = kzalloc(sizeof(struct nand_hw_control),
+                                          GFP_KERNEL);
+               if (!this->controller)
+                       goto outerr;
+               this->options |= NAND_CONTROLLER_ALLOC;
+       }
+       return 0;
+
+ outerr:
+       printk(KERN_ERR "nand_scan(): Cannot allocate buffers\n");
+       nand_free_kmem(this);
+       return -ENOMEM;
+}
 
+/*
+ * Set default functions
+ */
+static void nand_set_defaults(struct nand_chip *this, int busw)
+{
        /* check for proper chip_delay setup, set 20us if not */
        if (!this->chip_delay)
                this->chip_delay = 20;
@@ -2382,6 +2412,17 @@ int nand_scan(struct mtd_info *mtd, int maxchips)
                this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
        if (!this->scan_bbt)
                this->scan_bbt = nand_default_bbt;
+}
+
+/*
+ * Get the flash and manufacturer id and lookup if the typ is supported
+ */
+static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
+                                                 struct nand_chip *this,
+                                                 int busw, int *maf_id)
+{
+       struct nand_flash_dev *type = NULL;
+       int i, dev_id, maf_idx;
 
        /* Select the device */
        this->select_chip(mtd, 0);
@@ -2390,159 +2431,194 @@ int nand_scan(struct mtd_info *mtd, int maxchips)
        this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
 
        /* Read manufacturer and device IDs */
-       nand_maf_id = this->read_byte(mtd);
-       nand_dev_id = this->read_byte(mtd);
+       *maf_id = this->read_byte(mtd);
+       dev_id = this->read_byte(mtd);
 
-       /* Print and store flash device information */
+       /* Lookup the flash id */
        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+               if (dev_id == nand_flash_ids[i].id) {
+                       type =  &nand_flash_ids[i];
+                       break;
+               }
+       }
 
-               if (nand_dev_id != nand_flash_ids[i].id)
-                       continue;
-
-               if (!mtd->name)
-                       mtd->name = nand_flash_ids[i].name;
-               this->chipsize = nand_flash_ids[i].chipsize << 20;
-
-               /* New devices have all the information in additional id bytes */
-               if (!nand_flash_ids[i].pagesize) {
-                       int extid;
-                       /* The 3rd id byte contains non relevant data ATM */
-                       extid = this->read_byte(mtd);
-                       /* The 4th id byte is the important one */
-                       extid = this->read_byte(mtd);
-                       /* Calc pagesize */
-                       mtd->writesize = 1024 << (extid & 0x3);
-                       extid >>= 2;
-                       /* Calc oobsize */
-                       mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
-                       extid >>= 2;
-                       /* Calc blocksize. Blocksize is multiples of 64KiB */
-                       mtd->erasesize = (64 * 1024) << (extid & 0x03);
-                       extid >>= 2;
-                       /* Get buswidth information */
-                       busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+       if (!type)
+               return ERR_PTR(-ENODEV);
+
+       this->chipsize = nand_flash_ids[i].chipsize << 20;
+
+       /* Newer devices have all the information in additional id bytes */
+       if (!nand_flash_ids[i].pagesize) {
+               int extid;
+               /* The 3rd id byte contains non relevant data ATM */
+               extid = this->read_byte(mtd);
+               /* The 4th id byte is the important one */
+               extid = this->read_byte(mtd);
+               /* Calc pagesize */
+               mtd->writesize = 1024 << (extid & 0x3);
+               extid >>= 2;
+               /* Calc oobsize */
+               mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
+               extid >>= 2;
+               /* Calc blocksize. Blocksize is multiples of 64KiB */
+               mtd->erasesize = (64 * 1024) << (extid & 0x03);
+               extid >>= 2;
+               /* Get buswidth information */
+               busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
 
-               } else {
-                       /* Old devices have this data hardcoded in the
-                        * device id table */
-                       mtd->erasesize = nand_flash_ids[i].erasesize;
-                       mtd->writesize = nand_flash_ids[i].pagesize;
-                       mtd->oobsize = mtd->writesize / 32;
-                       busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
-               }
+       } else {
+               /*
+                * Old devices have this data hardcoded in the device id table
+                */
+               mtd->erasesize = nand_flash_ids[i].erasesize;
+               mtd->writesize = nand_flash_ids[i].pagesize;
+               mtd->oobsize = mtd->writesize / 32;
+               busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+       }
 
-               /* Try to identify manufacturer */
-               for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
-                       if (nand_manuf_ids[maf_id].id == nand_maf_id)
-                               break;
-               }
+       /* Try to identify manufacturer */
+       for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) {
+               if (nand_manuf_ids[maf_idx].id == *maf_id)
+                       break;
+       }
 
-               /* Check, if buswidth is correct. Hardware drivers should set
-                * this correct ! */
-               if (busw != (this->options & NAND_BUSWIDTH_16)) {
-                       printk(KERN_INFO "NAND device: Manufacturer ID:"
-                              " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
-                              nand_manuf_ids[maf_id].name, mtd->name);
-                       printk(KERN_WARNING
-                              "NAND bus width %d instead %d bit\n",
-                              (this->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8);
-                       this->select_chip(mtd, -1);
-                       return 1;
-               }
+       /*
+        * Check, if buswidth is correct. Hardware drivers should set
+        * this correct !
+        */
+       if (busw != (this->options & NAND_BUSWIDTH_16)) {
+               printk(KERN_INFO "NAND device: Manufacturer ID:"
+                      " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
+                      dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
+               printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
+                      (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+                      busw ? 16 : 8);
+               return ERR_PTR(-EINVAL);
+       }
 
-               /* Calculate the address shift from the page size */
-               this->page_shift = ffs(mtd->writesize) - 1;
-               this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
-               this->chip_shift = ffs(this->chipsize) - 1;
-
-               /* Set the bad block position */
-               this->badblockpos = mtd->writesize > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
-
-               /* Get chip options, preserve non chip based options */
-               this->options &= ~NAND_CHIPOPTIONS_MSK;
-               this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
-               /* Set this as a default. Board drivers can override it, if necessary */
-               this->options |= NAND_NO_AUTOINCR;
-               /* Check if this is a not a samsung device. Do not clear the options
-                * for chips which are not having an extended id.
-                */
-               if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
-                       this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+       /* Calculate the address shift from the page size */
+       this->page_shift = ffs(mtd->writesize) - 1;
+       /* Convert chipsize to number of pages per chip -1. */
+       this->pagemask = (this->chipsize >> this->page_shift) - 1;
 
-               /* Check for AND chips with 4 page planes */
-               if (this->options & NAND_4PAGE_ARRAY)
-                       this->erase_cmd = multi_erase_cmd;
-               else
-                       this->erase_cmd = single_erase_cmd;
+       this->bbt_erase_shift = this->phys_erase_shift =
+               ffs(mtd->erasesize) - 1;
+       this->chip_shift = ffs(this->chipsize) - 1;
 
-               /* Do not replace user supplied command function ! */
-               if (mtd->writesize > 512 && this->cmdfunc == nand_command)
-                       this->cmdfunc = nand_command_lp;
+       /* Set the bad block position */
+       this->badblockpos = mtd->writesize > 512 ?
+               NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
 
-               printk(KERN_INFO "NAND device: Manufacturer ID:"
-                      " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
-                      nand_manuf_ids[maf_id].name, nand_flash_ids[i].name);
-               break;
+       /* Get chip options, preserve non chip based options */
+       this->options &= ~NAND_CHIPOPTIONS_MSK;
+       this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+
+       /*
+        * Set this as a default. Board drivers can override it, if necessary
+        */
+       this->options |= NAND_NO_AUTOINCR;
+
+       /* Check if this is a not a samsung device. Do not clear the
+        * options for chips which are not having an extended id.
+        */
+       if (*maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+               this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+
+       /* Check for AND chips with 4 page planes */
+       if (this->options & NAND_4PAGE_ARRAY)
+               this->erase_cmd = multi_erase_cmd;
+       else
+               this->erase_cmd = single_erase_cmd;
+
+       /* Do not replace user supplied command function ! */
+       if (mtd->writesize > 512 && this->cmdfunc == nand_command)
+               this->cmdfunc = nand_command_lp;
+
+       printk(KERN_INFO "NAND device: Manufacturer ID:"
+              " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
+              nand_manuf_ids[maf_idx].name, type->name);
+
+       return type;
+}
+
+/* module_text_address() isn't exported, and it's mostly a pointless
+   test if this is a module _anyway_ -- they'd have to try _really_ hard
+   to call us from in-kernel code if the core NAND support is modular. */
+#ifdef MODULE
+#define caller_is_module() (1)
+#else
+#define caller_is_module() \
+       module_text_address((unsigned long)__builtin_return_address(0))
+#endif
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd:       MTD device structure
+ * @maxchips:  Number of chips to scan for
+ *
+ * This fills out all the uninitialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ * The mtd->owner field must be set to the module of the caller
+ *
+ */
+int nand_scan(struct mtd_info *mtd, int maxchips)
+{
+       int i, busw, nand_maf_id;
+       struct nand_chip *this = mtd->priv;
+       struct nand_flash_dev *type;
+
+       /* Many callers got this wrong, so check for it for a while... */
+       if (!mtd->owner && caller_is_module()) {
+               printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
+               BUG();
        }
 
-       if (!nand_flash_ids[i].name) {
+       /* Get buswidth to select the correct functions */
+       busw = this->options & NAND_BUSWIDTH_16;
+       /* Set the default functions */
+       nand_set_defaults(this, busw);
+
+       /* Read the flash type */
+       type = nand_get_flash_type(mtd, this, busw, &nand_maf_id);
+
+       if (IS_ERR(type)) {
                printk(KERN_WARNING "No NAND device found!!!\n");
                this->select_chip(mtd, -1);
-               return 1;
+               return PTR_ERR(type);
        }
 
+       /* Check for a chip array */
        for (i = 1; i < maxchips; i++) {
                this->select_chip(mtd, i);
-
                /* Send the command for reading device ID */
                this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
-
                /* Read manufacturer and device IDs */
                if (nand_maf_id != this->read_byte(mtd) ||
-                   nand_dev_id != this->read_byte(mtd))
+                   type->id != this->read_byte(mtd))
                        break;
        }
        if (i > 1)
                printk(KERN_INFO "%d NAND chips detected\n", i);
 
-       /* Allocate buffers, if necessary */
-       if (!this->oob_buf) {
-               size_t len;
-               len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
-               this->oob_buf = kmalloc(len, GFP_KERNEL);
-               if (!this->oob_buf) {
-                       printk(KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
-                       return -ENOMEM;
-               }
-               this->options |= NAND_OOBBUF_ALLOC;
-       }
-
-       if (!this->data_buf) {
-               size_t len;
-               len = mtd->writesize + mtd->oobsize;
-               this->data_buf = kmalloc(len, GFP_KERNEL);
-               if (!this->data_buf) {
-                       if (this->options & NAND_OOBBUF_ALLOC)
-                               kfree(this->oob_buf);
-                       printk(KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
-                       return -ENOMEM;
-               }
-               this->options |= NAND_DATABUF_ALLOC;
-       }
-
        /* Store the number of chips and calc total size for mtd */
        this->numchips = i;
        mtd->size = i * this->chipsize;
-       /* Convert chipsize to number of pages per chip -1. */
-       this->pagemask = (this->chipsize >> this->page_shift) - 1;
+
+       /* Allocate buffers and data structures */
+       if (nand_allocate_kmem(mtd, this))
+               return -ENOMEM;
+
        /* Preset the internal oob buffer */
-       memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+       memset(this->oob_buf, 0xff,
+              mtd->oobsize << (this->phys_erase_shift - this->page_shift));
 
-       /* If no default placement scheme is given, select an
-        * appropriate one */
+       /*
+        * If no default placement scheme is given, select an appropriate one
+        */
        if (!this->autooob) {
-               /* Select the appropriate default oob placement scheme for
-                * placement agnostic filesystems */
                switch (mtd->oobsize) {
                case 8:
                        this->autooob = &nand_oob_8;
@@ -2554,111 +2630,73 @@ int nand_scan(struct mtd_info *mtd, int maxchips)
                        this->autooob = &nand_oob_64;
                        break;
                default:
-                       printk(KERN_WARNING "No oob scheme defined for oobsize %d\n", mtd->oobsize);
+                       printk(KERN_WARNING "No oob scheme defined for "
+                              "oobsize %d\n", mtd->oobsize);
                        BUG();
                }
        }
 
-       /* The number of bytes available for the filesystem to place fs dependend
-        * oob data */
+       /*
+        * The number of bytes available for the filesystem to place fs
+        * dependend oob data
+        */
        mtd->oobavail = 0;
        for (i = 0; this->autooob->oobfree[i][1]; i++)
                mtd->oobavail += this->autooob->oobfree[i][1];
 
        /*
-        * check ECC mode, default to software
-        * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
-        * fallback to software ECC
+        * check ECC mode, default to software if 3byte/512byte hardware ECC is
+        * selected and we have 256 byte pagesize fallback to software ECC
         */
-       this->eccsize = 256;    /* set default eccsize */
-       this->eccbytes = 3;
-
-       switch (this->eccmode) {
-       case NAND_ECC_HW12_2048:
-               if (mtd->writesize < 2048) {
-                       printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
-                              mtd->writesize);
-                       this->eccmode = NAND_ECC_SOFT;
-                       this->calculate_ecc = nand_calculate_ecc;
-                       this->correct_data = nand_correct_data;
-               } else
-                       this->eccsize = 2048;
-               break;
-
-       case NAND_ECC_HW3_512:
-       case NAND_ECC_HW6_512:
-       case NAND_ECC_HW8_512:
-               if (mtd->writesize == 256) {
-                       printk(KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
-                       this->eccmode = NAND_ECC_SOFT;
-                       this->calculate_ecc = nand_calculate_ecc;
-                       this->correct_data = nand_correct_data;
-               } else
-                       this->eccsize = 512;    /* set eccsize to 512 */
-               break;
+       switch (this->ecc.mode) {
+       case NAND_ECC_HW:
+       case NAND_ECC_HW_SYNDROME:
+               if (!this->ecc.calculate || !this->ecc.correct ||
+                   !this->ecc.hwctl) {
+                       printk(KERN_WARNING "No ECC functions supplied, "
+                              "Hardware ECC not possible\n");
+                       BUG();
+               }
+               if (mtd->writesize >= this->ecc.size)
+                       break;
+               printk(KERN_WARNING "%d byte HW ECC not possible on "
+                      "%d byte page size, fallback to SW ECC\n",
+                      this->ecc.size, mtd->writesize);
+               this->ecc.mode = NAND_ECC_SOFT;
 
-       case NAND_ECC_HW3_256:
+       case NAND_ECC_SOFT:
+               this->ecc.calculate = nand_calculate_ecc;
+               this->ecc.correct = nand_correct_data;
+               this->ecc.size = 256;
+               this->ecc.bytes = 3;
                break;
 
        case NAND_ECC_NONE:
-               printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
-               this->eccmode = NAND_ECC_NONE;
-               break;
-
-       case NAND_ECC_SOFT:
-               this->calculate_ecc = nand_calculate_ecc;
-               this->correct_data = nand_correct_data;
+               printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
+                      "This is not recommended !!\n");
+               this->ecc.size = mtd->writesize;
+               this->ecc.bytes = 0;
                break;
-
        default:
-               printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+               printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
+                      this->ecc.mode);
                BUG();
        }
 
-       /* Check hardware ecc function availability and adjust number of ecc bytes per
-        * calculation step
+       /*
+        * Set the number of read / write steps for one page depending on ECC
+        * mode
         */
-       switch (this->eccmode) {
-       case NAND_ECC_HW12_2048:
-               this->eccbytes += 4;
-       case NAND_ECC_HW8_512:
-               this->eccbytes += 2;
-       case NAND_ECC_HW6_512:
-               this->eccbytes += 3;
-       case NAND_ECC_HW3_512:
-       case NAND_ECC_HW3_256:
-               if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
-                       break;
-               printk(KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+       this->ecc.steps = mtd->writesize / this->ecc.size;
+       if(this->ecc.steps * this->ecc.size != mtd->writesize) {
+               printk(KERN_WARNING "Invalid ecc parameters\n");
                BUG();
        }
 
-       mtd->eccsize = this->eccsize;
-
-       /* Set the number of read / write steps for one page to ensure ECC generation */
-       switch (this->eccmode) {
-       case NAND_ECC_HW12_2048:
-               this->eccsteps = mtd->writesize / 2048;
-               break;
-       case NAND_ECC_HW3_512:
-       case NAND_ECC_HW6_512:
-       case NAND_ECC_HW8_512:
-               this->eccsteps = mtd->writesize / 512;
-               break;
-       case NAND_ECC_HW3_256:
-       case NAND_ECC_SOFT:
-               this->eccsteps = mtd->writesize / 256;
-               break;
-
-       case NAND_ECC_NONE:
-               this->eccsteps = 1;
-               break;
-       }
-
        /* Initialize state, waitqueue and spinlock */
        this->state = FL_READY;
-       init_waitqueue_head(&this->wq);
-       spin_lock_init(&this->chip_lock);
+       init_waitqueue_head(&this->controller->wq);
+       spin_lock_init(&this->controller->lock);
 
        /* De-select the device */
        this->select_chip(mtd, -1);
@@ -2718,12 +2756,8 @@ void nand_release(struct mtd_info *mtd)
 
        /* Free bad block table memory */
        kfree(this->bbt);
-       /* Buffer allocated by nand_scan ? */
-       if (this->options & NAND_OOBBUF_ALLOC)
-               kfree(this->oob_buf);
-       /* Buffer allocated by nand_scan ? */
-       if (this->options & NAND_DATABUF_ALLOC)
-               kfree(this->data_buf);
+       /* Free buffers */
+       nand_free_kmem(this);
 }
 
 EXPORT_SYMBOL_GPL(nand_scan);
index 101892985b02d0a325459ad883fed087a7b9fd7f..2a163e4084df0dde8a3ada36357b58b60f11ce50 100644 (file)
@@ -7,6 +7,8 @@
  * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
  *                         Toshiba America Electronics Components, Inc.
  *
+ * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
+ *
  * $Id: nand_ecc.c,v 1.15 2005/11/07 11:14:30 gleixner Exp $
  *
  * This file is free software; you can redistribute it and/or modify it
@@ -63,87 +65,75 @@ static const u_char nand_ecc_precalc_table[] = {
 };
 
 /**
- * nand_trans_result - [GENERIC] create non-inverted ECC
- * @reg2:      line parity reg 2
- * @reg3:      line parity reg 3
- * @ecc_code:  ecc
- *
- * Creates non-inverted ECC code from line parity
- */
-static void nand_trans_result(u_char reg2, u_char reg3, u_char *ecc_code)
-{
-       u_char a, b, i, tmp1, tmp2;
-
-       /* Initialize variables */
-       a = b = 0x80;
-       tmp1 = tmp2 = 0;
-
-       /* Calculate first ECC byte */
-       for (i = 0; i < 4; i++) {
-               if (reg3 & a)   /* LP15,13,11,9 --> ecc_code[0] */
-                       tmp1 |= b;
-               b >>= 1;
-               if (reg2 & a)   /* LP14,12,10,8 --> ecc_code[0] */
-                       tmp1 |= b;
-               b >>= 1;
-               a >>= 1;
-       }
-
-       /* Calculate second ECC byte */
-       b = 0x80;
-       for (i = 0; i < 4; i++) {
-               if (reg3 & a)   /* LP7,5,3,1 --> ecc_code[1] */
-                       tmp2 |= b;
-               b >>= 1;
-               if (reg2 & a)   /* LP6,4,2,0 --> ecc_code[1] */
-                       tmp2 |= b;
-               b >>= 1;
-               a >>= 1;
-       }
-
-       /* Store two of the ECC bytes */
-       ecc_code[0] = tmp1;
-       ecc_code[1] = tmp2;
-}
-
-/**
- * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
+ * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code
+ *                     for 256 byte block
  * @mtd:       MTD block structure
  * @dat:       raw data
  * @ecc_code:  buffer for ECC
  */
-int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+                      u_char *ecc_code)
 {
-       u_char idx, reg1, reg2, reg3;
-       int j;
+       uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
+       int i;
 
        /* Initialize variables */
        reg1 = reg2 = reg3 = 0;
-       ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
 
        /* Build up column parity */
-       for (j = 0; j < 256; j++) {
-
+       for(i = 0; i < 256; i++) {
                /* Get CP0 - CP5 from table */
-               idx = nand_ecc_precalc_table[dat[j]];
+               idx = nand_ecc_precalc_table[*dat++];
                reg1 ^= (idx & 0x3f);
 
                /* All bit XOR = 1 ? */
                if (idx & 0x40) {
-                       reg3 ^= (u_char) j;
-                       reg2 ^= ~((u_char) j);
+                       reg3 ^= (uint8_t) i;
+                       reg2 ^= ~((uint8_t) i);
                }
        }
 
        /* Create non-inverted ECC code from line parity */
-       nand_trans_result(reg2, reg3, ecc_code);
+       tmp1  = (reg3 & 0x80) >> 0; /* B7 -> B7 */
+       tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
+       tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
+       tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
+       tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
+       tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
+       tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
+       tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
+
+       tmp2  = (reg3 & 0x08) << 4; /* B3 -> B7 */
+       tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
+       tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
+       tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
+       tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
+       tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
+       tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
+       tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
 
        /* Calculate final ECC code */
-       ecc_code[0] = ~ecc_code[0];
-       ecc_code[1] = ~ecc_code[1];
+#ifdef CONFIG_NAND_ECC_SMC
+       ecc_code[0] = ~tmp2;
+       ecc_code[1] = ~tmp1;
+#else
+       ecc_code[0] = ~tmp1;
+       ecc_code[1] = ~tmp2;
+#endif
        ecc_code[2] = ((~reg1) << 2) | 0x03;
+
        return 0;
 }
+EXPORT_SYMBOL(nand_calculate_ecc);
+
+static inline int countbits(uint32_t byte)
+{
+       int res = 0;
+
+       for (;byte; byte >>= 1)
+               res += byte & 0x01;
+       return res;
+}
 
 /**
  * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
@@ -154,90 +144,54 @@ int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code
  *
  * Detect and correct a 1 bit error for 256 byte block
  */
-int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+int nand_correct_data(struct mtd_info *mtd, u_char *dat,
+                     u_char *read_ecc, u_char *calc_ecc)
 {
-       u_char a, b, c, d1, d2, d3, add, bit, i;
+       uint8_t s0, s1, s2;
+
+#ifdef CONFIG_NAND_ECC_SMC
+       s0 = calc_ecc[0] ^ read_ecc[0];
+       s1 = calc_ecc[1] ^ read_ecc[1];
+       s2 = calc_ecc[2] ^ read_ecc[2];
+#else
+       s1 = calc_ecc[0] ^ read_ecc[0];
+       s0 = calc_ecc[1] ^ read_ecc[1];
+       s2 = calc_ecc[2] ^ read_ecc[2];
+#endif
+       if ((s0 | s1 | s2) == 0)
+               return 0;
 
-       /* Do error detection */
-       d1 = calc_ecc[0] ^ read_ecc[0];
-       d2 = calc_ecc[1] ^ read_ecc[1];
-       d3 = calc_ecc[2] ^ read_ecc[2];
+       /* Check for a single bit error */
+       if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
+           ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
+           ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
 
-       if ((d1 | d2 | d3) == 0) {
-               /* No errors */
-               return 0;
-       } else {
-               a = (d1 ^ (d1 >> 1)) & 0x55;
-               b = (d2 ^ (d2 >> 1)) & 0x55;
-               c = (d3 ^ (d3 >> 1)) & 0x54;
-
-               /* Found and will correct single bit error in the data */
-               if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
-                       c = 0x80;
-                       add = 0;
-                       a = 0x80;
-                       for (i = 0; i < 4; i++) {
-                               if (d1 & c)
-                                       add |= a;
-                               c >>= 2;
-                               a >>= 1;
-                       }
-                       c = 0x80;
-                       for (i = 0; i < 4; i++) {
-                               if (d2 & c)
-                                       add |= a;
-                               c >>= 2;
-                               a >>= 1;
-                       }
-                       bit = 0;
-                       b = 0x04;
-                       c = 0x80;
-                       for (i = 0; i < 3; i++) {
-                               if (d3 & c)
-                                       bit |= b;
-                               c >>= 2;
-                               b >>= 1;
-                       }
-                       b = 0x01;
-                       a = dat[add];
-                       a ^= (b << bit);
-                       dat[add] = a;
-                       return 1;
-               } else {
-                       i = 0;
-                       while (d1) {
-                               if (d1 & 0x01)
-                                       ++i;
-                               d1 >>= 1;
-                       }
-                       while (d2) {
-                               if (d2 & 0x01)
-                                       ++i;
-                               d2 >>= 1;
-                       }
-                       while (d3) {
-                               if (d3 & 0x01)
-                                       ++i;
-                               d3 >>= 1;
-                       }
-                       if (i == 1) {
-                               /* ECC Code Error Correction */
-                               read_ecc[0] = calc_ecc[0];
-                               read_ecc[1] = calc_ecc[1];
-                               read_ecc[2] = calc_ecc[2];
-                               return 2;
-                       } else {
-                               /* Uncorrectable Error */
-                               return -1;
-                       }
-               }
+               uint32_t byteoffs, bitnum;
+
+               byteoffs = (s1 << 0) & 0x80;
+               byteoffs |= (s1 << 1) & 0x40;
+               byteoffs |= (s1 << 2) & 0x20;
+               byteoffs |= (s1 << 3) & 0x10;
+
+               byteoffs |= (s0 >> 4) & 0x08;
+               byteoffs |= (s0 >> 3) & 0x04;
+               byteoffs |= (s0 >> 2) & 0x02;
+               byteoffs |= (s0 >> 1) & 0x01;
+
+               bitnum = (s2 >> 5) & 0x04;
+               bitnum |= (s2 >> 4) & 0x02;
+               bitnum |= (s2 >> 3) & 0x01;
+
+               dat[byteoffs] ^= (1 << bitnum);
+
+               return 1;
        }
 
-       /* Should never happen */
+       if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
+               return 1;
+
        return -1;
 }
-
-EXPORT_SYMBOL(nand_calculate_ecc);
 EXPORT_SYMBOL(nand_correct_data);
 
 MODULE_LICENSE("GPL");
index 8674f1e9d3c63c4fb801c038f28deb10607fcf34..22af9b29d2bf0d12ad543a6081e13d1e14002069 100644 (file)
@@ -1523,7 +1523,7 @@ static int __init ns_init_module(void)
        chip->verify_buf = ns_nand_verify_buf;
        chip->write_word = ns_nand_write_word;
        chip->read_word  = ns_nand_read_word;
-       chip->eccmode    = NAND_ECC_SOFT;
+       chip->ecc.mode   = NAND_ECC_SOFT;
        chip->options   |= NAND_SKIP_BBTSCAN;
 
        /*
diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c
new file mode 100644 (file)
index 0000000..e2dc81d
--- /dev/null
@@ -0,0 +1,319 @@
+/*
+ *  drivers/mtd/ndfc.c
+ *
+ *  Overview:
+ *   Platform independend driver for NDFC (NanD Flash Controller)
+ *   integrated into EP440 cores
+ *
+ *  Author: Thomas Gleixner
+ *
+ *  Copyright 2006 IBM
+ *
+ *  This program is free software; you can redistribute         it and/or modify it
+ *  under  the terms of         the GNU General  Public License as published by the
+ *  Free Software Foundation;  either version 2 of the License, or (at your
+ *  option) any later version.
+ *
+ */
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/ndfc.h>
+#include <linux/mtd/ubi.h>
+#include <linux/mtd/mtd.h>
+#include <linux/platform_device.h>
+
+#include <asm/io.h>
+#include <asm/ibm44x.h>
+
+struct ndfc_nand_mtd {
+       struct mtd_info                 mtd;
+       struct nand_chip                chip;
+       struct platform_nand_chip       *pl_chip;
+};
+
+static struct ndfc_nand_mtd ndfc_mtd[NDFC_MAX_BANKS];
+
+struct ndfc_controller {
+       void __iomem            *ndfcbase;
+       struct nand_hw_control  ndfc_control;
+       atomic_t                childs_active;
+};
+
+static struct ndfc_controller ndfc_ctrl;
+
+static void ndfc_select_chip(struct mtd_info *mtd, int chip)
+{
+       uint32_t ccr;
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       struct nand_chip *nandchip = mtd->priv;
+       struct ndfc_nand_mtd *nandmtd = nandchip->priv;
+       struct platform_nand_chip *pchip = nandmtd->pl_chip;
+
+       ccr = __raw_readl(ndfc->ndfcbase + NDFC_CCR);
+       if (chip >= 0) {
+               ccr &= ~NDFC_CCR_BS_MASK;
+               ccr |= NDFC_CCR_BS(chip + pchip->chip_offset);
+       } else
+               ccr |= NDFC_CCR_RESET_CE;
+       writel(ccr, ndfc->ndfcbase + NDFC_CCR);
+}
+
+static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       struct nand_chip *chip = mtd->priv;
+
+       switch (cmd) {
+       case NAND_CTL_SETCLE:
+               chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_CMD;
+               break;
+       case NAND_CTL_SETALE:
+               chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_ALE;
+               break;
+       default:
+               chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
+               break;
+       }
+}
+
+static int ndfc_ready(struct mtd_info *mtd)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+
+       return __raw_readl(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY;
+}
+
+static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       uint32_t ccr;
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+
+       ccr = __raw_readl(ndfc->ndfcbase + NDFC_CCR);
+       ccr |= NDFC_CCR_RESET_ECC;
+       __raw_writel(ccr, ndfc->ndfcbase + NDFC_CCR);
+       wmb();
+}
+
+static int ndfc_calculate_ecc(struct mtd_info *mtd,
+                             const u_char *dat, u_char *ecc_code)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       uint32_t ecc;
+       uint8_t *p = (uint8_t *)&ecc;
+
+       wmb();
+       ecc = __raw_readl(ndfc->ndfcbase + NDFC_ECC);
+       ecc_code[0] = p[1];
+       ecc_code[1] = p[2];
+       ecc_code[2] = p[3];
+
+       return 0;
+}
+
+/*
+ * Speedups for buffer read/write/verify
+ *
+ * NDFC allows 32bit read/write of data. So we can speed up the buffer
+ * functions. No further checking, as nand_base will always read/write
+ * page aligned.
+ */
+static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       uint32_t *p = (uint32_t *) buf;
+
+       for(;len > 0; len -= 4)
+               *p++ = __raw_readl(ndfc->ndfcbase + NDFC_DATA);
+}
+
+static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       uint32_t *p = (uint32_t *) buf;
+
+       for(;len > 0; len -= 4)
+               __raw_writel(*p++, ndfc->ndfcbase + NDFC_DATA);
+}
+
+static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       uint32_t *p = (uint32_t *) buf;
+
+       for(;len > 0; len -= 4)
+               if (*p++ != __raw_readl(ndfc->ndfcbase + NDFC_DATA))
+                       return -EFAULT;
+       return 0;
+}
+
+/*
+ * Initialize chip structure
+ */
+static void ndfc_chip_init(struct ndfc_nand_mtd *mtd)
+{
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       struct nand_chip *chip = &mtd->chip;
+
+       chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
+       chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
+       chip->hwcontrol = ndfc_hwcontrol;
+       chip->dev_ready = ndfc_ready;
+       chip->select_chip = ndfc_select_chip;
+       chip->chip_delay = 50;
+       chip->priv = mtd;
+       chip->options = mtd->pl_chip->options;
+       chip->controller = &ndfc->ndfc_control;
+       chip->read_buf = ndfc_read_buf;
+       chip->write_buf = ndfc_write_buf;
+       chip->verify_buf = ndfc_verify_buf;
+       chip->ecc.correct = nand_correct_data;
+       chip->ecc.hwctl = ndfc_enable_hwecc;
+       chip->ecc.calculate = ndfc_calculate_ecc;
+       chip->ecc.mode = NAND_ECC_HW;
+       chip->ecc.size = 256;
+       chip->ecc.bytes = 3;
+       chip->autooob = mtd->pl_chip->autooob;
+       mtd->mtd.priv = chip;
+       mtd->mtd.owner = THIS_MODULE;
+}
+
+static int ndfc_chip_probe(struct platform_device *pdev)
+{
+       int rc;
+       struct platform_nand_chip *nc = pdev->dev.platform_data;
+       struct ndfc_chip_settings *settings = nc->priv;
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       struct ndfc_nand_mtd *nandmtd;
+
+       if (nc->chip_offset >= NDFC_MAX_BANKS || nc->nr_chips > NDFC_MAX_BANKS)
+               return -EINVAL;
+
+       /* Set the bank settings */
+       __raw_writel(settings->bank_settings,
+                    ndfc->ndfcbase + NDFC_BCFG0 + (nc->chip_offset << 2));
+
+       nandmtd = &ndfc_mtd[pdev->id];
+       if (nandmtd->pl_chip)
+               return -EBUSY;
+
+       nandmtd->pl_chip = nc;
+       ndfc_chip_init(nandmtd);
+
+       /* Scan for chips */
+       if (nand_scan(&nandmtd->mtd, nc->nr_chips)) {
+               nandmtd->pl_chip = NULL;
+               return -ENODEV;
+       }
+
+#ifdef CONFIG_MTD_PARTITIONS
+       printk("Number of partitions %d\n", nc->nr_partitions);
+       if (nc->nr_partitions) {
+               struct mtd_info *mtd_ubi;
+               nc->partitions[NAND_PARTS_CONTENT_IDX].mtdp = &mtd_ubi;
+
+               add_mtd_device(&nandmtd->mtd); /* for testing */
+               add_mtd_partitions(&nandmtd->mtd,
+                                  nc->partitions,
+                                  nc->nr_partitions);
+
+               add_mtd_device(mtd_ubi);
+
+       } else
+#else
+               add_mtd_device(&nandmtd->mtd);
+#endif
+
+       atomic_inc(&ndfc->childs_active);
+       return 0;
+}
+
+static int ndfc_chip_remove(struct platform_device *pdev)
+{
+       return 0;
+}
+
+static int ndfc_nand_probe(struct platform_device *pdev)
+{
+       struct platform_nand_ctrl *nc = pdev->dev.platform_data;
+       struct ndfc_controller_settings *settings = nc->priv;
+       struct resource *res = pdev->resource;
+       struct ndfc_controller *ndfc = &ndfc_ctrl;
+       unsigned long long phys = NDFC_PHYSADDR_OFFS | res->start;
+
+       ndfc->ndfcbase = ioremap64(phys, res->end - res->start + 1);
+       if (!ndfc->ndfcbase) {
+               printk(KERN_ERR "NDFC: ioremap failed\n");
+               return -EIO;
+       }
+
+       __raw_writel(settings->ccr_settings, ndfc->ndfcbase + NDFC_CCR);
+
+       spin_lock_init(&ndfc->ndfc_control.lock);
+       init_waitqueue_head(&ndfc->ndfc_control.wq);
+
+       platform_set_drvdata(pdev, ndfc);
+
+       printk("NDFC NAND Driver initialized. Chip-Rev: 0x%08x\n",
+              __raw_readl(ndfc->ndfcbase + NDFC_REVID));
+
+       return 0;
+}
+
+static int ndfc_nand_remove(struct platform_device *pdev)
+{
+       struct ndfc_controller *ndfc = platform_get_drvdata(pdev);
+
+       if (atomic_read(&ndfc->childs_active))
+               return -EBUSY;
+
+       if (ndfc) {
+               platform_set_drvdata(pdev, NULL);
+               iounmap(ndfc_ctrl.ndfcbase);
+               ndfc_ctrl.ndfcbase = NULL;
+       }
+       return 0;
+}
+
+/* driver device registration */
+
+static struct platform_driver ndfc_chip_driver = {
+       .probe          = ndfc_chip_probe,
+       .remove         = ndfc_chip_remove,
+       .driver         = {
+               .name   = "ndfc-chip",
+               .owner  = THIS_MODULE,
+       },
+};
+
+static struct platform_driver ndfc_nand_driver = {
+       .probe          = ndfc_nand_probe,
+       .remove         = ndfc_nand_remove,
+       .driver         = {
+               .name   = "ndfc-nand",
+               .owner  = THIS_MODULE,
+       },
+};
+
+static int __init ndfc_nand_init(void)
+{
+       int ret = platform_driver_register(&ndfc_nand_driver);
+
+       if (!ret)
+               ret = platform_driver_register(&ndfc_chip_driver);
+       return ret;
+}
+
+static void __exit ndfc_nand_exit(void)
+{
+       platform_driver_unregister(&ndfc_chip_driver);
+       platform_driver_unregister(&ndfc_nand_driver);
+}
+
+module_init(ndfc_nand_init);
+module_exit(ndfc_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Platform driver for NDFC");
index 5d4d16fb1df63849b592b0b4443e5b3f731503f2..9fab0998524dbdcec6c3a120c1da40a597ef55c8 100644 (file)
@@ -257,7 +257,7 @@ static int __init ppchameleonevb_init(void)
 #endif
        this->chip_delay = NAND_BIG_DELAY_US;
        /* ECC mode */
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        /* Scan to find existence of the device (it could not be mounted) */
        if (nand_scan(ppchameleon_mtd, 1)) {
@@ -358,7 +358,7 @@ static int __init ppchameleonevb_init(void)
        this->chip_delay = NAND_SMALL_DELAY_US;
 
        /* ECC mode */
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        /* Scan to find existence of the device */
        if (nand_scan(ppchameleonevb_mtd, 1)) {
index 64ccf4c9613f85f8fe82744d80146cad6d71ade2..f8e631c89a6096ff2cd01e893d4ad137020f8017 100644 (file)
@@ -570,19 +570,21 @@ static int __init rtc_from4_init(void)
 #ifdef RTC_FROM4_HWECC
        printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
 
-       this->eccmode = NAND_ECC_HW8_512;
+       this->ecc.mode = NAND_ECC_HW_SYNDROME;
+       this->ecc.size = 512;
+       this->ecc.bytes = 8;
        this->options |= NAND_HWECC_SYNDROME;
        /* return the status of extra status and ECC checks */
        this->errstat = rtc_from4_errstat;
        /* set the nand_oobinfo to support FPGA H/W error detection */
        this->autooob = &rtc_from4_nand_oobinfo;
-       this->enable_hwecc = rtc_from4_enable_hwecc;
-       this->calculate_ecc = rtc_from4_calculate_ecc;
-       this->correct_data = rtc_from4_correct_data;
+       this->ecc.hwctl = rtc_from4_enable_hwecc;
+       this->ecc.calculate = rtc_from4_calculate_ecc;
+       this->ecc.correct = rtc_from4_correct_data;
 #else
        printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
 
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 #endif
 
        /* set the bad block tables to support debugging */
index f8002596de8bcb62e8edcefb9ee6179dabdd9aef..608340a25278c7a944716a0bc6cb308bc49f1ff9 100644 (file)
@@ -520,18 +520,20 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
        nmtd->set          = set;
 
        if (hardware_ecc) {
-               chip->correct_data  = s3c2410_nand_correct_data;
-               chip->enable_hwecc  = s3c2410_nand_enable_hwecc;
-               chip->calculate_ecc = s3c2410_nand_calculate_ecc;
-               chip->eccmode       = NAND_ECC_HW3_512;
+               chip->ecc.correct   = s3c2410_nand_correct_data;
+               chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
+               chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+               chip->ecc.mode      = NAND_ECC_HW;
+               chip->ecc.size      = 512;
+               chip->ecc.bytes     = 3;
                chip->autooob       = &nand_hw_eccoob;
 
                if (info->is_s3c2440) {
-                       chip->enable_hwecc  = s3c2440_nand_enable_hwecc;
-                       chip->calculate_ecc = s3c2440_nand_calculate_ecc;
+                       chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
+                       chip->ecc.calculate = s3c2440_nand_calculate_ecc;
                }
        } else {
-               chip->eccmode       = NAND_ECC_SOFT;
+               chip->ecc.mode      = NAND_ECC_SOFT;
        }
 }
 
index 60e10c0d6980ebdfbf1de4892eae4e2aa1ae7633..5554d0b97c8cfe57c762d9ac2b5de470fd792bf3 100644 (file)
@@ -201,15 +201,17 @@ static int __init sharpsl_nand_init(void)
        /* 15 us command delay time */
        this->chip_delay = 15;
        /* set eccmode using hardware ECC */
-       this->eccmode = NAND_ECC_HW3_256;
+       this->ecc.mode = NAND_ECC_HW;
+       this->ecc.size = 256;
+       this->ecc.bytes = 3;
        this->badblock_pattern = &sharpsl_bbt;
        if (machine_is_akita() || machine_is_borzoi()) {
                this->badblock_pattern = &sharpsl_akita_bbt;
                this->autooob = &akita_oobinfo;
        }
-       this->enable_hwecc = sharpsl_nand_enable_hwecc;
-       this->calculate_ecc = sharpsl_nand_calculate_ecc;
-       this->correct_data = nand_correct_data;
+       this->ecc.hwctl = sharpsl_nand_enable_hwecc;
+       this->ecc.calculate = sharpsl_nand_calculate_ecc;
+       this->ecc.correct = nand_correct_data;
 
        /* Scan to find existence of the device */
        err = nand_scan(sharpsl_mtd, 1);
index c51c895595143715b3af00ebc681557b225b65e6..50aa6a46911f9ca11e25dd145a9e6a79308a6c3f 100644 (file)
@@ -146,7 +146,7 @@ static int __init toto_init(void)
        this->dev_ready = NULL;
        /* 25 us command delay time */
        this->chip_delay = 30;
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        /* Scan to find existance of the device */
        if (nand_scan(toto_mtd, 1)) {
index 622db3127f7c9290ab55a8434bb0b4a28e55d9ef..70bce1b0326cb089244c07dd4e8cce0baad89e82 100644 (file)
@@ -155,7 +155,7 @@ static int __init ts7250_init(void)
        this->hwcontrol = ts7250_hwcontrol;
        this->dev_ready = ts7250_device_ready;
        this->chip_delay = 15;
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 
        printk("Searching for NAND flash...\n");
        /* Scan to find existence of the device */
index c7e3040240b27872b6f677399eed667e7b526d54..916c87d3393b72e98415ddeff77615a8f3e987de 100644 (file)
@@ -613,20 +613,30 @@ int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
 
        return ret;
 }
-int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
+
+static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
+                             size_t len)
+{
+       if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
+               return 0;
+
+       if (len > (c->wbuf_pagesize - c->wbuf_len))
+               len = c->wbuf_pagesize - c->wbuf_len;
+       memcpy(c->wbuf + c->wbuf_len, buf, len);
+       c->wbuf_len += (uint32_t) len;
+       return len;
+}
+
+int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
+                      unsigned long count, loff_t to, size_t *retlen,
+                      uint32_t ino)
 {
-       struct kvec outvecs[3];
-       uint32_t totlen = 0;
-       uint32_t split_ofs = 0;
-       uint32_t old_totlen;
-       int ret, splitvec = -1;
-       int invec, outvec;
-       size_t wbuf_retlen;
-       unsigned char *wbuf_ptr;
-       size_t donelen = 0;
+       struct jffs2_eraseblock *jeb;
+       size_t wbuf_retlen, donelen = 0;
        uint32_t outvec_to = to;
+       int ret, invec;
 
-       /* If not NAND flash, don't bother */
+       /* If not writebuffered flash, don't bother */
        if (!jffs2_is_writebuffered(c))
                return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
 
@@ -639,23 +649,22 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig
                memset(c->wbuf,0xff,c->wbuf_pagesize);
        }
 
-       /* Sanity checks on target address.
-          It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
-          and it's permitted to write at the beginning of a new
-          erase block. Anything else, and you die.
-          New block starts at xxx000c (0-b = block header)
-       */
+       /*
+        * Sanity checks on target address.  It's permitted to write
+        * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
+        * write at the beginning of a new erase block. Anything else,
+        * and you die.  New block starts at xxx000c (0-b = block
+        * header)
+        */
        if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
                /* It's a write to a new block */
                if (c->wbuf_len) {
-                       D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
+                       D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
+                                 "causes flush of wbuf at 0x%08x\n",
+                                 (unsigned long)to, c->wbuf_ofs));
                        ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
-                       if (ret) {
-                               /* the underlying layer has to check wbuf_len to do the cleanup */
-                               D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
-                               *retlen = 0;
-                               goto exit;
-                       }
+                       if (ret)
+                               goto outerr;
                }
                /* set pointer to new block */
                c->wbuf_ofs = PAGE_DIV(to);
@@ -664,165 +673,70 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig
 
        if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
                /* We're not writing immediately after the writebuffer. Bad. */
-               printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
+               printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
+                      "to %08lx\n", (unsigned long)to);
                if (c->wbuf_len)
                        printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
-                                         c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
-               BUG();
-       }
-
-       /* Note outvecs[3] above. We know count is never greater than 2 */
-       if (count > 2) {
-               printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
+                              c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
                BUG();
        }
 
-       invec = 0;
-       outvec = 0;
-
-       /* Fill writebuffer first, if already in use */
-       if (c->wbuf_len) {
-               uint32_t invec_ofs = 0;
-
-               /* adjust alignment offset */
-               if (c->wbuf_len != PAGE_MOD(to)) {
-                       c->wbuf_len = PAGE_MOD(to);
-                       /* take care of alignment to next page */
-                       if (!c->wbuf_len)
-                               c->wbuf_len = c->wbuf_pagesize;
-               }
-
-               while(c->wbuf_len < c->wbuf_pagesize) {
-                       uint32_t thislen;
-
-                       if (invec == count)
-                               goto alldone;
-
-                       thislen = c->wbuf_pagesize - c->wbuf_len;
-
-                       if (thislen >= invecs[invec].iov_len)
-                               thislen = invecs[invec].iov_len;
-
-                       invec_ofs = thislen;
-
-                       memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
-                       c->wbuf_len += thislen;
-                       donelen += thislen;
-                       /* Get next invec, if actual did not fill the buffer */
-                       if (c->wbuf_len < c->wbuf_pagesize)
-                               invec++;
-               }
-
-               /* write buffer is full, flush buffer */
-               ret = __jffs2_flush_wbuf(c, NOPAD);
-               if (ret) {
-                       /* the underlying layer has to check wbuf_len to do the cleanup */
-                       D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
-                       /* Retlen zero to make sure our caller doesn't mark the space dirty.
-                          We've already done everything that's necessary */
-                       *retlen = 0;
-                       goto exit;
-               }
-               outvec_to += donelen;
-               c->wbuf_ofs = outvec_to;
-
-               /* All invecs done ? */
-               if (invec == count)
-                       goto alldone;
-
-               /* Set up the first outvec, containing the remainder of the
-                  invec we partially used */
-               if (invecs[invec].iov_len > invec_ofs) {
-                       outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
-                       totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
-                       if (totlen > c->wbuf_pagesize) {
-                               splitvec = outvec;
-                               split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
-                       }
-                       outvec++;
-               }
-               invec++;
-       }
-
-       /* OK, now we've flushed the wbuf and the start of the bits
-          we have been asked to write, now to write the rest.... */
-
-       /* totlen holds the amount of data still to be written */
-       old_totlen = totlen;
-       for ( ; invec < count; invec++,outvec++ ) {
-               outvecs[outvec].iov_base = invecs[invec].iov_base;
-               totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
-               if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
-                       splitvec = outvec;
-                       split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
-                       old_totlen = totlen;
+       /* adjust alignment offset */
+       if (c->wbuf_len != PAGE_MOD(to)) {
+               c->wbuf_len = PAGE_MOD(to);
+               /* take care of alignment to next page */
+               if (!c->wbuf_len) {
+                       c->wbuf_len = c->wbuf_pagesize;
+                       ret = __jffs2_flush_wbuf(c, NOPAD);
+                       if (ret)
+                               goto outerr;
                }
        }
 
-       /* Now the outvecs array holds all the remaining data to write */
-       /* Up to splitvec,split_ofs is to be written immediately. The rest
-          goes into the (now-empty) wbuf */
-
-       if (splitvec != -1) {
-               uint32_t remainder;
-
-               remainder = outvecs[splitvec].iov_len - split_ofs;
-               outvecs[splitvec].iov_len = split_ofs;
-
-               /* We did cross a page boundary, so we write some now */
-               if (jffs2_cleanmarker_oob(c))
-                       ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
-               else
-                       ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
-
-               if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
-                       /* At this point we have no problem,
-                          c->wbuf is empty. However refile nextblock to avoid
-                          writing again to same address.
-                       */
-                       struct jffs2_eraseblock *jeb;
-
-                       spin_lock(&c->erase_completion_lock);
+       for (invec = 0; invec < count; invec++) {
+               int vlen = invecs[invec].iov_len;
+               uint8_t *v = invecs[invec].iov_base;
 
-                       jeb = &c->blocks[outvec_to / c->sector_size];
-                       jffs2_block_refile(c, jeb, REFILE_ANYWAY);
+               wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 
-                       *retlen = 0;
-                       spin_unlock(&c->erase_completion_lock);
-                       goto exit;
+               if (c->wbuf_len == c->wbuf_pagesize) {
+                       ret = __jffs2_flush_wbuf(c, NOPAD);
+                       if (ret)
+                               goto outerr;
                }
-
+               vlen -= wbuf_retlen;
+               outvec_to += wbuf_retlen;
                donelen += wbuf_retlen;
-               c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
-
-               if (remainder) {
-                       outvecs[splitvec].iov_base += split_ofs;
-                       outvecs[splitvec].iov_len = remainder;
-               } else {
-                       splitvec++;
+               v += wbuf_retlen;
+
+               if (vlen >= c->wbuf_pagesize) {
+                       ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
+                                           &wbuf_retlen, v);
+                       if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
+                               goto outfile;
+
+                       vlen -= wbuf_retlen;
+                       outvec_to += wbuf_retlen;
+                       c->wbuf_ofs = outvec_to;
+                       donelen += wbuf_retlen;
+                       v += wbuf_retlen;
                }
 
-       } else {
-               splitvec = 0;
-       }
-
-       /* Now splitvec points to the start of the bits we have to copy
-          into the wbuf */
-       wbuf_ptr = c->wbuf;
+               wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
+               if (c->wbuf_len == c->wbuf_pagesize) {
+                       ret = __jffs2_flush_wbuf(c, NOPAD);
+                       if (ret)
+                               goto outerr;
+               }
 
-       for ( ; splitvec < outvec; splitvec++) {
-               /* Don't copy the wbuf into itself */
-               if (outvecs[splitvec].iov_base == c->wbuf)
-                       continue;
-               memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
-               wbuf_ptr += outvecs[splitvec].iov_len;
-               donelen += outvecs[splitvec].iov_len;
+               outvec_to += wbuf_retlen;
+               donelen += wbuf_retlen;
        }
-       c->wbuf_len = wbuf_ptr - c->wbuf;
 
-       /* If there's a remainder in the wbuf and it's a non-GC write,
-          remember that the wbuf affects this ino */
-alldone:
+       /*
+        * If there's a remainder in the wbuf and it's a non-GC write,
+        * remember that the wbuf affects this ino
+        */
        *retlen = donelen;
 
        if (jffs2_sum_active()) {
@@ -835,8 +749,24 @@ alldone:
                jffs2_wbuf_dirties_inode(c, ino);
 
        ret = 0;
+       up_write(&c->wbuf_sem);
+       return ret;
 
-exit:
+outfile:
+       /*
+        * At this point we have no problem, c->wbuf is empty. However
+        * refile nextblock to avoid writing again to same address.
+        */
+
+       spin_lock(&c->erase_completion_lock);
+
+       jeb = &c->blocks[outvec_to / c->sector_size];
+       jffs2_block_refile(c, jeb, REFILE_ANYWAY);
+
+       spin_unlock(&c->erase_completion_lock);
+
+outerr:
+       *retlen = 0;
        up_write(&c->wbuf_sem);
        return ret;
 }
index da5e67b3fc70ec8851f5aee64ce9a9b4f7ea6686..460525841a27e57345f44e16f828970f06c5bd42 100644 (file)
  * it under the terms of the GNU General Public License version 2 as
  * published by the Free Software Foundation.
  *
- *  Info:
- *   Contains standard defines and IDs for NAND flash devices
+ * Info:
+ *     Contains standard defines and IDs for NAND flash devices
  *
- *  Changelog:
- *   01-31-2000 DMW     Created
- *   09-18-2000 SJH     Moved structure out of the Disk-On-Chip drivers
- *                     so it can be used by other NAND flash device
- *                     drivers. I also changed the copyright since none
- *                     of the original contents of this file are specific
- *                     to DoC devices. David can whack me with a baseball
- *                     bat later if I did something naughty.
- *   10-11-2000 SJH     Added private NAND flash structure for driver
- *   10-24-2000 SJH     Added prototype for 'nand_scan' function
- *   10-29-2001 TG     changed nand_chip structure to support
- *                     hardwarespecific function for accessing control lines
- *   02-21-2002 TG     added support for different read/write adress and
- *                     ready/busy line access function
- *   02-26-2002 TG     added chip_delay to nand_chip structure to optimize
- *                     command delay times for different chips
- *   04-28-2002 TG     OOB config defines moved from nand.c to avoid duplicate
- *                     defines in jffs2/wbuf.c
- *   08-07-2002 TG     forced bad block location to byte 5 of OOB, even if
- *                     CONFIG_MTD_NAND_ECC_JFFS2 is not set
- *   08-10-2002 TG     extensions to nand_chip structure to support HW-ECC
- *
- *   08-29-2002 tglx   nand_chip structure: data_poi for selecting
- *                     internal / fs-driver buffer
- *                     support for 6byte/512byte hardware ECC
- *                     read_ecc, write_ecc extended for different oob-layout
- *                     oob layout selections: NAND_NONE_OOB, NAND_JFFS2_OOB,
- *                     NAND_YAFFS_OOB
- *  11-25-2002 tglx    Added Manufacturer code FUJITSU, NATIONAL
- *                     Split manufacturer and device ID structures
- *
- *  02-08-2004 tglx    added option field to nand structure for chip anomalities
- *  05-25-2004 tglx    added bad block table support, ST-MICRO manufacturer id
- *                     update of nand_chip structure description
- *  01-17-2005 dmarlin added extended commands for AG-AND device and added option
- *                     for BBT_AUTO_REFRESH.
- *  01-20-2005 dmarlin added optional pointer to hardware specific callback for
- *                     extra error status checks.
+ * Changelog:
+ *     See git changelog.
  */
 #ifndef __LINUX_MTD_NAND_H
 #define __LINUX_MTD_NAND_H
@@ -68,7 +32,8 @@ extern int nand_scan (struct mtd_info *mtd, int max_chips);
 extern void nand_release (struct mtd_info *mtd);
 
 /* Read raw data from the device without ECC */
-extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen);
+extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from,
+                         size_t len, size_t ooblen);
 
 
 /* The maximum number of NAND chips in an array */
@@ -84,7 +49,7 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
  * Constants for hardware specific CLE/ALE/NCE function
 */
 /* Select the chip by setting nCE to low */
-#define NAND_CTL_SETNCE        1
+#define NAND_CTL_SETNCE                1
 /* Deselect the chip by setting nCE to high */
 #define NAND_CTL_CLRNCE                2
 /* Select the command latch by setting CLE to high */
@@ -148,21 +113,12 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
 /*
  * Constants for ECC_MODES
  */
-
-/* No ECC. Usage is not recommended ! */
-#define NAND_ECC_NONE          0
-/* Software ECC 3 byte ECC per 256 Byte data */
-#define NAND_ECC_SOFT          1
-/* Hardware ECC 3 byte ECC per 256 Byte data */
-#define NAND_ECC_HW3_256       2
-/* Hardware ECC 3 byte ECC per 512 Byte data */
-#define NAND_ECC_HW3_512       3
-/* Hardware ECC 3 byte ECC per 512 Byte data */
-#define NAND_ECC_HW6_512       4
-/* Hardware ECC 8 byte ECC per 512 Byte data */
-#define NAND_ECC_HW8_512       6
-/* Hardware ECC 12 byte ECC per 2048 Byte data */
-#define NAND_ECC_HW12_2048     7
+typedef enum {
+       NAND_ECC_NONE,
+       NAND_ECC_SOFT,
+       NAND_ECC_HW,
+       NAND_ECC_HW_SYNDROME,
+} nand_ecc_modes_t;
 
 /*
  * Constants for Hardware ECC
@@ -227,6 +183,8 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
 #define NAND_SKIP_BBTSCAN      0x00040000
 
 /* Options set by nand scan */
+/* Nand scan has allocated controller struct */
+#define NAND_CONTROLLER_ALLOC  0x20000000
 /* Nand scan has allocated oob_buf */
 #define NAND_OOBBUF_ALLOC      0x40000000
 /* Nand scan has allocated data_buf */
@@ -263,6 +221,31 @@ struct nand_hw_control {
        wait_queue_head_t wq;
 };
 
+/**
+ * struct nand_ecc_ctrl - Control structure for ecc
+ * @mode:      ecc mode
+ * @steps:     number of ecc steps per page
+ * @size:      data bytes per ecc step
+ * @bytes:     ecc bytes per step
+ * @hwctl:     function to control hardware ecc generator. Must only
+ *             be provided if an hardware ECC is available
+ * @calculate: function for ecc calculation or readback from ecc hardware
+ * @correct:   function for ecc correction, matching to ecc generator (sw/hw)
+ */
+struct nand_ecc_ctrl {
+       nand_ecc_modes_t        mode;
+       int                     steps;
+       int                     size;
+       int                     bytes;
+       int                     (*hwctl)(struct mtd_info *mtd, int mode);
+       int                     (*calculate)(struct mtd_info *mtd,
+                                            const uint8_t *dat,
+                                            uint8_t *ecc_code);
+       int                     (*correct)(struct mtd_info *mtd, uint8_t *dat,
+                                          uint8_t *read_ecc,
+                                          uint8_t *calc_ecc);
+};
+
 /**
  * struct nand_chip - NAND Private Flash Chip Data
  * @IO_ADDR_R:         [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device
@@ -283,20 +266,12 @@ struct nand_hw_control {
  *                     is read from the chip status register
  * @cmdfunc:           [REPLACEABLE] hardwarespecific function for writing commands to the chip
  * @waitfunc:          [REPLACEABLE] hardwarespecific function for wait on ready
- * @calculate_ecc:     [REPLACEABLE] function for ecc calculation or readback from ecc hardware
- * @correct_data:      [REPLACEABLE] function for ecc correction, matching to ecc generator (sw/hw)
- * @enable_hwecc:      [BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
- *                     be provided if a hardware ECC is available
+ * @ecc:               [BOARDSPECIFIC] ecc control ctructure
  * @erase_cmd:         [INTERN] erase command write function, selectable due to AND support
  * @scan_bbt:          [REPLACEABLE] function to scan bad block table
- * @eccmode:           [BOARDSPECIFIC] mode of ecc, see defines
- * @eccsize:           [INTERN] databytes used per ecc-calculation
- * @eccbytes:          [INTERN] number of ecc bytes per ecc-calculation step
- * @eccsteps:          [INTERN] number of ecc calculation steps per page
  * @chip_delay:                [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
- * @chip_lock:         [INTERN] spinlock used to protect access to this structure and the chip
  * @wq:                        [INTERN] wait queue to sleep on if a NAND operation is in progress
- * @state:             [INTERN] the current state of the NAND device
+ * @state:             [INTERN] the current state of the NAND device
  * @page_shift:                [INTERN] number of address bits in a page (column address bits)
  * @phys_erase_shift:  [INTERN] number of address bits in a physical eraseblock
  * @bbt_erase_shift:   [INTERN] number of address bits in a bbt entry
@@ -317,7 +292,8 @@ struct nand_hw_control {
  * @bbt_td:            [REPLACEABLE] bad block table descriptor for flash lookup
  * @bbt_md:            [REPLACEABLE] bad block table mirror descriptor
  * @badblock_pattern:  [REPLACEABLE] bad block scan pattern used for initial bad block scan
- * @controller:                [OPTIONAL] a pointer to a hardware controller structure which is shared among multiple independend devices
+ * @controller:                [REPLACEABLE] a pointer to a hardware controller structure
+ *                     which is shared among multiple independend devices
  * @priv:              [OPTIONAL] pointer to private chip date
  * @errstat:           [OPTIONAL] hardware specific function to perform additional error status checks
  *                     (determine if errors are correctable)
@@ -325,44 +301,37 @@ struct nand_hw_control {
 
 struct nand_chip {
        void  __iomem   *IO_ADDR_R;
-       void  __iomem   *IO_ADDR_W;
+       void  __iomem   *IO_ADDR_W;
 
-       u_char          (*read_byte)(struct mtd_info *mtd);
-       void            (*write_byte)(struct mtd_info *mtd, u_char byte);
+       uint8_t         (*read_byte)(struct mtd_info *mtd);
+       void            (*write_byte)(struct mtd_info *mtd, uint8_t byte);
        u16             (*read_word)(struct mtd_info *mtd);
        void            (*write_word)(struct mtd_info *mtd, u16 word);
 
-       void            (*write_buf)(struct mtd_info *mtd, const u_char *buf, int len);
-       void            (*read_buf)(struct mtd_info *mtd, u_char *buf, int len);
-       int             (*verify_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+       void            (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
+       void            (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
+       int             (*verify_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
        void            (*select_chip)(struct mtd_info *mtd, int chip);
        int             (*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
        int             (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
-       void            (*hwcontrol)(struct mtd_info *mtd, int cmd);
-       int             (*dev_ready)(struct mtd_info *mtd);
-       void            (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
-       int             (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state);
-       int             (*calculate_ecc)(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
-       int             (*correct_data)(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
-       void            (*enable_hwecc)(struct mtd_info *mtd, int mode);
+       void            (*hwcontrol)(struct mtd_info *mtd, int cmd);
+       int             (*dev_ready)(struct mtd_info *mtd);
+       void            (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
+       int             (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state);
        void            (*erase_cmd)(struct mtd_info *mtd, int page);
        int             (*scan_bbt)(struct mtd_info *mtd);
-       int             eccmode;
-       int             eccsize;
-       int             eccbytes;
-       int             eccsteps;
-       int             chip_delay;
-       spinlock_t      chip_lock;
+       struct nand_ecc_ctrl ecc;
+       int             chip_delay;
        wait_queue_head_t wq;
-       nand_state_t    state;
-       int             page_shift;
+       nand_state_t    state;
+       int             page_shift;
        int             phys_erase_shift;
        int             bbt_erase_shift;
        int             chip_shift;
-       u_char          *data_buf;
-       u_char          *oob_buf;
+       uint8_t         *data_buf;
+       uint8_t         *oob_buf;
        int             oobdirty;
-       u_char          *data_poi;
+       uint8_t         *data_poi;
        unsigned int    options;
        int             badblockpos;
        int             numchips;
@@ -388,19 +357,19 @@ struct nand_chip {
 #define NAND_MFR_NATIONAL      0x8f
 #define NAND_MFR_RENESAS       0x07
 #define NAND_MFR_STMICRO       0x20
-#define NAND_MFR_HYNIX          0xad
+#define NAND_MFR_HYNIX         0xad
 
 /**
  * struct nand_flash_dev - NAND Flash Device ID Structure
  *
- * @name:      Identify the device type
- * @id:        device ID code
- * @pagesize:          Pagesize in bytes. Either 256 or 512 or 0
+ * @name:      Identify the device type
+ * @id:                device ID code
+ * @pagesize:  Pagesize in bytes. Either 256 or 512 or 0
  *             If the pagesize is 0, then the real pagesize
  *             and the eraseize are determined from the
  *             extended id bytes in the chip
- * @erasesize:         Size of an erase block in the flash device.
- * @chipsize:          Total chipsize in Mega Bytes
+ * @erasesize: Size of an erase block in the flash device.
+ * @chipsize:  Total chipsize in Mega Bytes
  * @options:   Bitfield to store chip relevant options
  */
 struct nand_flash_dev {
@@ -415,7 +384,7 @@ struct nand_flash_dev {
 /**
  * struct nand_manufacturers - NAND Flash Manufacturer ID Structure
  * @name:      Manufacturer name
- * @id:        manufacturer ID code of device.
+ * @id:                manufacturer ID code of device.
 */
 struct nand_manufacturers {
        int id;
@@ -455,7 +424,7 @@ struct nand_bbt_descr {
        int     veroffs;
        uint8_t version[NAND_MAX_CHIPS];
        int     len;
-       int     maxblocks;
+       int     maxblocks;
        int     reserved_block_code;
        uint8_t *pattern;
 };
@@ -500,8 +469,8 @@ extern int nand_default_bbt (struct mtd_info *mtd);
 extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt);
 extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt);
 extern int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
-                             size_t * retlen, u_char * buf, u_char * oob_buf,
-                             struct nand_oobinfo *oobsel, int flags);
+                            size_t * retlen, uint8_t * buf, uint8_t * oob_buf,
+                            struct nand_oobinfo *oobsel, int flags);
 
 /*
 * Constants for oob configuration
@@ -509,4 +478,51 @@ extern int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
 #define NAND_SMALL_BADBLOCK_POS                5
 #define NAND_LARGE_BADBLOCK_POS                0
 
+/**
+ * struct platform_nand_chip - chip level device structure
+ *
+ * @nr_chips:          max. number of chips to scan for
+ * @chip_offs:         chip number offset
+ * @nr_partitions:     number of partitions pointed to be partitoons (or zero)
+ * @partitions:                mtd partition list
+ * @chip_delay:                R/B delay value in us
+ * @options:           Option flags, e.g. 16bit buswidth
+ * @priv:              hardware controller specific settings
+ */
+struct platform_nand_chip {
+       int                     nr_chips;
+       int                     chip_offset;
+       int                     nr_partitions;
+       struct mtd_partition    *partitions;
+       int                     chip_delay;
+       unsigned int            options;
+       void                    *priv;
+};
+
+/**
+ * struct platform_nand_ctrl - controller level device structure
+ *
+ * @hwcontrol:         platform specific hardware control structure
+ * @dev_ready:         platform specific function to read ready/busy pin
+ * @select_chip:       platform specific chip select function
+ * @priv_data:         private data to transport driver specific settings
+ *
+ * All fields are optional and depend on the hardware driver requirements
+ */
+struct platform_nand_ctrl {
+       void            (*hwcontrol)(struct mtd_info *mtd, int cmd);
+       int             (*dev_ready)(struct mtd_info *mtd);
+       void            (*select_chip)(struct mtd_info *mtd, int chip);
+       void            *priv;
+};
+
+/* Some helpers to access the data structures */
+static inline
+struct platform_nand_chip *get_platform_nandchip(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+
+       return chip->priv;
+}
+
 #endif /* __LINUX_MTD_NAND_H */
diff --git a/include/linux/mtd/ndfc.h b/include/linux/mtd/ndfc.h
new file mode 100644 (file)
index 0000000..31d61f0
--- /dev/null
@@ -0,0 +1,66 @@
+/*
+ *  linux/include/linux/mtd/ndfc.h
+ *
+ *  Copyright (c) 2006 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Info:
+ *   Contains defines, datastructures for ndfc nand controller
+ *
+ */
+#ifndef __LINUX_MTD_NDFC_H
+#define __LINUX_MTD_NDFC_H
+
+/* NDFC Register definitions */
+#define NDFC_CMD               0x00
+#define NDFC_ALE               0x04
+#define NDFC_DATA              0x08
+#define NDFC_ECC               0x10
+#define NDFC_BCFG0             0x30
+#define NDFC_BCFG1             0x34
+#define NDFC_BCFG2             0x38
+#define NDFC_BCFG3             0x3c
+#define NDFC_CCR               0x40
+#define NDFC_STAT              0x44
+#define NDFC_HWCTL             0x48
+#define NDFC_REVID             0x50
+
+#define NDFC_STAT_IS_READY     0x01000000
+
+#define NDFC_CCR_RESET_CE      0x80000000 /* CE Reset */
+#define NDFC_CCR_RESET_ECC     0x40000000 /* ECC Reset */
+#define NDFC_CCR_RIE           0x20000000 /* Interrupt Enable on Device Rdy */
+#define NDFC_CCR_REN           0x10000000 /* Enable wait for Rdy in LinearR */
+#define NDFC_CCR_ROMEN         0x08000000 /* Enable ROM In LinearR */
+#define NDFC_CCR_ARE           0x04000000 /* Auto-Read Enable */
+#define NDFC_CCR_BS(x)         (((x) & 0x3) << 24) /* Select Bank on CE[x] */
+#define NDFC_CCR_BS_MASK       0x03000000 /* Select Bank */
+#define NDFC_CCR_ARAC0         0x00000000 /* 3 Addr, 1 Col 2 Row 512b page */
+#define NDFC_CCR_ARAC1         0x00001000 /* 4 Addr, 1 Col 3 Row 512b page */
+#define NDFC_CCR_ARAC2         0x00002000 /* 4 Addr, 2 Col 2 Row 2K page */
+#define NDFC_CCR_ARAC3         0x00003000 /* 5 Addr, 2 Col 3 Row 2K page */
+#define NDFC_CCR_ARAC_MASK     0x00003000 /* Auto-Read mode Addr Cycles */
+#define NDFC_CCR_RPG           0x0000C000 /* Auto-Read Page */
+#define NDFC_CCR_EBCC          0x00000004 /* EBC Configuration Completed */
+#define NDFC_CCR_DHC           0x00000002 /* Direct Hardware Control Enable */
+
+#define NDFC_BxCFG_EN          0x80000000 /* Bank Enable */
+#define NDFC_BxCFG_CED         0x40000000 /* nCE Style */
+#define NDFC_BxCFG_SZ_MASK     0x08000000 /* Bank Size */
+#define NDFC_BxCFG_SZ_8BIT     0x00000000 /* 8bit */
+#define NDFC_BxCFG_SZ_16BIT    0x08000000 /* 16bit */
+
+#define NDFC_MAX_BANKS         4
+
+struct ndfc_controller_settings {
+       uint32_t                ccr_settings;
+};
+
+struct ndfc_chip_settings {
+       uint32_t        bank_settings;
+};
+
+#endif