group_dead = atomic_dec_and_test(&tsk->signal->live);
if (group_dead) {
del_timer_sync(&tsk->signal->real_timer);
+ exit_itimers(tsk->signal);
acct_process(code);
}
exit_mm(tsk);
}
/*
- * This is called by __exit_signal, only when there are no more
+ * This is called by do_exit or de_thread, only when there are no more
* references to the shared signal_struct.
*/
void exit_itimers(struct signal_struct *sig)
flush_sigqueue(&tsk->pending);
if (sig) {
/*
- * We are cleaning up the signal_struct here. We delayed
- * calling exit_itimers until after flush_sigqueue, just in
- * case our thread-local pending queue contained a queued
- * timer signal that would have been cleared in
- * exit_itimers. When that called sigqueue_free, it would
- * attempt to re-take the tasklist_lock and deadlock. This
- * can never happen if we ensure that all queues the
- * timer's signal might be queued on have been flushed
- * first. The shared_pending queue, and our own pending
- * queue are the only queues the timer could be on, since
- * there are no other threads left in the group and timer
- * signals are constrained to threads inside the group.
+ * We are cleaning up the signal_struct here.
*/
- exit_itimers(sig);
exit_thread_group_keys(sig);
kmem_cache_free(signal_cachep, sig);
}