#include <asm/numa.h>
#ifndef Dprintk
-#define Dprintk(x...)
+# define Dprintk(x...)
#endif
-const struct dma_mapping_ops* dma_ops;
+const struct dma_mapping_ops *dma_ops;
EXPORT_SYMBOL(dma_ops);
static unsigned long dma_reserve __initdata;
{
long i, total = 0, reserved = 0;
long shared = 0, cached = 0;
- pg_data_t *pgdat;
struct page *page;
+ pg_data_t *pgdat;
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
- printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
+ printk(KERN_INFO "Free swap: %6ldkB\n",
+ nr_swap_pages << (PAGE_SHIFT-10));
for_each_online_pgdat(pgdat) {
- for (i = 0; i < pgdat->node_spanned_pages; ++i) {
- /* this loop can take a while with 256 GB and 4k pages
- so update the NMI watchdog */
- if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
+ for (i = 0; i < pgdat->node_spanned_pages; ++i) {
+ /*
+ * This loop can take a while with 256 GB and
+ * 4k pages so defer the NMI watchdog:
+ */
+ if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
touch_nmi_watchdog();
- }
+
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
+
page = pfn_to_page(pgdat->node_start_pfn + i);
total++;
if (PageReserved(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
- }
+ }
}
- printk(KERN_INFO "%lu pages of RAM\n", total);
- printk(KERN_INFO "%lu reserved pages\n",reserved);
- printk(KERN_INFO "%lu pages shared\n",shared);
- printk(KERN_INFO "%lu pages swap cached\n",cached);
+ printk(KERN_INFO "%lu pages of RAM\n", total);
+ printk(KERN_INFO "%lu reserved pages\n", reserved);
+ printk(KERN_INFO "%lu pages shared\n", shared);
+ printk(KERN_INFO "%lu pages swap cached\n", cached);
}
int after_bootmem;
static __init void *spp_getpage(void)
-{
+{
void *ptr;
+
if (after_bootmem)
- ptr = (void *) get_zeroed_page(GFP_ATOMIC);
+ ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
- if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
- panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
+
+ if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
+ panic("set_pte_phys: cannot allocate page data %s\n",
+ after_bootmem ? "after bootmem" : "");
+ }
Dprintk("spp_getpage %p\n", ptr);
+
return ptr;
-}
+}
-static __init void set_pte_phys(unsigned long vaddr,
- unsigned long phys, pgprot_t prot)
+static __init void
+set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
}
pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) {
- pmd = (pmd_t *) spp_getpage();
+ pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
if (pmd != pmd_offset(pud, 0)) {
- printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
+ printk("PAGETABLE BUG #01! %p <-> %p\n",
+ pmd, pmd_offset(pud, 0));
return;
}
}
}
/* NOTE: this is meant to be run only at boot */
-void __init
-__set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
+void __init
+__set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
static unsigned long __meminitdata table_end;
static __meminit void *alloc_low_page(unsigned long *phys)
-{
+{
unsigned long pfn = table_end++;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr);
+
return adr;
}
- if (pfn >= end_pfn)
- panic("alloc_low_page: ran out of memory");
+ if (pfn >= end_pfn)
+ panic("alloc_low_page: ran out of memory");
adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
memset(adr, 0, PAGE_SIZE);
}
static __meminit void unmap_low_page(void *adr)
-{
-
+{
if (after_bootmem)
return;
early_iounmap(adr, PAGE_SIZE);
-}
+}
/* Must run before zap_low_mappings */
__meminit void *early_ioremap(unsigned long addr, unsigned long size)
{
- unsigned long vaddr;
pmd_t *pmd, *last_pmd;
+ unsigned long vaddr;
int i, pmds;
pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
vaddr = __START_KERNEL_map;
pmd = level2_kernel_pgt;
last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
+
for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
for (i = 0; i < pmds; i++) {
if (pmd_present(pmd[i]))
- goto next;
+ goto continue_outer_loop;
}
vaddr += addr & ~PMD_MASK;
addr &= PMD_MASK;
+
for (i = 0; i < pmds; i++, addr += PMD_SIZE)
set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
__flush_tlb_all();
+
return (void *)vaddr;
- next:
+continue_outer_loop:
;
}
printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
+
return NULL;
}
-/* To avoid virtual aliases later */
+/*
+ * To avoid virtual aliases later:
+ */
__meminit void early_iounmap(void *addr, unsigned long size)
{
unsigned long vaddr;
vaddr = (unsigned long)addr;
pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
pmd = level2_kernel_pgt + pmd_index(vaddr);
+
for (i = 0; i < pmds; i++)
pmd_clear(pmd + i);
+
__flush_tlb_all();
}
pmd_t *pmd = pmd_page + pmd_index(address);
if (address >= end) {
- if (!after_bootmem)
+ if (!after_bootmem) {
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
+ }
break;
}
static void __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
{
- pmd_t *pmd = pmd_offset(pud,0);
+ pmd_t *pmd = pmd_offset(pud, 0);
spin_lock(&init_mm.page_table_lock);
phys_pmd_init(pmd, address, end);
spin_unlock(&init_mm.page_table_lock);
__flush_tlb_all();
}
-static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
-{
+static void __meminit
+phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
+{
int i = pud_index(addr);
-
- for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
+ for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
if (addr >= end)
break;
- if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
- set_pud(pud, __pud(0));
+ if (!after_bootmem &&
+ !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
+ set_pud(pud, __pud(0));
continue;
- }
+ }
if (pud_val(*pud)) {
phys_pmd_update(pud, addr, end);
}
pmd = alloc_low_page(&pmd_phys);
+
spin_lock(&init_mm.page_table_lock);
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
phys_pmd_init(pmd, addr, end);
spin_unlock(&init_mm.page_table_lock);
+
unmap_low_page(pmd);
}
__flush_tlb_all();
-}
+}
static void __init find_early_table_space(unsigned long end)
{
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
- /* RED-PEN putting page tables only on node 0 could
- cause a hotspot and fill up ZONE_DMA. The page tables
- need roughly 0.5KB per GB. */
- start = 0x8000;
- table_start = find_e820_area(start, end, tables);
+ /*
+ * RED-PEN putting page tables only on node 0 could
+ * cause a hotspot and fill up ZONE_DMA. The page tables
+ * need roughly 0.5KB per GB.
+ */
+ start = 0x8000;
+ table_start = find_e820_area(start, end, tables);
if (table_start == -1UL)
panic("Cannot find space for the kernel page tables");
(table_start << PAGE_SHIFT) + tables);
}
-/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
- This runs before bootmem is initialized and gets pages directly from the
- physical memory. To access them they are temporarily mapped. */
+/*
+ * Setup the direct mapping of the physical memory at PAGE_OFFSET.
+ * This runs before bootmem is initialized and gets pages directly from
+ * the physical memory. To access them they are temporarily mapped.
+ */
void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
-{
- unsigned long next;
+{
+ unsigned long next;
Dprintk("init_memory_mapping\n");
- /*
+ /*
* Find space for the kernel direct mapping tables.
- * Later we should allocate these tables in the local node of the memory
- * mapped. Unfortunately this is done currently before the nodes are
- * discovered.
+ *
+ * Later we should allocate these tables in the local node of the
+ * memory mapped. Unfortunately this is done currently before the
+ * nodes are discovered.
*/
if (!after_bootmem)
find_early_table_space(end);
end = (unsigned long)__va(end);
for (; start < end; start = next) {
- unsigned long pud_phys;
pgd_t *pgd = pgd_offset_k(start);
+ unsigned long pud_phys;
pud_t *pud;
if (after_bootmem)
pud = alloc_low_page(&pud_phys);
next = start + PGDIR_SIZE;
- if (next > end)
- next = end;
+ if (next > end)
+ next = end;
phys_pud_init(pud, __pa(start), __pa(next));
if (!after_bootmem)
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
unmap_low_page(pud);
- }
+ }
if (!after_bootmem)
mmu_cr4_features = read_cr4();
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
+
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
}
#endif
-/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
- from the CPU leading to inconsistent cache lines. address and size
- must be aligned to 2MB boundaries.
- Does nothing when the mapping doesn't exist. */
-void __init clear_kernel_mapping(unsigned long address, unsigned long size)
+/*
+ * Unmap a kernel mapping if it exists. This is useful to avoid
+ * prefetches from the CPU leading to inconsistent cache lines.
+ * address and size must be aligned to 2MB boundaries.
+ * Does nothing when the mapping doesn't exist.
+ */
+void __init clear_kernel_mapping(unsigned long address, unsigned long size)
{
unsigned long end = address + size;
BUG_ON(address & ~LARGE_PAGE_MASK);
- BUG_ON(size & ~LARGE_PAGE_MASK);
-
- for (; address < end; address += LARGE_PAGE_SIZE) {
+ BUG_ON(size & ~LARGE_PAGE_MASK);
+
+ for (; address < end; address += LARGE_PAGE_SIZE) {
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
+
if (pgd_none(*pgd))
continue;
+
pud = pud_offset(pgd, address);
if (pud_none(*pud))
- continue;
+ continue;
+
pmd = pmd_offset(pud, address);
if (!pmd || pmd_none(*pmd))
- continue;
- if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
- /* Could handle this, but it should not happen currently. */
- printk(KERN_ERR
- "clear_kernel_mapping: mapping has been split. will leak memory\n");
- pmd_ERROR(*pmd);
+ continue;
+
+ if (!(pmd_val(*pmd) & _PAGE_PSE)) {
+ /*
+ * Could handle this, but it should not happen
+ * currently:
+ */
+ printk(KERN_ERR "clear_kernel_mapping: "
+ "mapping has been split. will leak memory\n");
+ pmd_ERROR(*pmd);
}
- set_pmd(pmd, __pmd(0));
+ set_pmd(pmd, __pmd(0));
}
__flush_tlb_all();
-}
+}
/*
* Memory hotplug specific functions
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
- init_memory_mapping(start, (start + size -1));
+ init_memory_mapping(start, start + size-1);
ret = __add_pages(zone, start_pfn, nr_pages);
if (ret)
- goto error;
+ printk("%s: Problem encountered in __add_pages!\n", __func__);
return ret;
-error:
- printk("%s: Problem encountered in __add_pages!\n", __func__);
- return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#endif /* CONFIG_MEMORY_HOTPLUG */
-static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
- kcore_vsyscall;
+static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
+ kcore_modules, kcore_vsyscall;
void __init mem_init(void)
{
#endif
reservedpages = end_pfn - totalram_pages -
absent_pages_in_range(0, end_pfn);
-
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
- kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
- kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
+ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
+ kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
- kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
+ kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START);
- printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
+ printk("Memory: %luk/%luk available (%ldk kernel code, "
+ "%ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
end_pfn << (PAGE_SHIFT-10),
codesize >> 10,
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
+
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
#ifdef CONFIG_KPROBES
start = (unsigned long)__start_rodata;
#endif
-
+
end = (unsigned long)__end_rodata;
start = (start + PAGE_SIZE - 1) & PAGE_MASK;
end &= PAGE_MASK;
}
#endif
-void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
-{
+void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
+{
#ifdef CONFIG_NUMA
int nid = phys_to_nid(phys);
#endif
unsigned long pfn = phys >> PAGE_SHIFT;
+
if (pfn >= end_pfn) {
- /* This can happen with kdump kernels when accessing firmware
- tables. */
+ /*
+ * This can happen with kdump kernels when accessing
+ * firmware tables:
+ */
if (pfn < end_pfn_map)
return;
+
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
phys, len);
return;
/* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
- reserve_bootmem_node(NODE_DATA(nid), phys, len);
-#else
- reserve_bootmem(phys, len);
+ reserve_bootmem_node(NODE_DATA(nid), phys, len);
+#else
+ reserve_bootmem(phys, len);
#endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE;
}
}
-int kern_addr_valid(unsigned long addr)
-{
+int kern_addr_valid(unsigned long addr)
+{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
if (above != 0 && above != -1UL)
- return 0;
-
+ return 0;
+
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
- return 0;
+ return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
+
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
+
return pfn_valid(pte_pfn(*pte));
}
-/* A pseudo VMA to allow ptrace access for the vsyscall page. This only
- covers the 64bit vsyscall page now. 32bit has a real VMA now and does
- not need special handling anymore. */
-
+/*
+ * A pseudo VMA to allow ptrace access for the vsyscall page. This only
+ * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
+ * not need special handling anymore:
+ */
static struct vm_area_struct gate_vma = {
- .vm_start = VSYSCALL_START,
- .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
- .vm_page_prot = PAGE_READONLY_EXEC,
- .vm_flags = VM_READ | VM_EXEC
+ .vm_start = VSYSCALL_START,
+ .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
+ .vm_page_prot = PAGE_READONLY_EXEC,
+ .vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
+
if (!vma)
return 0;
+
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
-/* Use this when you have no reliable task/vma, typically from interrupt
- * context. It is less reliable than using the task's vma and may give
- * false positives.
+/*
+ * Use this when you have no reliable task/vma, typically from interrupt
+ * context. It is less reliable than using the task's vma and may give
+ * false positives:
*/
int in_gate_area_no_task(unsigned long addr)
{
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
-int __meminit vmemmap_populate(struct page *start_page,
- unsigned long size, int node)
+int __meminit
+vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
+
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t entry;
- void *p = vmemmap_alloc_block(PMD_SIZE, node);
+ void *p;
+
+ p = vmemmap_alloc_block(PMD_SIZE, node);
if (!p)
return -ENOMEM;
- entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE);
+ entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
+ PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry)));
printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
addr, addr + PMD_SIZE - 1, p, node);
- } else
+ } else {
vmemmap_verify((pte_t *)pmd, node, addr, next);
+ }
}
-
return 0;
}
#endif