X-Git-Url: https://err.no/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=Documentation%2Fkeys.txt;h=aaa01b0e3ee94251476d15f2ae6574844af9bb16;hb=b5b9d6647c1cd5eee90b58941c55f874c2a7e707;hp=b22e7c8d059a1666d3c3d4f02e2a01b464b19fab;hpb=ab11d1ea281e85895369ef57c5259ad8a432fabb;p=linux-2.6 diff --git a/Documentation/keys.txt b/Documentation/keys.txt index b22e7c8d05..aaa01b0e3e 100644 --- a/Documentation/keys.txt +++ b/Documentation/keys.txt @@ -196,7 +196,7 @@ KEY ACCESS PERMISSIONS Keys have an owner user ID, a group access ID, and a permissions mask. The mask has up to eight bits each for possessor, user, group and other access. Only -five of each set of eight bits are defined. These permissions granted are: +six of each set of eight bits are defined. These permissions granted are: (*) View @@ -224,6 +224,10 @@ five of each set of eight bits are defined. These permissions granted are: keyring to a key, a process must have Write permission on the keyring and Link permission on the key. + (*) Set Attribute + + This permits a key's UID, GID and permissions mask to be changed. + For changing the ownership, group ID or permissions mask, being the owner of the key or having the sysadmin capability is sufficient. @@ -242,15 +246,15 @@ about the status of the key service: this way: SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY - 00000001 I----- 39 perm 1f1f0000 0 0 keyring _uid_ses.0: 1/4 - 00000002 I----- 2 perm 1f1f0000 0 0 keyring _uid.0: empty - 00000007 I----- 1 perm 1f1f0000 0 0 keyring _pid.1: empty - 0000018d I----- 1 perm 1f1f0000 0 0 keyring _pid.412: empty - 000004d2 I--Q-- 1 perm 1f1f0000 32 -1 keyring _uid.32: 1/4 - 000004d3 I--Q-- 3 perm 1f1f0000 32 -1 keyring _uid_ses.32: empty + 00000001 I----- 39 perm 1f3f0000 0 0 keyring _uid_ses.0: 1/4 + 00000002 I----- 2 perm 1f3f0000 0 0 keyring _uid.0: empty + 00000007 I----- 1 perm 1f3f0000 0 0 keyring _pid.1: empty + 0000018d I----- 1 perm 1f3f0000 0 0 keyring _pid.412: empty + 000004d2 I--Q-- 1 perm 1f3f0000 32 -1 keyring _uid.32: 1/4 + 000004d3 I--Q-- 3 perm 1f3f0000 32 -1 keyring _uid_ses.32: empty 00000892 I--QU- 1 perm 1f000000 0 0 user metal:copper: 0 - 00000893 I--Q-N 1 35s 1f1f0000 0 0 user metal:silver: 0 - 00000894 I--Q-- 1 10h 001f0000 0 0 user metal:gold: 0 + 00000893 I--Q-N 1 35s 1f3f0000 0 0 user metal:silver: 0 + 00000894 I--Q-- 1 10h 003f0000 0 0 user metal:gold: 0 The flags are: @@ -304,6 +308,8 @@ process making the call: KEY_SPEC_USER_KEYRING -4 UID-specific keyring KEY_SPEC_USER_SESSION_KEYRING -5 UID-session keyring KEY_SPEC_GROUP_KEYRING -6 GID-specific keyring + KEY_SPEC_REQKEY_AUTH_KEY -7 assumed request_key() + authorisation key The main syscalls are: @@ -361,6 +367,8 @@ The main syscalls are: /sbin/request-key will be invoked in an attempt to obtain a key. The callout_info string will be passed as an argument to the program. + See also Documentation/keys-request-key.txt. + The keyctl syscall functions are: @@ -492,7 +500,11 @@ The keyctl syscall functions are: keyring is full, error ENFILE will result. The link procedure checks the nesting of the keyrings, returning ELOOP if - it appears to deep or EDEADLK if the link would introduce a cycle. + it appears too deep or EDEADLK if the link would introduce a cycle. + + Any links within the keyring to keys that match the new key in terms of + type and description will be discarded from the keyring as the new one is + added. (*) Unlink a key or keyring from another keyring: @@ -533,8 +545,8 @@ The keyctl syscall functions are: (*) Read the payload data from a key: - key_serial_t keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer, - size_t buflen); + long keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer, + size_t buflen); This function attempts to read the payload data from the specified key into the buffer. The process must have read permission on the key to @@ -555,9 +567,9 @@ The keyctl syscall functions are: (*) Instantiate a partially constructed key. - key_serial_t keyctl(KEYCTL_INSTANTIATE, key_serial_t key, - const void *payload, size_t plen, - key_serial_t keyring); + long keyctl(KEYCTL_INSTANTIATE, key_serial_t key, + const void *payload, size_t plen, + key_serial_t keyring); If the kernel calls back to userspace to complete the instantiation of a key, userspace should use this call to supply data for the key before the @@ -576,8 +588,8 @@ The keyctl syscall functions are: (*) Negatively instantiate a partially constructed key. - key_serial_t keyctl(KEYCTL_NEGATE, key_serial_t key, - unsigned timeout, key_serial_t keyring); + long keyctl(KEYCTL_NEGATE, key_serial_t key, + unsigned timeout, key_serial_t keyring); If the kernel calls back to userspace to complete the instantiation of a key, userspace should use this call mark the key as negative before the @@ -622,6 +634,41 @@ The keyctl syscall functions are: there is one, otherwise the user default session keyring. + (*) Set the timeout on a key. + + long keyctl(KEYCTL_SET_TIMEOUT, key_serial_t key, unsigned timeout); + + This sets or clears the timeout on a key. The timeout can be 0 to clear + the timeout or a number of seconds to set the expiry time that far into + the future. + + The process must have attribute modification access on a key to set its + timeout. Timeouts may not be set with this function on negative, revoked + or expired keys. + + + (*) Assume the authority granted to instantiate a key + + long keyctl(KEYCTL_ASSUME_AUTHORITY, key_serial_t key); + + This assumes or divests the authority required to instantiate the + specified key. Authority can only be assumed if the thread has the + authorisation key associated with the specified key in its keyrings + somewhere. + + Once authority is assumed, searches for keys will also search the + requester's keyrings using the requester's security label, UID, GID and + groups. + + If the requested authority is unavailable, error EPERM will be returned, + likewise if the authority has been revoked because the target key is + already instantiated. + + If the specified key is 0, then any assumed authority will be divested. + + The assumed authorititive key is inherited across fork and exec. + + =============== KERNEL SERVICES =============== @@ -688,6 +735,8 @@ payload contents" for more information. If successful, the key will have been attached to the default keyring for implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING. + See also Documentation/keys-request-key.txt. + (*) When it is no longer required, the key should be released using: @@ -852,24 +901,6 @@ The structure has a number of fields, some of which are mandatory: It is safe to sleep in this method. - (*) int (*duplicate)(struct key *key, const struct key *source); - - If this type of key can be duplicated, then this method should be - provided. It is called to copy the payload attached to the source into the - new key. The data length on the new key will have been updated and the - quota adjusted already. - - This method will be called with the source key's semaphore read-locked to - prevent its payload from being changed, thus RCU constraints need not be - applied to the source key. - - This method does not have to lock the destination key in order to attach a - payload. The fact that KEY_FLAG_INSTANTIATED is not set in key->flags - prevents anything else from gaining access to the key. - - It is safe to sleep in this method. - - (*) int (*update)(struct key *key, const void *data, size_t datalen); If this type of key can be updated, then this method should be provided.