]> err.no Git - linux-2.6/blobdiff - arch/parisc/kernel/time.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6
[linux-2.6] / arch / parisc / kernel / time.c
index ab641d67f5516fc6fb494799edce9db1f13f08d0..b3496b592a2d7db687793899388a4db9ce73f064 100644 (file)
@@ -32,8 +32,7 @@
 
 #include <linux/timex.h>
 
-static long clocktick __read_mostly;   /* timer cycles per tick */
-static long halftick __read_mostly;
+static unsigned long clocktick __read_mostly;  /* timer cycles per tick */
 
 #ifdef CONFIG_SMP
 extern void smp_do_timer(struct pt_regs *regs);
@@ -41,46 +40,106 @@ extern void smp_do_timer(struct pt_regs *regs);
 
 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
 {
-       long now;
-       long next_tick;
-       int nticks;
-       int cpu = smp_processor_id();
+       unsigned long now;
+       unsigned long next_tick;
+       unsigned long cycles_elapsed;
+       unsigned long cycles_remainder;
+       unsigned int cpu = smp_processor_id();
+
+       /* gcc can optimize for "read-only" case with a local clocktick */
+       unsigned long cpt = clocktick;
 
        profile_tick(CPU_PROFILING, regs);
 
-       now = mfctl(16);
-       /* initialize next_tick to time at last clocktick */
+       /* Initialize next_tick to the expected tick time. */
        next_tick = cpu_data[cpu].it_value;
 
-       /* since time passes between the interrupt and the mfctl()
-        * above, it is never true that last_tick + clocktick == now.  If we
-        * never miss a clocktick, we could set next_tick = last_tick + clocktick
-        * but maybe we'll miss ticks, hence the loop.
-        *
-        * Variables are *signed*.
+       /* Get current interval timer.
+        * CR16 reads as 64 bits in CPU wide mode.
+        * CR16 reads as 32 bits in CPU narrow mode.
         */
+       now = mfctl(16);
+
+       cycles_elapsed = now - next_tick;
 
-       nticks = 0;
-       while((next_tick - now) < halftick) {
-               next_tick += clocktick;
-               nticks++;
+       if ((cycles_elapsed >> 5) < cpt) {
+               /* use "cheap" math (add/subtract) instead
+                * of the more expensive div/mul method
+                */
+               cycles_remainder = cycles_elapsed;
+               while (cycles_remainder > cpt) {
+                       cycles_remainder -= cpt;
+               }
+       } else {
+               cycles_remainder = cycles_elapsed % cpt;
        }
-       mtctl(next_tick, 16);
+
+       /* Can we differentiate between "early CR16" (aka Scenario 1) and
+        * "long delay" (aka Scenario 3)? I don't think so.
+        *
+        * We expected timer_interrupt to be delivered at least a few hundred
+        * cycles after the IT fires. But it's arbitrary how much time passes
+        * before we call it "late". I've picked one second.
+        */
+/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
+#if HZ == 1000
+       if (cycles_elapsed > (cpt << 10) )
+#elif HZ == 250
+       if (cycles_elapsed > (cpt << 8) )
+#elif HZ == 100
+       if (cycles_elapsed > (cpt << 7) )
+#else
+#warn WTF is HZ set to anyway?
+       if (cycles_elapsed > (HZ * cpt) )
+#endif
+       {
+               /* Scenario 3: very long delay?  bad in any case */
+               printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
+                       " cycles %lX rem %lX "
+                       " next/now %lX/%lX\n",
+                       cpu,
+                       cycles_elapsed, cycles_remainder,
+                       next_tick, now );
+       }
+
+       /* convert from "division remainder" to "remainder of clock tick" */
+       cycles_remainder = cpt - cycles_remainder;
+
+       /* Determine when (in CR16 cycles) next IT interrupt will fire.
+        * We want IT to fire modulo clocktick even if we miss/skip some.
+        * But those interrupts don't in fact get delivered that regularly.
+        */
+       next_tick = now + cycles_remainder;
+
        cpu_data[cpu].it_value = next_tick;
 
-       while (nticks--) {
+       /* Skip one clocktick on purpose if we are likely to miss next_tick.
+        * We want to avoid the new next_tick being less than CR16.
+        * If that happened, itimer wouldn't fire until CR16 wrapped.
+        * We'll catch the tick we missed on the tick after that.
+        */
+       if (!(cycles_remainder >> 13))
+               next_tick += cpt;
+
+       /* Program the IT when to deliver the next interrupt. */
+        /* Only bottom 32-bits of next_tick are written to cr16.  */
+       mtctl(next_tick, 16);
+
+
+       /* Done mucking with unreliable delivery of interrupts.
+        * Go do system house keeping.
+        */
 #ifdef CONFIG_SMP
-               smp_do_timer(regs);
+       smp_do_timer(regs);
 #else
-               update_process_times(user_mode(regs));
+       update_process_times(user_mode(regs));
 #endif
-               if (cpu == 0) {
-                       write_seqlock(&xtime_lock);
-                       do_timer(1);
-                       write_sequnlock(&xtime_lock);
-               }
+       if (cpu == 0) {
+               write_seqlock(&xtime_lock);
+               do_timer(regs);
+               write_sequnlock(&xtime_lock);
        }
-    
+
        /* check soft power switch status */
        if (cpu == 0 && !atomic_read(&power_tasklet.count))
                tasklet_schedule(&power_tasklet);
@@ -106,14 +165,12 @@ unsigned long profile_pc(struct pt_regs *regs)
 EXPORT_SYMBOL(profile_pc);
 
 
-/*** converted from ia64 ***/
 /*
  * Return the number of micro-seconds that elapsed since the last
  * update to wall time (aka xtime).  The xtime_lock
  * must be at least read-locked when calling this routine.
  */
-static inline unsigned long
-gettimeoffset (void)
+static inline unsigned long gettimeoffset (void)
 {
 #ifndef CONFIG_SMP
        /*
@@ -121,21 +178,44 @@ gettimeoffset (void)
         *    Once parisc-linux learns the cr16 difference between processors,
         *    this could be made to work.
         */
-       long last_tick;
-       long elapsed_cycles;
-
-       /* it_value is the intended time of the next tick */
-       last_tick = cpu_data[smp_processor_id()].it_value;
-
-       /* Subtract one tick and account for possible difference between
-        * when we expected the tick and when it actually arrived.
-        * (aka wall vs real)
-        */
-       last_tick -= clocktick * (jiffies - wall_jiffies + 1);
-       elapsed_cycles = mfctl(16) - last_tick;
+       unsigned long now;
+       unsigned long prev_tick;
+       unsigned long next_tick;
+       unsigned long elapsed_cycles;
+       unsigned long usec;
+       unsigned long cpuid = smp_processor_id();
+       unsigned long cpt = clocktick;
+
+       next_tick = cpu_data[cpuid].it_value;
+       now = mfctl(16);        /* Read the hardware interval timer.  */
+
+       prev_tick = next_tick - cpt;
+
+       /* Assume Scenario 1: "now" is later than prev_tick.  */
+       elapsed_cycles = now - prev_tick;
+
+/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
+#if HZ == 1000
+       if (elapsed_cycles > (cpt << 10) )
+#elif HZ == 250
+       if (elapsed_cycles > (cpt << 8) )
+#elif HZ == 100
+       if (elapsed_cycles > (cpt << 7) )
+#else
+#warn WTF is HZ set to anyway?
+       if (elapsed_cycles > (HZ * cpt) )
+#endif
+       {
+               /* Scenario 3: clock ticks are missing. */
+               printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
+                       " cycles %lX prev/now/next %lX/%lX/%lX  clock %lX\n",
+                       cpuid, elapsed_cycles / cpt,
+                       elapsed_cycles, prev_tick, now, next_tick, cpt);
+       }
 
-       /* the precision of this math could be improved */
-       return elapsed_cycles / (PAGE0->mem_10msec / 10000);
+       /* FIXME: Can we improve the precision? Not with PAGE0. */
+       usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
+       return usec;
 #else
        return 0;
 #endif
@@ -146,6 +226,7 @@ do_gettimeofday (struct timeval *tv)
 {
        unsigned long flags, seq, usec, sec;
 
+       /* Hold xtime_lock and adjust timeval.  */
        do {
                seq = read_seqbegin_irqsave(&xtime_lock, flags);
                usec = gettimeoffset();
@@ -153,25 +234,13 @@ do_gettimeofday (struct timeval *tv)
                usec += (xtime.tv_nsec / 1000);
        } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
 
-       if (unlikely(usec > LONG_MAX)) {
-               /* This can happen if the gettimeoffset adjustment is
-                * negative and xtime.tv_nsec is smaller than the
-                * adjustment */
-               printk(KERN_ERR "do_gettimeofday() spurious xtime.tv_nsec of %ld\n", usec);
-               usec += USEC_PER_SEC;
-               --sec;
-               /* This should never happen, it means the negative
-                * time adjustment was more than a second, so there's
-                * something seriously wrong */
-               BUG_ON(usec > LONG_MAX);
-       }
-
-
+       /* Move adjusted usec's into sec's.  */
        while (usec >= USEC_PER_SEC) {
                usec -= USEC_PER_SEC;
                ++sec;
        }
 
+       /* Return adjusted result.  */
        tv->tv_sec = sec;
        tv->tv_usec = usec;
 }
@@ -223,22 +292,23 @@ unsigned long long sched_clock(void)
 }
 
 
+void __init start_cpu_itimer(void)
+{
+       unsigned int cpu = smp_processor_id();
+       unsigned long next_tick = mfctl(16) + clocktick;
+
+       mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
+
+       cpu_data[cpu].it_value = next_tick;
+}
+
 void __init time_init(void)
 {
-       unsigned long next_tick;
        static struct pdc_tod tod_data;
 
        clocktick = (100 * PAGE0->mem_10msec) / HZ;
-       halftick = clocktick / 2;
 
-       /* Setup clock interrupt timing */
-
-       next_tick = mfctl(16);
-       next_tick += clocktick;
-       cpu_data[smp_processor_id()].it_value = next_tick;
-
-       /* kick off Itimer (CR16) */
-       mtctl(next_tick, 16);
+       start_cpu_itimer();     /* get CPU 0 started */
 
        if(pdc_tod_read(&tod_data) == 0) {
                write_seqlock_irq(&xtime_lock);