]> err.no Git - linux-2.6/blob - sound/pci/hda/hda_codec.c
Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[linux-2.6] / sound / pci / hda / hda_codec.c
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/tlv.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
34
35
36 /*
37  * vendor / preset table
38  */
39
40 struct hda_vendor_id {
41         unsigned int id;
42         const char *name;
43 };
44
45 /* codec vendor labels */
46 static struct hda_vendor_id hda_vendor_ids[] = {
47         { 0x10ec, "Realtek" },
48         { 0x1057, "Motorola" },
49         { 0x1106, "VIA" },
50         { 0x11d4, "Analog Devices" },
51         { 0x13f6, "C-Media" },
52         { 0x14f1, "Conexant" },
53         { 0x434d, "C-Media" },
54         { 0x8384, "SigmaTel" },
55         {} /* terminator */
56 };
57
58 /* codec presets */
59 #include "hda_patch.h"
60
61
62 /**
63  * snd_hda_codec_read - send a command and get the response
64  * @codec: the HDA codec
65  * @nid: NID to send the command
66  * @direct: direct flag
67  * @verb: the verb to send
68  * @parm: the parameter for the verb
69  *
70  * Send a single command and read the corresponding response.
71  *
72  * Returns the obtained response value, or -1 for an error.
73  */
74 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
75                                 int direct,
76                                 unsigned int verb, unsigned int parm)
77 {
78         unsigned int res;
79         mutex_lock(&codec->bus->cmd_mutex);
80         if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
81                 res = codec->bus->ops.get_response(codec);
82         else
83                 res = (unsigned int)-1;
84         mutex_unlock(&codec->bus->cmd_mutex);
85         return res;
86 }
87
88 /**
89  * snd_hda_codec_write - send a single command without waiting for response
90  * @codec: the HDA codec
91  * @nid: NID to send the command
92  * @direct: direct flag
93  * @verb: the verb to send
94  * @parm: the parameter for the verb
95  *
96  * Send a single command without waiting for response.
97  *
98  * Returns 0 if successful, or a negative error code.
99  */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101                          unsigned int verb, unsigned int parm)
102 {
103         int err;
104         mutex_lock(&codec->bus->cmd_mutex);
105         err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106         mutex_unlock(&codec->bus->cmd_mutex);
107         return err;
108 }
109
110 /**
111  * snd_hda_sequence_write - sequence writes
112  * @codec: the HDA codec
113  * @seq: VERB array to send
114  *
115  * Send the commands sequentially from the given array.
116  * The array must be terminated with NID=0.
117  */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120         for (; seq->nid; seq++)
121                 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125  * snd_hda_get_sub_nodes - get the range of sub nodes
126  * @codec: the HDA codec
127  * @nid: NID to parse
128  * @start_id: the pointer to store the start NID
129  *
130  * Parse the NID and store the start NID of its sub-nodes.
131  * Returns the number of sub-nodes.
132  */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
134                           hda_nid_t *start_id)
135 {
136         unsigned int parm;
137
138         parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
139         *start_id = (parm >> 16) & 0x7fff;
140         return (int)(parm & 0x7fff);
141 }
142
143 /**
144  * snd_hda_get_connections - get connection list
145  * @codec: the HDA codec
146  * @nid: NID to parse
147  * @conn_list: connection list array
148  * @max_conns: max. number of connections to store
149  *
150  * Parses the connection list of the given widget and stores the list
151  * of NIDs.
152  *
153  * Returns the number of connections, or a negative error code.
154  */
155 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
156                             hda_nid_t *conn_list, int max_conns)
157 {
158         unsigned int parm;
159         int i, conn_len, conns;
160         unsigned int shift, num_elems, mask;
161         hda_nid_t prev_nid;
162
163         snd_assert(conn_list && max_conns > 0, return -EINVAL);
164
165         parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
166         if (parm & AC_CLIST_LONG) {
167                 /* long form */
168                 shift = 16;
169                 num_elems = 2;
170         } else {
171                 /* short form */
172                 shift = 8;
173                 num_elems = 4;
174         }
175         conn_len = parm & AC_CLIST_LENGTH;
176         mask = (1 << (shift-1)) - 1;
177
178         if (!conn_len)
179                 return 0; /* no connection */
180
181         if (conn_len == 1) {
182                 /* single connection */
183                 parm = snd_hda_codec_read(codec, nid, 0,
184                                           AC_VERB_GET_CONNECT_LIST, 0);
185                 conn_list[0] = parm & mask;
186                 return 1;
187         }
188
189         /* multi connection */
190         conns = 0;
191         prev_nid = 0;
192         for (i = 0; i < conn_len; i++) {
193                 int range_val;
194                 hda_nid_t val, n;
195
196                 if (i % num_elems == 0)
197                         parm = snd_hda_codec_read(codec, nid, 0,
198                                                   AC_VERB_GET_CONNECT_LIST, i);
199                 range_val = !!(parm & (1 << (shift-1))); /* ranges */
200                 val = parm & mask;
201                 parm >>= shift;
202                 if (range_val) {
203                         /* ranges between the previous and this one */
204                         if (!prev_nid || prev_nid >= val) {
205                                 snd_printk(KERN_WARNING "hda_codec: "
206                                            "invalid dep_range_val %x:%x\n",
207                                            prev_nid, val);
208                                 continue;
209                         }
210                         for (n = prev_nid + 1; n <= val; n++) {
211                                 if (conns >= max_conns) {
212                                         snd_printk(KERN_ERR
213                                                    "Too many connections\n");
214                                         return -EINVAL;
215                                 }
216                                 conn_list[conns++] = n;
217                         }
218                 } else {
219                         if (conns >= max_conns) {
220                                 snd_printk(KERN_ERR "Too many connections\n");
221                                 return -EINVAL;
222                         }
223                         conn_list[conns++] = val;
224                 }
225                 prev_nid = val;
226         }
227         return conns;
228 }
229
230
231 /**
232  * snd_hda_queue_unsol_event - add an unsolicited event to queue
233  * @bus: the BUS
234  * @res: unsolicited event (lower 32bit of RIRB entry)
235  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
236  *
237  * Adds the given event to the queue.  The events are processed in
238  * the workqueue asynchronously.  Call this function in the interrupt
239  * hanlder when RIRB receives an unsolicited event.
240  *
241  * Returns 0 if successful, or a negative error code.
242  */
243 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
244 {
245         struct hda_bus_unsolicited *unsol;
246         unsigned int wp;
247
248         unsol = bus->unsol;
249         if (!unsol)
250                 return 0;
251
252         wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
253         unsol->wp = wp;
254
255         wp <<= 1;
256         unsol->queue[wp] = res;
257         unsol->queue[wp + 1] = res_ex;
258
259         schedule_work(&unsol->work);
260
261         return 0;
262 }
263
264 /*
265  * process queueud unsolicited events
266  */
267 static void process_unsol_events(struct work_struct *work)
268 {
269         struct hda_bus_unsolicited *unsol =
270                 container_of(work, struct hda_bus_unsolicited, work);
271         struct hda_bus *bus = unsol->bus;
272         struct hda_codec *codec;
273         unsigned int rp, caddr, res;
274
275         while (unsol->rp != unsol->wp) {
276                 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
277                 unsol->rp = rp;
278                 rp <<= 1;
279                 res = unsol->queue[rp];
280                 caddr = unsol->queue[rp + 1];
281                 if (!(caddr & (1 << 4))) /* no unsolicited event? */
282                         continue;
283                 codec = bus->caddr_tbl[caddr & 0x0f];
284                 if (codec && codec->patch_ops.unsol_event)
285                         codec->patch_ops.unsol_event(codec, res);
286         }
287 }
288
289 /*
290  * initialize unsolicited queue
291  */
292 static int __devinit init_unsol_queue(struct hda_bus *bus)
293 {
294         struct hda_bus_unsolicited *unsol;
295
296         if (bus->unsol) /* already initialized */
297                 return 0;
298
299         unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
300         if (!unsol) {
301                 snd_printk(KERN_ERR "hda_codec: "
302                            "can't allocate unsolicited queue\n");
303                 return -ENOMEM;
304         }
305         INIT_WORK(&unsol->work, process_unsol_events);
306         unsol->bus = bus;
307         bus->unsol = unsol;
308         return 0;
309 }
310
311 /*
312  * destructor
313  */
314 static void snd_hda_codec_free(struct hda_codec *codec);
315
316 static int snd_hda_bus_free(struct hda_bus *bus)
317 {
318         struct hda_codec *codec, *n;
319
320         if (!bus)
321                 return 0;
322         if (bus->unsol) {
323                 flush_scheduled_work();
324                 kfree(bus->unsol);
325         }
326         list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
327                 snd_hda_codec_free(codec);
328         }
329         if (bus->ops.private_free)
330                 bus->ops.private_free(bus);
331         kfree(bus);
332         return 0;
333 }
334
335 static int snd_hda_bus_dev_free(struct snd_device *device)
336 {
337         struct hda_bus *bus = device->device_data;
338         return snd_hda_bus_free(bus);
339 }
340
341 /**
342  * snd_hda_bus_new - create a HDA bus
343  * @card: the card entry
344  * @temp: the template for hda_bus information
345  * @busp: the pointer to store the created bus instance
346  *
347  * Returns 0 if successful, or a negative error code.
348  */
349 int __devinit snd_hda_bus_new(struct snd_card *card,
350                               const struct hda_bus_template *temp,
351                               struct hda_bus **busp)
352 {
353         struct hda_bus *bus;
354         int err;
355         static struct snd_device_ops dev_ops = {
356                 .dev_free = snd_hda_bus_dev_free,
357         };
358
359         snd_assert(temp, return -EINVAL);
360         snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
361
362         if (busp)
363                 *busp = NULL;
364
365         bus = kzalloc(sizeof(*bus), GFP_KERNEL);
366         if (bus == NULL) {
367                 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
368                 return -ENOMEM;
369         }
370
371         bus->card = card;
372         bus->private_data = temp->private_data;
373         bus->pci = temp->pci;
374         bus->modelname = temp->modelname;
375         bus->ops = temp->ops;
376
377         mutex_init(&bus->cmd_mutex);
378         INIT_LIST_HEAD(&bus->codec_list);
379
380         err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
381         if (err < 0) {
382                 snd_hda_bus_free(bus);
383                 return err;
384         }
385         if (busp)
386                 *busp = bus;
387         return 0;
388 }
389
390 /*
391  * find a matching codec preset
392  */
393 static const struct hda_codec_preset __devinit *
394 find_codec_preset(struct hda_codec *codec)
395 {
396         const struct hda_codec_preset **tbl, *preset;
397
398         if (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
399                 return NULL; /* use the generic parser */
400
401         for (tbl = hda_preset_tables; *tbl; tbl++) {
402                 for (preset = *tbl; preset->id; preset++) {
403                         u32 mask = preset->mask;
404                         if (!mask)
405                                 mask = ~0;
406                         if (preset->id == (codec->vendor_id & mask) &&
407                             (!preset->rev ||
408                              preset->rev == codec->revision_id))
409                                 return preset;
410                 }
411         }
412         return NULL;
413 }
414
415 /*
416  * snd_hda_get_codec_name - store the codec name
417  */
418 void snd_hda_get_codec_name(struct hda_codec *codec,
419                             char *name, int namelen)
420 {
421         const struct hda_vendor_id *c;
422         const char *vendor = NULL;
423         u16 vendor_id = codec->vendor_id >> 16;
424         char tmp[16];
425
426         for (c = hda_vendor_ids; c->id; c++) {
427                 if (c->id == vendor_id) {
428                         vendor = c->name;
429                         break;
430                 }
431         }
432         if (!vendor) {
433                 sprintf(tmp, "Generic %04x", vendor_id);
434                 vendor = tmp;
435         }
436         if (codec->preset && codec->preset->name)
437                 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
438         else
439                 snprintf(name, namelen, "%s ID %x", vendor,
440                          codec->vendor_id & 0xffff);
441 }
442
443 /*
444  * look for an AFG and MFG nodes
445  */
446 static void __devinit setup_fg_nodes(struct hda_codec *codec)
447 {
448         int i, total_nodes;
449         hda_nid_t nid;
450
451         total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
452         for (i = 0; i < total_nodes; i++, nid++) {
453                 unsigned int func;
454                 func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
455                 switch (func & 0xff) {
456                 case AC_GRP_AUDIO_FUNCTION:
457                         codec->afg = nid;
458                         break;
459                 case AC_GRP_MODEM_FUNCTION:
460                         codec->mfg = nid;
461                         break;
462                 default:
463                         break;
464                 }
465         }
466 }
467
468 /*
469  * read widget caps for each widget and store in cache
470  */
471 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
472 {
473         int i;
474         hda_nid_t nid;
475
476         codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
477                                                  &codec->start_nid);
478         codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
479         if (!codec->wcaps)
480                 return -ENOMEM;
481         nid = codec->start_nid;
482         for (i = 0; i < codec->num_nodes; i++, nid++)
483                 codec->wcaps[i] = snd_hda_param_read(codec, nid,
484                                                      AC_PAR_AUDIO_WIDGET_CAP);
485         return 0;
486 }
487
488
489 /*
490  * codec destructor
491  */
492 static void snd_hda_codec_free(struct hda_codec *codec)
493 {
494         if (!codec)
495                 return;
496         list_del(&codec->list);
497         codec->bus->caddr_tbl[codec->addr] = NULL;
498         if (codec->patch_ops.free)
499                 codec->patch_ops.free(codec);
500         kfree(codec->amp_info);
501         kfree(codec->wcaps);
502         kfree(codec);
503 }
504
505 static void init_amp_hash(struct hda_codec *codec);
506
507 /**
508  * snd_hda_codec_new - create a HDA codec
509  * @bus: the bus to assign
510  * @codec_addr: the codec address
511  * @codecp: the pointer to store the generated codec
512  *
513  * Returns 0 if successful, or a negative error code.
514  */
515 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
516                                 struct hda_codec **codecp)
517 {
518         struct hda_codec *codec;
519         char component[13];
520         int err;
521
522         snd_assert(bus, return -EINVAL);
523         snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
524
525         if (bus->caddr_tbl[codec_addr]) {
526                 snd_printk(KERN_ERR "hda_codec: "
527                            "address 0x%x is already occupied\n", codec_addr);
528                 return -EBUSY;
529         }
530
531         codec = kzalloc(sizeof(*codec), GFP_KERNEL);
532         if (codec == NULL) {
533                 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
534                 return -ENOMEM;
535         }
536
537         codec->bus = bus;
538         codec->addr = codec_addr;
539         mutex_init(&codec->spdif_mutex);
540         init_amp_hash(codec);
541
542         list_add_tail(&codec->list, &bus->codec_list);
543         bus->caddr_tbl[codec_addr] = codec;
544
545         codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
546                                               AC_PAR_VENDOR_ID);
547         if (codec->vendor_id == -1)
548                 /* read again, hopefully the access method was corrected
549                  * in the last read...
550                  */
551                 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
552                                                       AC_PAR_VENDOR_ID);
553         codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
554                                                  AC_PAR_SUBSYSTEM_ID);
555         codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
556                                                 AC_PAR_REV_ID);
557
558         setup_fg_nodes(codec);
559         if (!codec->afg && !codec->mfg) {
560                 snd_printdd("hda_codec: no AFG or MFG node found\n");
561                 snd_hda_codec_free(codec);
562                 return -ENODEV;
563         }
564
565         if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
566                 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
567                 snd_hda_codec_free(codec);
568                 return -ENOMEM;
569         }
570
571         if (!codec->subsystem_id) {
572                 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
573                 codec->subsystem_id =
574                         snd_hda_codec_read(codec, nid, 0,
575                                            AC_VERB_GET_SUBSYSTEM_ID, 0);
576         }
577
578         codec->preset = find_codec_preset(codec);
579         /* audio codec should override the mixer name */
580         if (codec->afg || !*bus->card->mixername)
581                 snd_hda_get_codec_name(codec, bus->card->mixername,
582                                        sizeof(bus->card->mixername));
583
584         if (codec->preset && codec->preset->patch)
585                 err = codec->preset->patch(codec);
586         else
587                 err = snd_hda_parse_generic_codec(codec);
588         if (err < 0) {
589                 snd_hda_codec_free(codec);
590                 return err;
591         }
592
593         if (codec->patch_ops.unsol_event)
594                 init_unsol_queue(bus);
595
596         snd_hda_codec_proc_new(codec);
597
598         sprintf(component, "HDA:%08x", codec->vendor_id);
599         snd_component_add(codec->bus->card, component);
600
601         if (codecp)
602                 *codecp = codec;
603         return 0;
604 }
605
606 /**
607  * snd_hda_codec_setup_stream - set up the codec for streaming
608  * @codec: the CODEC to set up
609  * @nid: the NID to set up
610  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
611  * @channel_id: channel id to pass, zero based.
612  * @format: stream format.
613  */
614 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
615                                 u32 stream_tag,
616                                 int channel_id, int format)
617 {
618         if (!nid)
619                 return;
620
621         snd_printdd("hda_codec_setup_stream: "
622                     "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
623                     nid, stream_tag, channel_id, format);
624         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
625                             (stream_tag << 4) | channel_id);
626         msleep(1);
627         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
628 }
629
630 /*
631  * amp access functions
632  */
633
634 /* FIXME: more better hash key? */
635 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
636 #define INFO_AMP_CAPS   (1<<0)
637 #define INFO_AMP_VOL(ch)        (1 << (1 + (ch)))
638
639 /* initialize the hash table */
640 static void __devinit init_amp_hash(struct hda_codec *codec)
641 {
642         memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
643         codec->num_amp_entries = 0;
644         codec->amp_info_size = 0;
645         codec->amp_info = NULL;
646 }
647
648 /* query the hash.  allocate an entry if not found. */
649 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
650 {
651         u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
652         u16 cur = codec->amp_hash[idx];
653         struct hda_amp_info *info;
654
655         while (cur != 0xffff) {
656                 info = &codec->amp_info[cur];
657                 if (info->key == key)
658                         return info;
659                 cur = info->next;
660         }
661
662         /* add a new hash entry */
663         if (codec->num_amp_entries >= codec->amp_info_size) {
664                 /* reallocate the array */
665                 int new_size = codec->amp_info_size + 64;
666                 struct hda_amp_info *new_info;
667                 new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
668                                    GFP_KERNEL);
669                 if (!new_info) {
670                         snd_printk(KERN_ERR "hda_codec: "
671                                    "can't malloc amp_info\n");
672                         return NULL;
673                 }
674                 if (codec->amp_info) {
675                         memcpy(new_info, codec->amp_info,
676                                codec->amp_info_size *
677                                sizeof(struct hda_amp_info));
678                         kfree(codec->amp_info);
679                 }
680                 codec->amp_info_size = new_size;
681                 codec->amp_info = new_info;
682         }
683         cur = codec->num_amp_entries++;
684         info = &codec->amp_info[cur];
685         info->key = key;
686         info->status = 0; /* not initialized yet */
687         info->next = codec->amp_hash[idx];
688         codec->amp_hash[idx] = cur;
689
690         return info;
691 }
692
693 /*
694  * query AMP capabilities for the given widget and direction
695  */
696 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
697 {
698         struct hda_amp_info *info;
699
700         info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
701         if (!info)
702                 return 0;
703         if (!(info->status & INFO_AMP_CAPS)) {
704                 if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
705                         nid = codec->afg;
706                 info->amp_caps = snd_hda_param_read(codec, nid,
707                                                     direction == HDA_OUTPUT ?
708                                                     AC_PAR_AMP_OUT_CAP :
709                                                     AC_PAR_AMP_IN_CAP);
710                 info->status |= INFO_AMP_CAPS;
711         }
712         return info->amp_caps;
713 }
714
715 /*
716  * read the current volume to info
717  * if the cache exists, read the cache value.
718  */
719 static unsigned int get_vol_mute(struct hda_codec *codec,
720                                  struct hda_amp_info *info, hda_nid_t nid,
721                                  int ch, int direction, int index)
722 {
723         u32 val, parm;
724
725         if (info->status & INFO_AMP_VOL(ch))
726                 return info->vol[ch];
727
728         parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
729         parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
730         parm |= index;
731         val = snd_hda_codec_read(codec, nid, 0,
732                                  AC_VERB_GET_AMP_GAIN_MUTE, parm);
733         info->vol[ch] = val & 0xff;
734         info->status |= INFO_AMP_VOL(ch);
735         return info->vol[ch];
736 }
737
738 /*
739  * write the current volume in info to the h/w and update the cache
740  */
741 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
742                          hda_nid_t nid, int ch, int direction, int index,
743                          int val)
744 {
745         u32 parm;
746
747         parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
748         parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
749         parm |= index << AC_AMP_SET_INDEX_SHIFT;
750         parm |= val;
751         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
752         info->vol[ch] = val;
753 }
754
755 /*
756  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
757  */
758 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
759                            int direction, int index)
760 {
761         struct hda_amp_info *info;
762         info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
763         if (!info)
764                 return 0;
765         return get_vol_mute(codec, info, nid, ch, direction, index);
766 }
767
768 /*
769  * update the AMP value, mask = bit mask to set, val = the value
770  */
771 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
772                              int direction, int idx, int mask, int val)
773 {
774         struct hda_amp_info *info;
775
776         info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
777         if (!info)
778                 return 0;
779         val &= mask;
780         val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
781         if (info->vol[ch] == val && !codec->in_resume)
782                 return 0;
783         put_vol_mute(codec, info, nid, ch, direction, idx, val);
784         return 1;
785 }
786
787
788 /*
789  * AMP control callbacks
790  */
791 /* retrieve parameters from private_value */
792 #define get_amp_nid(kc)         ((kc)->private_value & 0xffff)
793 #define get_amp_channels(kc)    (((kc)->private_value >> 16) & 0x3)
794 #define get_amp_direction(kc)   (((kc)->private_value >> 18) & 0x1)
795 #define get_amp_index(kc)       (((kc)->private_value >> 19) & 0xf)
796
797 /* volume */
798 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
799                                   struct snd_ctl_elem_info *uinfo)
800 {
801         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
802         u16 nid = get_amp_nid(kcontrol);
803         u8 chs = get_amp_channels(kcontrol);
804         int dir = get_amp_direction(kcontrol);
805         u32 caps;
806
807         caps = query_amp_caps(codec, nid, dir);
808         /* num steps */
809         caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
810         if (!caps) {
811                 printk(KERN_WARNING "hda_codec: "
812                        "num_steps = 0 for NID=0x%x\n", nid);
813                 return -EINVAL;
814         }
815         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
816         uinfo->count = chs == 3 ? 2 : 1;
817         uinfo->value.integer.min = 0;
818         uinfo->value.integer.max = caps;
819         return 0;
820 }
821
822 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
823                                  struct snd_ctl_elem_value *ucontrol)
824 {
825         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
826         hda_nid_t nid = get_amp_nid(kcontrol);
827         int chs = get_amp_channels(kcontrol);
828         int dir = get_amp_direction(kcontrol);
829         int idx = get_amp_index(kcontrol);
830         long *valp = ucontrol->value.integer.value;
831
832         if (chs & 1)
833                 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
834         if (chs & 2)
835                 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
836         return 0;
837 }
838
839 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
840                                  struct snd_ctl_elem_value *ucontrol)
841 {
842         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
843         hda_nid_t nid = get_amp_nid(kcontrol);
844         int chs = get_amp_channels(kcontrol);
845         int dir = get_amp_direction(kcontrol);
846         int idx = get_amp_index(kcontrol);
847         long *valp = ucontrol->value.integer.value;
848         int change = 0;
849
850         if (chs & 1) {
851                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
852                                                   0x7f, *valp);
853                 valp++;
854         }
855         if (chs & 2)
856                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
857                                                    0x7f, *valp);
858         return change;
859 }
860
861 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
862                           unsigned int size, unsigned int __user *_tlv)
863 {
864         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
865         hda_nid_t nid = get_amp_nid(kcontrol);
866         int dir = get_amp_direction(kcontrol);
867         u32 caps, val1, val2;
868
869         if (size < 4 * sizeof(unsigned int))
870                 return -ENOMEM;
871         caps = query_amp_caps(codec, nid, dir);
872         val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
873         val2 = (val2 + 1) * 25;
874         val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
875         val1 = ((int)val1) * ((int)val2);
876         if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
877                 return -EFAULT;
878         if (put_user(2 * sizeof(unsigned int), _tlv + 1))
879                 return -EFAULT;
880         if (put_user(val1, _tlv + 2))
881                 return -EFAULT;
882         if (put_user(val2, _tlv + 3))
883                 return -EFAULT;
884         return 0;
885 }
886
887 /* switch */
888 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
889                                   struct snd_ctl_elem_info *uinfo)
890 {
891         int chs = get_amp_channels(kcontrol);
892
893         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
894         uinfo->count = chs == 3 ? 2 : 1;
895         uinfo->value.integer.min = 0;
896         uinfo->value.integer.max = 1;
897         return 0;
898 }
899
900 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
901                                  struct snd_ctl_elem_value *ucontrol)
902 {
903         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
904         hda_nid_t nid = get_amp_nid(kcontrol);
905         int chs = get_amp_channels(kcontrol);
906         int dir = get_amp_direction(kcontrol);
907         int idx = get_amp_index(kcontrol);
908         long *valp = ucontrol->value.integer.value;
909
910         if (chs & 1)
911                 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
912                            0x80) ? 0 : 1;
913         if (chs & 2)
914                 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
915                          0x80) ? 0 : 1;
916         return 0;
917 }
918
919 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
920                                  struct snd_ctl_elem_value *ucontrol)
921 {
922         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
923         hda_nid_t nid = get_amp_nid(kcontrol);
924         int chs = get_amp_channels(kcontrol);
925         int dir = get_amp_direction(kcontrol);
926         int idx = get_amp_index(kcontrol);
927         long *valp = ucontrol->value.integer.value;
928         int change = 0;
929
930         if (chs & 1) {
931                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
932                                                   0x80, *valp ? 0 : 0x80);
933                 valp++;
934         }
935         if (chs & 2)
936                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
937                                                    0x80, *valp ? 0 : 0x80);
938         
939         return change;
940 }
941
942 /*
943  * bound volume controls
944  *
945  * bind multiple volumes (# indices, from 0)
946  */
947
948 #define AMP_VAL_IDX_SHIFT       19
949 #define AMP_VAL_IDX_MASK        (0x0f<<19)
950
951 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
952                                   struct snd_ctl_elem_value *ucontrol)
953 {
954         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
955         unsigned long pval;
956         int err;
957
958         mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
959         pval = kcontrol->private_value;
960         kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
961         err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
962         kcontrol->private_value = pval;
963         mutex_unlock(&codec->spdif_mutex);
964         return err;
965 }
966
967 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
968                                   struct snd_ctl_elem_value *ucontrol)
969 {
970         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
971         unsigned long pval;
972         int i, indices, err = 0, change = 0;
973
974         mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
975         pval = kcontrol->private_value;
976         indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
977         for (i = 0; i < indices; i++) {
978                 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
979                         (i << AMP_VAL_IDX_SHIFT);
980                 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
981                 if (err < 0)
982                         break;
983                 change |= err;
984         }
985         kcontrol->private_value = pval;
986         mutex_unlock(&codec->spdif_mutex);
987         return err < 0 ? err : change;
988 }
989
990 /*
991  * SPDIF out controls
992  */
993
994 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
995                                    struct snd_ctl_elem_info *uinfo)
996 {
997         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
998         uinfo->count = 1;
999         return 0;
1000 }
1001
1002 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1003                                    struct snd_ctl_elem_value *ucontrol)
1004 {
1005         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1006                                            IEC958_AES0_NONAUDIO |
1007                                            IEC958_AES0_CON_EMPHASIS_5015 |
1008                                            IEC958_AES0_CON_NOT_COPYRIGHT;
1009         ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1010                                            IEC958_AES1_CON_ORIGINAL;
1011         return 0;
1012 }
1013
1014 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1015                                    struct snd_ctl_elem_value *ucontrol)
1016 {
1017         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1018                                            IEC958_AES0_NONAUDIO |
1019                                            IEC958_AES0_PRO_EMPHASIS_5015;
1020         return 0;
1021 }
1022
1023 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1024                                      struct snd_ctl_elem_value *ucontrol)
1025 {
1026         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1027
1028         ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1029         ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1030         ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1031         ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1032
1033         return 0;
1034 }
1035
1036 /* convert from SPDIF status bits to HDA SPDIF bits
1037  * bit 0 (DigEn) is always set zero (to be filled later)
1038  */
1039 static unsigned short convert_from_spdif_status(unsigned int sbits)
1040 {
1041         unsigned short val = 0;
1042
1043         if (sbits & IEC958_AES0_PROFESSIONAL)
1044                 val |= AC_DIG1_PROFESSIONAL;
1045         if (sbits & IEC958_AES0_NONAUDIO)
1046                 val |= AC_DIG1_NONAUDIO;
1047         if (sbits & IEC958_AES0_PROFESSIONAL) {
1048                 if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1049                     IEC958_AES0_PRO_EMPHASIS_5015)
1050                         val |= AC_DIG1_EMPHASIS;
1051         } else {
1052                 if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1053                     IEC958_AES0_CON_EMPHASIS_5015)
1054                         val |= AC_DIG1_EMPHASIS;
1055                 if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1056                         val |= AC_DIG1_COPYRIGHT;
1057                 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1058                         val |= AC_DIG1_LEVEL;
1059                 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1060         }
1061         return val;
1062 }
1063
1064 /* convert to SPDIF status bits from HDA SPDIF bits
1065  */
1066 static unsigned int convert_to_spdif_status(unsigned short val)
1067 {
1068         unsigned int sbits = 0;
1069
1070         if (val & AC_DIG1_NONAUDIO)
1071                 sbits |= IEC958_AES0_NONAUDIO;
1072         if (val & AC_DIG1_PROFESSIONAL)
1073                 sbits |= IEC958_AES0_PROFESSIONAL;
1074         if (sbits & IEC958_AES0_PROFESSIONAL) {
1075                 if (sbits & AC_DIG1_EMPHASIS)
1076                         sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1077         } else {
1078                 if (val & AC_DIG1_EMPHASIS)
1079                         sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1080                 if (!(val & AC_DIG1_COPYRIGHT))
1081                         sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1082                 if (val & AC_DIG1_LEVEL)
1083                         sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1084                 sbits |= val & (0x7f << 8);
1085         }
1086         return sbits;
1087 }
1088
1089 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1090                                      struct snd_ctl_elem_value *ucontrol)
1091 {
1092         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1093         hda_nid_t nid = kcontrol->private_value;
1094         unsigned short val;
1095         int change;
1096
1097         mutex_lock(&codec->spdif_mutex);
1098         codec->spdif_status = ucontrol->value.iec958.status[0] |
1099                 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1100                 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1101                 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1102         val = convert_from_spdif_status(codec->spdif_status);
1103         val |= codec->spdif_ctls & 1;
1104         change = codec->spdif_ctls != val;
1105         codec->spdif_ctls = val;
1106
1107         if (change || codec->in_resume) {
1108                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1109                                     val & 0xff);
1110                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2,
1111                                     val >> 8);
1112         }
1113
1114         mutex_unlock(&codec->spdif_mutex);
1115         return change;
1116 }
1117
1118 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol,
1119                                          struct snd_ctl_elem_info *uinfo)
1120 {
1121         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1122         uinfo->count = 1;
1123         uinfo->value.integer.min = 0;
1124         uinfo->value.integer.max = 1;
1125         return 0;
1126 }
1127
1128 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1129                                         struct snd_ctl_elem_value *ucontrol)
1130 {
1131         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1132
1133         ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1134         return 0;
1135 }
1136
1137 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1138                                         struct snd_ctl_elem_value *ucontrol)
1139 {
1140         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1141         hda_nid_t nid = kcontrol->private_value;
1142         unsigned short val;
1143         int change;
1144
1145         mutex_lock(&codec->spdif_mutex);
1146         val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1147         if (ucontrol->value.integer.value[0])
1148                 val |= AC_DIG1_ENABLE;
1149         change = codec->spdif_ctls != val;
1150         if (change || codec->in_resume) {
1151                 codec->spdif_ctls = val;
1152                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1153                                     val & 0xff);
1154                 /* unmute amp switch (if any) */
1155                 if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1156                     (val & AC_DIG1_ENABLE))
1157                         snd_hda_codec_write(codec, nid, 0,
1158                                             AC_VERB_SET_AMP_GAIN_MUTE,
1159                                             AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1160                                             AC_AMP_SET_OUTPUT);
1161         }
1162         mutex_unlock(&codec->spdif_mutex);
1163         return change;
1164 }
1165
1166 static struct snd_kcontrol_new dig_mixes[] = {
1167         {
1168                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1169                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1170                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1171                 .info = snd_hda_spdif_mask_info,
1172                 .get = snd_hda_spdif_cmask_get,
1173         },
1174         {
1175                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1176                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1177                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1178                 .info = snd_hda_spdif_mask_info,
1179                 .get = snd_hda_spdif_pmask_get,
1180         },
1181         {
1182                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1183                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1184                 .info = snd_hda_spdif_mask_info,
1185                 .get = snd_hda_spdif_default_get,
1186                 .put = snd_hda_spdif_default_put,
1187         },
1188         {
1189                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1190                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1191                 .info = snd_hda_spdif_out_switch_info,
1192                 .get = snd_hda_spdif_out_switch_get,
1193                 .put = snd_hda_spdif_out_switch_put,
1194         },
1195         { } /* end */
1196 };
1197
1198 /**
1199  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1200  * @codec: the HDA codec
1201  * @nid: audio out widget NID
1202  *
1203  * Creates controls related with the SPDIF output.
1204  * Called from each patch supporting the SPDIF out.
1205  *
1206  * Returns 0 if successful, or a negative error code.
1207  */
1208 int __devinit snd_hda_create_spdif_out_ctls(struct hda_codec *codec,
1209                                             hda_nid_t nid)
1210 {
1211         int err;
1212         struct snd_kcontrol *kctl;
1213         struct snd_kcontrol_new *dig_mix;
1214
1215         for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1216                 kctl = snd_ctl_new1(dig_mix, codec);
1217                 kctl->private_value = nid;
1218                 err = snd_ctl_add(codec->bus->card, kctl);
1219                 if (err < 0)
1220                         return err;
1221         }
1222         codec->spdif_ctls =
1223                 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1224         codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1225         return 0;
1226 }
1227
1228 /*
1229  * SPDIF input
1230  */
1231
1232 #define snd_hda_spdif_in_switch_info    snd_hda_spdif_out_switch_info
1233
1234 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1235                                        struct snd_ctl_elem_value *ucontrol)
1236 {
1237         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1238
1239         ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1240         return 0;
1241 }
1242
1243 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1244                                        struct snd_ctl_elem_value *ucontrol)
1245 {
1246         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1247         hda_nid_t nid = kcontrol->private_value;
1248         unsigned int val = !!ucontrol->value.integer.value[0];
1249         int change;
1250
1251         mutex_lock(&codec->spdif_mutex);
1252         change = codec->spdif_in_enable != val;
1253         if (change || codec->in_resume) {
1254                 codec->spdif_in_enable = val;
1255                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1256                                     val);
1257         }
1258         mutex_unlock(&codec->spdif_mutex);
1259         return change;
1260 }
1261
1262 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1263                                        struct snd_ctl_elem_value *ucontrol)
1264 {
1265         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1266         hda_nid_t nid = kcontrol->private_value;
1267         unsigned short val;
1268         unsigned int sbits;
1269
1270         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1271         sbits = convert_to_spdif_status(val);
1272         ucontrol->value.iec958.status[0] = sbits;
1273         ucontrol->value.iec958.status[1] = sbits >> 8;
1274         ucontrol->value.iec958.status[2] = sbits >> 16;
1275         ucontrol->value.iec958.status[3] = sbits >> 24;
1276         return 0;
1277 }
1278
1279 static struct snd_kcontrol_new dig_in_ctls[] = {
1280         {
1281                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1282                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1283                 .info = snd_hda_spdif_in_switch_info,
1284                 .get = snd_hda_spdif_in_switch_get,
1285                 .put = snd_hda_spdif_in_switch_put,
1286         },
1287         {
1288                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1289                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1290                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1291                 .info = snd_hda_spdif_mask_info,
1292                 .get = snd_hda_spdif_in_status_get,
1293         },
1294         { } /* end */
1295 };
1296
1297 /**
1298  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1299  * @codec: the HDA codec
1300  * @nid: audio in widget NID
1301  *
1302  * Creates controls related with the SPDIF input.
1303  * Called from each patch supporting the SPDIF in.
1304  *
1305  * Returns 0 if successful, or a negative error code.
1306  */
1307 int __devinit snd_hda_create_spdif_in_ctls(struct hda_codec *codec,
1308                                            hda_nid_t nid)
1309 {
1310         int err;
1311         struct snd_kcontrol *kctl;
1312         struct snd_kcontrol_new *dig_mix;
1313
1314         for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1315                 kctl = snd_ctl_new1(dig_mix, codec);
1316                 kctl->private_value = nid;
1317                 err = snd_ctl_add(codec->bus->card, kctl);
1318                 if (err < 0)
1319                         return err;
1320         }
1321         codec->spdif_in_enable =
1322                 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) &
1323                 AC_DIG1_ENABLE;
1324         return 0;
1325 }
1326
1327
1328 /*
1329  * set power state of the codec
1330  */
1331 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1332                                 unsigned int power_state)
1333 {
1334         hda_nid_t nid, nid_start;
1335         int nodes;
1336
1337         snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1338                             power_state);
1339
1340         nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1341         for (nid = nid_start; nid < nodes + nid_start; nid++) {
1342                 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1343                         snd_hda_codec_write(codec, nid, 0,
1344                                             AC_VERB_SET_POWER_STATE,
1345                                             power_state);
1346         }
1347
1348         if (power_state == AC_PWRST_D0)
1349                 msleep(10);
1350 }
1351
1352
1353 /**
1354  * snd_hda_build_controls - build mixer controls
1355  * @bus: the BUS
1356  *
1357  * Creates mixer controls for each codec included in the bus.
1358  *
1359  * Returns 0 if successful, otherwise a negative error code.
1360  */
1361 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1362 {
1363         struct hda_codec *codec;
1364
1365         /* build controls */
1366         list_for_each_entry(codec, &bus->codec_list, list) {
1367                 int err;
1368                 if (!codec->patch_ops.build_controls)
1369                         continue;
1370                 err = codec->patch_ops.build_controls(codec);
1371                 if (err < 0)
1372                         return err;
1373         }
1374
1375         /* initialize */
1376         list_for_each_entry(codec, &bus->codec_list, list) {
1377                 int err;
1378                 hda_set_power_state(codec,
1379                                     codec->afg ? codec->afg : codec->mfg,
1380                                     AC_PWRST_D0);
1381                 if (!codec->patch_ops.init)
1382                         continue;
1383                 err = codec->patch_ops.init(codec);
1384                 if (err < 0)
1385                         return err;
1386         }
1387         return 0;
1388 }
1389
1390 /*
1391  * stream formats
1392  */
1393 struct hda_rate_tbl {
1394         unsigned int hz;
1395         unsigned int alsa_bits;
1396         unsigned int hda_fmt;
1397 };
1398
1399 static struct hda_rate_tbl rate_bits[] = {
1400         /* rate in Hz, ALSA rate bitmask, HDA format value */
1401
1402         /* autodetected value used in snd_hda_query_supported_pcm */
1403         { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1404         { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1405         { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1406         { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1407         { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1408         { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1409         { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1410         { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1411         { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1412         { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1413         { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1414 #define AC_PAR_PCM_RATE_BITS    11
1415         /* up to bits 10, 384kHZ isn't supported properly */
1416
1417         /* not autodetected value */
1418         { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1419
1420         { 0 } /* terminator */
1421 };
1422
1423 /**
1424  * snd_hda_calc_stream_format - calculate format bitset
1425  * @rate: the sample rate
1426  * @channels: the number of channels
1427  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1428  * @maxbps: the max. bps
1429  *
1430  * Calculate the format bitset from the given rate, channels and th PCM format.
1431  *
1432  * Return zero if invalid.
1433  */
1434 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1435                                         unsigned int channels,
1436                                         unsigned int format,
1437                                         unsigned int maxbps)
1438 {
1439         int i;
1440         unsigned int val = 0;
1441
1442         for (i = 0; rate_bits[i].hz; i++)
1443                 if (rate_bits[i].hz == rate) {
1444                         val = rate_bits[i].hda_fmt;
1445                         break;
1446                 }
1447         if (!rate_bits[i].hz) {
1448                 snd_printdd("invalid rate %d\n", rate);
1449                 return 0;
1450         }
1451
1452         if (channels == 0 || channels > 8) {
1453                 snd_printdd("invalid channels %d\n", channels);
1454                 return 0;
1455         }
1456         val |= channels - 1;
1457
1458         switch (snd_pcm_format_width(format)) {
1459         case 8:  val |= 0x00; break;
1460         case 16: val |= 0x10; break;
1461         case 20:
1462         case 24:
1463         case 32:
1464                 if (maxbps >= 32)
1465                         val |= 0x40;
1466                 else if (maxbps >= 24)
1467                         val |= 0x30;
1468                 else
1469                         val |= 0x20;
1470                 break;
1471         default:
1472                 snd_printdd("invalid format width %d\n",
1473                             snd_pcm_format_width(format));
1474                 return 0;
1475         }
1476
1477         return val;
1478 }
1479
1480 /**
1481  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1482  * @codec: the HDA codec
1483  * @nid: NID to query
1484  * @ratesp: the pointer to store the detected rate bitflags
1485  * @formatsp: the pointer to store the detected formats
1486  * @bpsp: the pointer to store the detected format widths
1487  *
1488  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1489  * or @bsps argument is ignored.
1490  *
1491  * Returns 0 if successful, otherwise a negative error code.
1492  */
1493 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1494                                 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1495 {
1496         int i;
1497         unsigned int val, streams;
1498
1499         val = 0;
1500         if (nid != codec->afg &&
1501             (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1502                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1503                 if (val == -1)
1504                         return -EIO;
1505         }
1506         if (!val)
1507                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1508
1509         if (ratesp) {
1510                 u32 rates = 0;
1511                 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1512                         if (val & (1 << i))
1513                                 rates |= rate_bits[i].alsa_bits;
1514                 }
1515                 *ratesp = rates;
1516         }
1517
1518         if (formatsp || bpsp) {
1519                 u64 formats = 0;
1520                 unsigned int bps;
1521                 unsigned int wcaps;
1522
1523                 wcaps = get_wcaps(codec, nid);
1524                 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1525                 if (streams == -1)
1526                         return -EIO;
1527                 if (!streams) {
1528                         streams = snd_hda_param_read(codec, codec->afg,
1529                                                      AC_PAR_STREAM);
1530                         if (streams == -1)
1531                                 return -EIO;
1532                 }
1533
1534                 bps = 0;
1535                 if (streams & AC_SUPFMT_PCM) {
1536                         if (val & AC_SUPPCM_BITS_8) {
1537                                 formats |= SNDRV_PCM_FMTBIT_U8;
1538                                 bps = 8;
1539                         }
1540                         if (val & AC_SUPPCM_BITS_16) {
1541                                 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1542                                 bps = 16;
1543                         }
1544                         if (wcaps & AC_WCAP_DIGITAL) {
1545                                 if (val & AC_SUPPCM_BITS_32)
1546                                         formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1547                                 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1548                                         formats |= SNDRV_PCM_FMTBIT_S32_LE;
1549                                 if (val & AC_SUPPCM_BITS_24)
1550                                         bps = 24;
1551                                 else if (val & AC_SUPPCM_BITS_20)
1552                                         bps = 20;
1553                         } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1554                                           AC_SUPPCM_BITS_32)) {
1555                                 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1556                                 if (val & AC_SUPPCM_BITS_32)
1557                                         bps = 32;
1558                                 else if (val & AC_SUPPCM_BITS_24)
1559                                         bps = 24;
1560                                 else if (val & AC_SUPPCM_BITS_20)
1561                                         bps = 20;
1562                         }
1563                 }
1564                 else if (streams == AC_SUPFMT_FLOAT32) {
1565                         /* should be exclusive */
1566                         formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1567                         bps = 32;
1568                 } else if (streams == AC_SUPFMT_AC3) {
1569                         /* should be exclusive */
1570                         /* temporary hack: we have still no proper support
1571                          * for the direct AC3 stream...
1572                          */
1573                         formats |= SNDRV_PCM_FMTBIT_U8;
1574                         bps = 8;
1575                 }
1576                 if (formatsp)
1577                         *formatsp = formats;
1578                 if (bpsp)
1579                         *bpsp = bps;
1580         }
1581
1582         return 0;
1583 }
1584
1585 /**
1586  * snd_hda_is_supported_format - check whether the given node supports
1587  * the format val
1588  *
1589  * Returns 1 if supported, 0 if not.
1590  */
1591 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1592                                 unsigned int format)
1593 {
1594         int i;
1595         unsigned int val = 0, rate, stream;
1596
1597         if (nid != codec->afg &&
1598             (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1599                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1600                 if (val == -1)
1601                         return 0;
1602         }
1603         if (!val) {
1604                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1605                 if (val == -1)
1606                         return 0;
1607         }
1608
1609         rate = format & 0xff00;
1610         for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
1611                 if (rate_bits[i].hda_fmt == rate) {
1612                         if (val & (1 << i))
1613                                 break;
1614                         return 0;
1615                 }
1616         if (i >= AC_PAR_PCM_RATE_BITS)
1617                 return 0;
1618
1619         stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1620         if (stream == -1)
1621                 return 0;
1622         if (!stream && nid != codec->afg)
1623                 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1624         if (!stream || stream == -1)
1625                 return 0;
1626
1627         if (stream & AC_SUPFMT_PCM) {
1628                 switch (format & 0xf0) {
1629                 case 0x00:
1630                         if (!(val & AC_SUPPCM_BITS_8))
1631                                 return 0;
1632                         break;
1633                 case 0x10:
1634                         if (!(val & AC_SUPPCM_BITS_16))
1635                                 return 0;
1636                         break;
1637                 case 0x20:
1638                         if (!(val & AC_SUPPCM_BITS_20))
1639                                 return 0;
1640                         break;
1641                 case 0x30:
1642                         if (!(val & AC_SUPPCM_BITS_24))
1643                                 return 0;
1644                         break;
1645                 case 0x40:
1646                         if (!(val & AC_SUPPCM_BITS_32))
1647                                 return 0;
1648                         break;
1649                 default:
1650                         return 0;
1651                 }
1652         } else {
1653                 /* FIXME: check for float32 and AC3? */
1654         }
1655
1656         return 1;
1657 }
1658
1659 /*
1660  * PCM stuff
1661  */
1662 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1663                                       struct hda_codec *codec,
1664                                       struct snd_pcm_substream *substream)
1665 {
1666         return 0;
1667 }
1668
1669 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1670                                    struct hda_codec *codec,
1671                                    unsigned int stream_tag,
1672                                    unsigned int format,
1673                                    struct snd_pcm_substream *substream)
1674 {
1675         snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1676         return 0;
1677 }
1678
1679 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1680                                    struct hda_codec *codec,
1681                                    struct snd_pcm_substream *substream)
1682 {
1683         snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1684         return 0;
1685 }
1686
1687 static int __devinit set_pcm_default_values(struct hda_codec *codec,
1688                                             struct hda_pcm_stream *info)
1689 {
1690         /* query support PCM information from the given NID */
1691         if (info->nid && (!info->rates || !info->formats)) {
1692                 snd_hda_query_supported_pcm(codec, info->nid,
1693                                 info->rates ? NULL : &info->rates,
1694                                 info->formats ? NULL : &info->formats,
1695                                 info->maxbps ? NULL : &info->maxbps);
1696         }
1697         if (info->ops.open == NULL)
1698                 info->ops.open = hda_pcm_default_open_close;
1699         if (info->ops.close == NULL)
1700                 info->ops.close = hda_pcm_default_open_close;
1701         if (info->ops.prepare == NULL) {
1702                 snd_assert(info->nid, return -EINVAL);
1703                 info->ops.prepare = hda_pcm_default_prepare;
1704         }
1705         if (info->ops.cleanup == NULL) {
1706                 snd_assert(info->nid, return -EINVAL);
1707                 info->ops.cleanup = hda_pcm_default_cleanup;
1708         }
1709         return 0;
1710 }
1711
1712 /**
1713  * snd_hda_build_pcms - build PCM information
1714  * @bus: the BUS
1715  *
1716  * Create PCM information for each codec included in the bus.
1717  *
1718  * The build_pcms codec patch is requested to set up codec->num_pcms and
1719  * codec->pcm_info properly.  The array is referred by the top-level driver
1720  * to create its PCM instances.
1721  * The allocated codec->pcm_info should be released in codec->patch_ops.free
1722  * callback.
1723  *
1724  * At least, substreams, channels_min and channels_max must be filled for
1725  * each stream.  substreams = 0 indicates that the stream doesn't exist.
1726  * When rates and/or formats are zero, the supported values are queried
1727  * from the given nid.  The nid is used also by the default ops.prepare
1728  * and ops.cleanup callbacks.
1729  *
1730  * The driver needs to call ops.open in its open callback.  Similarly,
1731  * ops.close is supposed to be called in the close callback.
1732  * ops.prepare should be called in the prepare or hw_params callback
1733  * with the proper parameters for set up.
1734  * ops.cleanup should be called in hw_free for clean up of streams.
1735  *
1736  * This function returns 0 if successfull, or a negative error code.
1737  */
1738 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
1739 {
1740         struct hda_codec *codec;
1741
1742         list_for_each_entry(codec, &bus->codec_list, list) {
1743                 unsigned int pcm, s;
1744                 int err;
1745                 if (!codec->patch_ops.build_pcms)
1746                         continue;
1747                 err = codec->patch_ops.build_pcms(codec);
1748                 if (err < 0)
1749                         return err;
1750                 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1751                         for (s = 0; s < 2; s++) {
1752                                 struct hda_pcm_stream *info;
1753                                 info = &codec->pcm_info[pcm].stream[s];
1754                                 if (!info->substreams)
1755                                         continue;
1756                                 err = set_pcm_default_values(codec, info);
1757                                 if (err < 0)
1758                                         return err;
1759                         }
1760                 }
1761         }
1762         return 0;
1763 }
1764
1765 /**
1766  * snd_hda_check_board_config - compare the current codec with the config table
1767  * @codec: the HDA codec
1768  * @num_configs: number of config enums
1769  * @models: array of model name strings
1770  * @tbl: configuration table, terminated by null entries
1771  *
1772  * Compares the modelname or PCI subsystem id of the current codec with the
1773  * given configuration table.  If a matching entry is found, returns its
1774  * config value (supposed to be 0 or positive).
1775  *
1776  * If no entries are matching, the function returns a negative value.
1777  */
1778 int __devinit snd_hda_check_board_config(struct hda_codec *codec,
1779                                          int num_configs, const char **models,
1780                                          const struct snd_pci_quirk *tbl)
1781 {
1782         if (codec->bus->modelname && models) {
1783                 int i;
1784                 for (i = 0; i < num_configs; i++) {
1785                         if (models[i] &&
1786                             !strcmp(codec->bus->modelname, models[i])) {
1787                                 snd_printd(KERN_INFO "hda_codec: model '%s' is "
1788                                            "selected\n", models[i]);
1789                                 return i;
1790                         }
1791                 }
1792         }
1793
1794         if (!codec->bus->pci || !tbl)
1795                 return -1;
1796
1797         tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1798         if (!tbl)
1799                 return -1;
1800         if (tbl->value >= 0 && tbl->value < num_configs) {
1801 #ifdef CONFIG_SND_DEBUG_DETECT
1802                 char tmp[10];
1803                 const char *model = NULL;
1804                 if (models)
1805                         model = models[tbl->value];
1806                 if (!model) {
1807                         sprintf(tmp, "#%d", tbl->value);
1808                         model = tmp;
1809                 }
1810                 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1811                             "for config %x:%x (%s)\n",
1812                             model, tbl->subvendor, tbl->subdevice,
1813                             (tbl->name ? tbl->name : "Unknown device"));
1814 #endif
1815                 return tbl->value;
1816         }
1817         return -1;
1818 }
1819
1820 /**
1821  * snd_hda_add_new_ctls - create controls from the array
1822  * @codec: the HDA codec
1823  * @knew: the array of struct snd_kcontrol_new
1824  *
1825  * This helper function creates and add new controls in the given array.
1826  * The array must be terminated with an empty entry as terminator.
1827  *
1828  * Returns 0 if successful, or a negative error code.
1829  */
1830 int __devinit snd_hda_add_new_ctls(struct hda_codec *codec,
1831                                    struct snd_kcontrol_new *knew)
1832 {
1833         int err;
1834
1835         for (; knew->name; knew++) {
1836                 struct snd_kcontrol *kctl;
1837                 kctl = snd_ctl_new1(knew, codec);
1838                 if (!kctl)
1839                         return -ENOMEM;
1840                 err = snd_ctl_add(codec->bus->card, kctl);
1841                 if (err < 0) {
1842                         if (!codec->addr)
1843                                 return err;
1844                         kctl = snd_ctl_new1(knew, codec);
1845                         if (!kctl)
1846                                 return -ENOMEM;
1847                         kctl->id.device = codec->addr;
1848                         err = snd_ctl_add(codec->bus->card, kctl);
1849                         if (err < 0)
1850                                 return err;
1851                 }
1852         }
1853         return 0;
1854 }
1855
1856
1857 /*
1858  * Channel mode helper
1859  */
1860 int snd_hda_ch_mode_info(struct hda_codec *codec,
1861                          struct snd_ctl_elem_info *uinfo,
1862                          const struct hda_channel_mode *chmode,
1863                          int num_chmodes)
1864 {
1865         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1866         uinfo->count = 1;
1867         uinfo->value.enumerated.items = num_chmodes;
1868         if (uinfo->value.enumerated.item >= num_chmodes)
1869                 uinfo->value.enumerated.item = num_chmodes - 1;
1870         sprintf(uinfo->value.enumerated.name, "%dch",
1871                 chmode[uinfo->value.enumerated.item].channels);
1872         return 0;
1873 }
1874
1875 int snd_hda_ch_mode_get(struct hda_codec *codec,
1876                         struct snd_ctl_elem_value *ucontrol,
1877                         const struct hda_channel_mode *chmode,
1878                         int num_chmodes,
1879                         int max_channels)
1880 {
1881         int i;
1882
1883         for (i = 0; i < num_chmodes; i++) {
1884                 if (max_channels == chmode[i].channels) {
1885                         ucontrol->value.enumerated.item[0] = i;
1886                         break;
1887                 }
1888         }
1889         return 0;
1890 }
1891
1892 int snd_hda_ch_mode_put(struct hda_codec *codec,
1893                         struct snd_ctl_elem_value *ucontrol,
1894                         const struct hda_channel_mode *chmode,
1895                         int num_chmodes,
1896                         int *max_channelsp)
1897 {
1898         unsigned int mode;
1899
1900         mode = ucontrol->value.enumerated.item[0];
1901         snd_assert(mode < num_chmodes, return -EINVAL);
1902         if (*max_channelsp == chmode[mode].channels && !codec->in_resume)
1903                 return 0;
1904         /* change the current channel setting */
1905         *max_channelsp = chmode[mode].channels;
1906         if (chmode[mode].sequence)
1907                 snd_hda_sequence_write(codec, chmode[mode].sequence);
1908         return 1;
1909 }
1910
1911 /*
1912  * input MUX helper
1913  */
1914 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
1915                            struct snd_ctl_elem_info *uinfo)
1916 {
1917         unsigned int index;
1918
1919         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1920         uinfo->count = 1;
1921         uinfo->value.enumerated.items = imux->num_items;
1922         index = uinfo->value.enumerated.item;
1923         if (index >= imux->num_items)
1924                 index = imux->num_items - 1;
1925         strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1926         return 0;
1927 }
1928
1929 int snd_hda_input_mux_put(struct hda_codec *codec,
1930                           const struct hda_input_mux *imux,
1931                           struct snd_ctl_elem_value *ucontrol,
1932                           hda_nid_t nid,
1933                           unsigned int *cur_val)
1934 {
1935         unsigned int idx;
1936
1937         idx = ucontrol->value.enumerated.item[0];
1938         if (idx >= imux->num_items)
1939                 idx = imux->num_items - 1;
1940         if (*cur_val == idx && !codec->in_resume)
1941                 return 0;
1942         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1943                             imux->items[idx].index);
1944         *cur_val = idx;
1945         return 1;
1946 }
1947
1948
1949 /*
1950  * Multi-channel / digital-out PCM helper functions
1951  */
1952
1953 /* setup SPDIF output stream */
1954 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
1955                                  unsigned int stream_tag, unsigned int format)
1956 {
1957         /* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
1958         if (codec->spdif_ctls & AC_DIG1_ENABLE)
1959                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1960                                     codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
1961         snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
1962         /* turn on again (if needed) */
1963         if (codec->spdif_ctls & AC_DIG1_ENABLE)
1964                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1965                                     codec->spdif_ctls & 0xff);
1966 }
1967
1968 /*
1969  * open the digital out in the exclusive mode
1970  */
1971 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
1972                                struct hda_multi_out *mout)
1973 {
1974         mutex_lock(&codec->spdif_mutex);
1975         if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
1976                 /* already opened as analog dup; reset it once */
1977                 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1978         mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1979         mutex_unlock(&codec->spdif_mutex);
1980         return 0;
1981 }
1982
1983 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
1984                                   struct hda_multi_out *mout,
1985                                   unsigned int stream_tag,
1986                                   unsigned int format,
1987                                   struct snd_pcm_substream *substream)
1988 {
1989         mutex_lock(&codec->spdif_mutex);
1990         setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
1991         mutex_unlock(&codec->spdif_mutex);
1992         return 0;
1993 }
1994
1995 /*
1996  * release the digital out
1997  */
1998 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
1999                                 struct hda_multi_out *mout)
2000 {
2001         mutex_lock(&codec->spdif_mutex);
2002         mout->dig_out_used = 0;
2003         mutex_unlock(&codec->spdif_mutex);
2004         return 0;
2005 }
2006
2007 /*
2008  * set up more restrictions for analog out
2009  */
2010 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2011                                   struct hda_multi_out *mout,
2012                                   struct snd_pcm_substream *substream)
2013 {
2014         substream->runtime->hw.channels_max = mout->max_channels;
2015         return snd_pcm_hw_constraint_step(substream->runtime, 0,
2016                                           SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2017 }
2018
2019 /*
2020  * set up the i/o for analog out
2021  * when the digital out is available, copy the front out to digital out, too.
2022  */
2023 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2024                                      struct hda_multi_out *mout,
2025                                      unsigned int stream_tag,
2026                                      unsigned int format,
2027                                      struct snd_pcm_substream *substream)
2028 {
2029         hda_nid_t *nids = mout->dac_nids;
2030         int chs = substream->runtime->channels;
2031         int i;
2032
2033         mutex_lock(&codec->spdif_mutex);
2034         if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2035                 if (chs == 2 &&
2036                     snd_hda_is_supported_format(codec, mout->dig_out_nid,
2037                                                 format) &&
2038                     !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2039                         mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2040                         setup_dig_out_stream(codec, mout->dig_out_nid,
2041                                              stream_tag, format);
2042                 } else {
2043                         mout->dig_out_used = 0;
2044                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2045                                                    0, 0, 0);
2046                 }
2047         }
2048         mutex_unlock(&codec->spdif_mutex);
2049
2050         /* front */
2051         snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2052                                    0, format);
2053         if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2054                 /* headphone out will just decode front left/right (stereo) */
2055                 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2056                                            0, format);
2057         /* extra outputs copied from front */
2058         for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2059                 if (mout->extra_out_nid[i])
2060                         snd_hda_codec_setup_stream(codec,
2061                                                    mout->extra_out_nid[i],
2062                                                    stream_tag, 0, format);
2063
2064         /* surrounds */
2065         for (i = 1; i < mout->num_dacs; i++) {
2066                 if (chs >= (i + 1) * 2) /* independent out */
2067                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2068                                                    i * 2, format);
2069                 else /* copy front */
2070                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2071                                                    0, format);
2072         }
2073         return 0;
2074 }
2075
2076 /*
2077  * clean up the setting for analog out
2078  */
2079 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2080                                      struct hda_multi_out *mout)
2081 {
2082         hda_nid_t *nids = mout->dac_nids;
2083         int i;
2084
2085         for (i = 0; i < mout->num_dacs; i++)
2086                 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2087         if (mout->hp_nid)
2088                 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2089         for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2090                 if (mout->extra_out_nid[i])
2091                         snd_hda_codec_setup_stream(codec,
2092                                                    mout->extra_out_nid[i],
2093                                                    0, 0, 0);
2094         mutex_lock(&codec->spdif_mutex);
2095         if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2096                 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2097                 mout->dig_out_used = 0;
2098         }
2099         mutex_unlock(&codec->spdif_mutex);
2100         return 0;
2101 }
2102
2103 /*
2104  * Helper for automatic ping configuration
2105  */
2106
2107 static int __devinit is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2108 {
2109         for (; *list; list++)
2110                 if (*list == nid)
2111                         return 1;
2112         return 0;
2113 }
2114
2115
2116 /*
2117  * Sort an associated group of pins according to their sequence numbers.
2118  */
2119 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2120                                   int num_pins)
2121 {
2122         int i, j;
2123         short seq;
2124         hda_nid_t nid;
2125         
2126         for (i = 0; i < num_pins; i++) {
2127                 for (j = i + 1; j < num_pins; j++) {
2128                         if (sequences[i] > sequences[j]) {
2129                                 seq = sequences[i];
2130                                 sequences[i] = sequences[j];
2131                                 sequences[j] = seq;
2132                                 nid = pins[i];
2133                                 pins[i] = pins[j];
2134                                 pins[j] = nid;
2135                         }
2136                 }
2137         }
2138 }
2139
2140
2141 /*
2142  * Parse all pin widgets and store the useful pin nids to cfg
2143  *
2144  * The number of line-outs or any primary output is stored in line_outs,
2145  * and the corresponding output pins are assigned to line_out_pins[],
2146  * in the order of front, rear, CLFE, side, ...
2147  *
2148  * If more extra outputs (speaker and headphone) are found, the pins are
2149  * assisnged to hp_pins[] and speaker_pins[], respectively.  If no line-out jack
2150  * is detected, one of speaker of HP pins is assigned as the primary
2151  * output, i.e. to line_out_pins[0].  So, line_outs is always positive
2152  * if any analog output exists.
2153  * 
2154  * The analog input pins are assigned to input_pins array.
2155  * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2156  * respectively.
2157  */
2158 int __devinit snd_hda_parse_pin_def_config(struct hda_codec *codec,
2159                                            struct auto_pin_cfg *cfg,
2160                                            hda_nid_t *ignore_nids)
2161 {
2162         hda_nid_t nid, nid_start;
2163         int nodes;
2164         short seq, assoc_line_out, assoc_speaker;
2165         short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2166         short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2167
2168         memset(cfg, 0, sizeof(*cfg));
2169
2170         memset(sequences_line_out, 0, sizeof(sequences_line_out));
2171         memset(sequences_speaker, 0, sizeof(sequences_speaker));
2172         assoc_line_out = assoc_speaker = 0;
2173
2174         nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2175         for (nid = nid_start; nid < nodes + nid_start; nid++) {
2176                 unsigned int wid_caps = get_wcaps(codec, nid);
2177                 unsigned int wid_type =
2178                         (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2179                 unsigned int def_conf;
2180                 short assoc, loc;
2181
2182                 /* read all default configuration for pin complex */
2183                 if (wid_type != AC_WID_PIN)
2184                         continue;
2185                 /* ignore the given nids (e.g. pc-beep returns error) */
2186                 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2187                         continue;
2188
2189                 def_conf = snd_hda_codec_read(codec, nid, 0,
2190                                               AC_VERB_GET_CONFIG_DEFAULT, 0);
2191                 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2192                         continue;
2193                 loc = get_defcfg_location(def_conf);
2194                 switch (get_defcfg_device(def_conf)) {
2195                 case AC_JACK_LINE_OUT:
2196                         seq = get_defcfg_sequence(def_conf);
2197                         assoc = get_defcfg_association(def_conf);
2198                         if (!assoc)
2199                                 continue;
2200                         if (!assoc_line_out)
2201                                 assoc_line_out = assoc;
2202                         else if (assoc_line_out != assoc)
2203                                 continue;
2204                         if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2205                                 continue;
2206                         cfg->line_out_pins[cfg->line_outs] = nid;
2207                         sequences_line_out[cfg->line_outs] = seq;
2208                         cfg->line_outs++;
2209                         break;
2210                 case AC_JACK_SPEAKER:
2211                         seq = get_defcfg_sequence(def_conf);
2212                         assoc = get_defcfg_association(def_conf);
2213                         if (! assoc)
2214                                 continue;
2215                         if (! assoc_speaker)
2216                                 assoc_speaker = assoc;
2217                         else if (assoc_speaker != assoc)
2218                                 continue;
2219                         if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2220                                 continue;
2221                         cfg->speaker_pins[cfg->speaker_outs] = nid;
2222                         sequences_speaker[cfg->speaker_outs] = seq;
2223                         cfg->speaker_outs++;
2224                         break;
2225                 case AC_JACK_HP_OUT:
2226                         if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2227                                 continue;
2228                         cfg->hp_pins[cfg->hp_outs] = nid;
2229                         cfg->hp_outs++;
2230                         break;
2231                 case AC_JACK_MIC_IN: {
2232                         int preferred, alt;
2233                         if (loc == AC_JACK_LOC_FRONT) {
2234                                 preferred = AUTO_PIN_FRONT_MIC;
2235                                 alt = AUTO_PIN_MIC;
2236                         } else {
2237                                 preferred = AUTO_PIN_MIC;
2238                                 alt = AUTO_PIN_FRONT_MIC;
2239                         }
2240                         if (!cfg->input_pins[preferred])
2241                                 cfg->input_pins[preferred] = nid;
2242                         else if (!cfg->input_pins[alt])
2243                                 cfg->input_pins[alt] = nid;
2244                         break;
2245                 }
2246                 case AC_JACK_LINE_IN:
2247                         if (loc == AC_JACK_LOC_FRONT)
2248                                 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2249                         else
2250                                 cfg->input_pins[AUTO_PIN_LINE] = nid;
2251                         break;
2252                 case AC_JACK_CD:
2253                         cfg->input_pins[AUTO_PIN_CD] = nid;
2254                         break;
2255                 case AC_JACK_AUX:
2256                         cfg->input_pins[AUTO_PIN_AUX] = nid;
2257                         break;
2258                 case AC_JACK_SPDIF_OUT:
2259                         cfg->dig_out_pin = nid;
2260                         break;
2261                 case AC_JACK_SPDIF_IN:
2262                         cfg->dig_in_pin = nid;
2263                         break;
2264                 }
2265         }
2266
2267         /* sort by sequence */
2268         sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2269                               cfg->line_outs);
2270         sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2271                               cfg->speaker_outs);
2272         
2273         /*
2274          * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2275          * as a primary output
2276          */
2277         if (!cfg->line_outs) {
2278                 if (cfg->speaker_outs) {
2279                         cfg->line_outs = cfg->speaker_outs;
2280                         memcpy(cfg->line_out_pins, cfg->speaker_pins,
2281                                sizeof(cfg->speaker_pins));
2282                         cfg->speaker_outs = 0;
2283                         memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2284                         cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2285                 } else if (cfg->hp_outs) {
2286                         cfg->line_outs = cfg->hp_outs;
2287                         memcpy(cfg->line_out_pins, cfg->hp_pins,
2288                                sizeof(cfg->hp_pins));
2289                         cfg->hp_outs = 0;
2290                         memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2291                         cfg->line_out_type = AUTO_PIN_HP_OUT;
2292                 }
2293         }
2294
2295         /* Reorder the surround channels
2296          * ALSA sequence is front/surr/clfe/side
2297          * HDA sequence is:
2298          *    4-ch: front/surr  =>  OK as it is
2299          *    6-ch: front/clfe/surr
2300          *    8-ch: front/clfe/rear/side|fc
2301          */
2302         switch (cfg->line_outs) {
2303         case 3:
2304         case 4:
2305                 nid = cfg->line_out_pins[1];
2306                 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2307                 cfg->line_out_pins[2] = nid;
2308                 break;
2309         }
2310
2311         /*
2312          * debug prints of the parsed results
2313          */
2314         snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2315                    cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2316                    cfg->line_out_pins[2], cfg->line_out_pins[3],
2317                    cfg->line_out_pins[4]);
2318         snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2319                    cfg->speaker_outs, cfg->speaker_pins[0],
2320                    cfg->speaker_pins[1], cfg->speaker_pins[2],
2321                    cfg->speaker_pins[3], cfg->speaker_pins[4]);
2322         snd_printd("   hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2323                    cfg->hp_outs, cfg->hp_pins[0],
2324                    cfg->hp_pins[1], cfg->hp_pins[2],
2325                    cfg->hp_pins[3], cfg->hp_pins[4]);
2326         snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2327                    " cd=0x%x, aux=0x%x\n",
2328                    cfg->input_pins[AUTO_PIN_MIC],
2329                    cfg->input_pins[AUTO_PIN_FRONT_MIC],
2330                    cfg->input_pins[AUTO_PIN_LINE],
2331                    cfg->input_pins[AUTO_PIN_FRONT_LINE],
2332                    cfg->input_pins[AUTO_PIN_CD],
2333                    cfg->input_pins[AUTO_PIN_AUX]);
2334
2335         return 0;
2336 }
2337
2338 /* labels for input pins */
2339 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2340         "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2341 };
2342
2343
2344 #ifdef CONFIG_PM
2345 /*
2346  * power management
2347  */
2348
2349 /**
2350  * snd_hda_suspend - suspend the codecs
2351  * @bus: the HDA bus
2352  * @state: suspsend state
2353  *
2354  * Returns 0 if successful.
2355  */
2356 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2357 {
2358         struct hda_codec *codec;
2359
2360         /* FIXME: should handle power widget capabilities */
2361         list_for_each_entry(codec, &bus->codec_list, list) {
2362                 if (codec->patch_ops.suspend)
2363                         codec->patch_ops.suspend(codec, state);
2364                 hda_set_power_state(codec,
2365                                     codec->afg ? codec->afg : codec->mfg,
2366                                     AC_PWRST_D3);
2367         }
2368         return 0;
2369 }
2370
2371 /**
2372  * snd_hda_resume - resume the codecs
2373  * @bus: the HDA bus
2374  * @state: resume state
2375  *
2376  * Returns 0 if successful.
2377  */
2378 int snd_hda_resume(struct hda_bus *bus)
2379 {
2380         struct hda_codec *codec;
2381
2382         list_for_each_entry(codec, &bus->codec_list, list) {
2383                 hda_set_power_state(codec,
2384                                     codec->afg ? codec->afg : codec->mfg,
2385                                     AC_PWRST_D0);
2386                 if (codec->patch_ops.resume)
2387                         codec->patch_ops.resume(codec);
2388         }
2389         return 0;
2390 }
2391
2392 /**
2393  * snd_hda_resume_ctls - resume controls in the new control list
2394  * @codec: the HDA codec
2395  * @knew: the array of struct snd_kcontrol_new
2396  *
2397  * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2398  * originally for snd_hda_add_new_ctls().
2399  * The array must be terminated with an empty entry as terminator.
2400  */
2401 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2402 {
2403         struct snd_ctl_elem_value *val;
2404
2405         val = kmalloc(sizeof(*val), GFP_KERNEL);
2406         if (!val)
2407                 return -ENOMEM;
2408         codec->in_resume = 1;
2409         for (; knew->name; knew++) {
2410                 int i, count;
2411                 count = knew->count ? knew->count : 1;
2412                 for (i = 0; i < count; i++) {
2413                         memset(val, 0, sizeof(*val));
2414                         val->id.iface = knew->iface;
2415                         val->id.device = knew->device;
2416                         val->id.subdevice = knew->subdevice;
2417                         strcpy(val->id.name, knew->name);
2418                         val->id.index = knew->index ? knew->index : i;
2419                         /* Assume that get callback reads only from cache,
2420                          * not accessing to the real hardware
2421                          */
2422                         if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2423                                 continue;
2424                         snd_ctl_elem_write(codec->bus->card, NULL, val);
2425                 }
2426         }
2427         codec->in_resume = 0;
2428         kfree(val);
2429         return 0;
2430 }
2431
2432 /**
2433  * snd_hda_resume_spdif_out - resume the digital out
2434  * @codec: the HDA codec
2435  */
2436 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2437 {
2438         return snd_hda_resume_ctls(codec, dig_mixes);
2439 }
2440
2441 /**
2442  * snd_hda_resume_spdif_in - resume the digital in
2443  * @codec: the HDA codec
2444  */
2445 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2446 {
2447         return snd_hda_resume_ctls(codec, dig_in_ctls);
2448 }
2449 #endif