]> err.no Git - linux-2.6/blob - security/selinux/ss/policydb.c
[PATCH] selinux: Reduce memory use by avtab
[linux-2.6] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License as published by
20  *      the Free Software Foundation, version 2.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32
33 #define _DEBUG_HASHES
34
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37         "common prefixes",
38         "classes",
39         "roles",
40         "types",
41         "users",
42         "bools",
43         "levels",
44         "categories",
45 };
46 #endif
47
48 int selinux_mls_enabled = 0;
49
50 static unsigned int symtab_sizes[SYM_NUM] = {
51         2,
52         32,
53         16,
54         512,
55         128,
56         16,
57         16,
58         16,
59 };
60
61 struct policydb_compat_info {
62         int version;
63         int sym_num;
64         int ocon_num;
65 };
66
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69         {
70                 .version        = POLICYDB_VERSION_BASE,
71                 .sym_num        = SYM_NUM - 3,
72                 .ocon_num       = OCON_NUM - 1,
73         },
74         {
75                 .version        = POLICYDB_VERSION_BOOL,
76                 .sym_num        = SYM_NUM - 2,
77                 .ocon_num       = OCON_NUM - 1,
78         },
79         {
80                 .version        = POLICYDB_VERSION_IPV6,
81                 .sym_num        = SYM_NUM - 2,
82                 .ocon_num       = OCON_NUM,
83         },
84         {
85                 .version        = POLICYDB_VERSION_NLCLASS,
86                 .sym_num        = SYM_NUM - 2,
87                 .ocon_num       = OCON_NUM,
88         },
89         {
90                 .version        = POLICYDB_VERSION_MLS,
91                 .sym_num        = SYM_NUM,
92                 .ocon_num       = OCON_NUM,
93         },
94         {
95                 .version        = POLICYDB_VERSION_AVTAB,
96                 .sym_num        = SYM_NUM,
97                 .ocon_num       = OCON_NUM,
98         },
99 };
100
101 static struct policydb_compat_info *policydb_lookup_compat(int version)
102 {
103         int i;
104         struct policydb_compat_info *info = NULL;
105
106         for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
107                 if (policydb_compat[i].version == version) {
108                         info = &policydb_compat[i];
109                         break;
110                 }
111         }
112         return info;
113 }
114
115 /*
116  * Initialize the role table.
117  */
118 static int roles_init(struct policydb *p)
119 {
120         char *key = NULL;
121         int rc;
122         struct role_datum *role;
123
124         role = kmalloc(sizeof(*role), GFP_KERNEL);
125         if (!role) {
126                 rc = -ENOMEM;
127                 goto out;
128         }
129         memset(role, 0, sizeof(*role));
130         role->value = ++p->p_roles.nprim;
131         if (role->value != OBJECT_R_VAL) {
132                 rc = -EINVAL;
133                 goto out_free_role;
134         }
135         key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
136         if (!key) {
137                 rc = -ENOMEM;
138                 goto out_free_role;
139         }
140         strcpy(key, OBJECT_R);
141         rc = hashtab_insert(p->p_roles.table, key, role);
142         if (rc)
143                 goto out_free_key;
144 out:
145         return rc;
146
147 out_free_key:
148         kfree(key);
149 out_free_role:
150         kfree(role);
151         goto out;
152 }
153
154 /*
155  * Initialize a policy database structure.
156  */
157 static int policydb_init(struct policydb *p)
158 {
159         int i, rc;
160
161         memset(p, 0, sizeof(*p));
162
163         for (i = 0; i < SYM_NUM; i++) {
164                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
165                 if (rc)
166                         goto out_free_symtab;
167         }
168
169         rc = avtab_init(&p->te_avtab);
170         if (rc)
171                 goto out_free_symtab;
172
173         rc = roles_init(p);
174         if (rc)
175                 goto out_free_avtab;
176
177         rc = cond_policydb_init(p);
178         if (rc)
179                 goto out_free_avtab;
180
181 out:
182         return rc;
183
184 out_free_avtab:
185         avtab_destroy(&p->te_avtab);
186
187 out_free_symtab:
188         for (i = 0; i < SYM_NUM; i++)
189                 hashtab_destroy(p->symtab[i].table);
190         goto out;
191 }
192
193 /*
194  * The following *_index functions are used to
195  * define the val_to_name and val_to_struct arrays
196  * in a policy database structure.  The val_to_name
197  * arrays are used when converting security context
198  * structures into string representations.  The
199  * val_to_struct arrays are used when the attributes
200  * of a class, role, or user are needed.
201  */
202
203 static int common_index(void *key, void *datum, void *datap)
204 {
205         struct policydb *p;
206         struct common_datum *comdatum;
207
208         comdatum = datum;
209         p = datap;
210         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
211                 return -EINVAL;
212         p->p_common_val_to_name[comdatum->value - 1] = key;
213         return 0;
214 }
215
216 static int class_index(void *key, void *datum, void *datap)
217 {
218         struct policydb *p;
219         struct class_datum *cladatum;
220
221         cladatum = datum;
222         p = datap;
223         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
224                 return -EINVAL;
225         p->p_class_val_to_name[cladatum->value - 1] = key;
226         p->class_val_to_struct[cladatum->value - 1] = cladatum;
227         return 0;
228 }
229
230 static int role_index(void *key, void *datum, void *datap)
231 {
232         struct policydb *p;
233         struct role_datum *role;
234
235         role = datum;
236         p = datap;
237         if (!role->value || role->value > p->p_roles.nprim)
238                 return -EINVAL;
239         p->p_role_val_to_name[role->value - 1] = key;
240         p->role_val_to_struct[role->value - 1] = role;
241         return 0;
242 }
243
244 static int type_index(void *key, void *datum, void *datap)
245 {
246         struct policydb *p;
247         struct type_datum *typdatum;
248
249         typdatum = datum;
250         p = datap;
251
252         if (typdatum->primary) {
253                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
254                         return -EINVAL;
255                 p->p_type_val_to_name[typdatum->value - 1] = key;
256         }
257
258         return 0;
259 }
260
261 static int user_index(void *key, void *datum, void *datap)
262 {
263         struct policydb *p;
264         struct user_datum *usrdatum;
265
266         usrdatum = datum;
267         p = datap;
268         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
269                 return -EINVAL;
270         p->p_user_val_to_name[usrdatum->value - 1] = key;
271         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
272         return 0;
273 }
274
275 static int sens_index(void *key, void *datum, void *datap)
276 {
277         struct policydb *p;
278         struct level_datum *levdatum;
279
280         levdatum = datum;
281         p = datap;
282
283         if (!levdatum->isalias) {
284                 if (!levdatum->level->sens ||
285                     levdatum->level->sens > p->p_levels.nprim)
286                         return -EINVAL;
287                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
288         }
289
290         return 0;
291 }
292
293 static int cat_index(void *key, void *datum, void *datap)
294 {
295         struct policydb *p;
296         struct cat_datum *catdatum;
297
298         catdatum = datum;
299         p = datap;
300
301         if (!catdatum->isalias) {
302                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
303                         return -EINVAL;
304                 p->p_cat_val_to_name[catdatum->value - 1] = key;
305         }
306
307         return 0;
308 }
309
310 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
311 {
312         common_index,
313         class_index,
314         role_index,
315         type_index,
316         user_index,
317         cond_index_bool,
318         sens_index,
319         cat_index,
320 };
321
322 /*
323  * Define the common val_to_name array and the class
324  * val_to_name and val_to_struct arrays in a policy
325  * database structure.
326  *
327  * Caller must clean up upon failure.
328  */
329 static int policydb_index_classes(struct policydb *p)
330 {
331         int rc;
332
333         p->p_common_val_to_name =
334                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
335         if (!p->p_common_val_to_name) {
336                 rc = -ENOMEM;
337                 goto out;
338         }
339
340         rc = hashtab_map(p->p_commons.table, common_index, p);
341         if (rc)
342                 goto out;
343
344         p->class_val_to_struct =
345                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
346         if (!p->class_val_to_struct) {
347                 rc = -ENOMEM;
348                 goto out;
349         }
350
351         p->p_class_val_to_name =
352                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
353         if (!p->p_class_val_to_name) {
354                 rc = -ENOMEM;
355                 goto out;
356         }
357
358         rc = hashtab_map(p->p_classes.table, class_index, p);
359 out:
360         return rc;
361 }
362
363 #ifdef DEBUG_HASHES
364 static void symtab_hash_eval(struct symtab *s)
365 {
366         int i;
367
368         for (i = 0; i < SYM_NUM; i++) {
369                 struct hashtab *h = s[i].table;
370                 struct hashtab_info info;
371
372                 hashtab_stat(h, &info);
373                 printk(KERN_INFO "%s:  %d entries and %d/%d buckets used, "
374                        "longest chain length %d\n", symtab_name[i], h->nel,
375                        info.slots_used, h->size, info.max_chain_len);
376         }
377 }
378 #endif
379
380 /*
381  * Define the other val_to_name and val_to_struct arrays
382  * in a policy database structure.
383  *
384  * Caller must clean up on failure.
385  */
386 static int policydb_index_others(struct policydb *p)
387 {
388         int i, rc = 0;
389
390         printk(KERN_INFO "security:  %d users, %d roles, %d types, %d bools",
391                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
392         if (selinux_mls_enabled)
393                 printk(", %d sens, %d cats", p->p_levels.nprim,
394                        p->p_cats.nprim);
395         printk("\n");
396
397         printk(KERN_INFO "security:  %d classes, %d rules\n",
398                p->p_classes.nprim, p->te_avtab.nel);
399
400 #ifdef DEBUG_HASHES
401         avtab_hash_eval(&p->te_avtab, "rules");
402         symtab_hash_eval(p->symtab);
403 #endif
404
405         p->role_val_to_struct =
406                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
407                         GFP_KERNEL);
408         if (!p->role_val_to_struct) {
409                 rc = -ENOMEM;
410                 goto out;
411         }
412
413         p->user_val_to_struct =
414                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
415                         GFP_KERNEL);
416         if (!p->user_val_to_struct) {
417                 rc = -ENOMEM;
418                 goto out;
419         }
420
421         if (cond_init_bool_indexes(p)) {
422                 rc = -ENOMEM;
423                 goto out;
424         }
425
426         for (i = SYM_ROLES; i < SYM_NUM; i++) {
427                 p->sym_val_to_name[i] =
428                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
429                 if (!p->sym_val_to_name[i]) {
430                         rc = -ENOMEM;
431                         goto out;
432                 }
433                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
434                 if (rc)
435                         goto out;
436         }
437
438 out:
439         return rc;
440 }
441
442 /*
443  * The following *_destroy functions are used to
444  * free any memory allocated for each kind of
445  * symbol data in the policy database.
446  */
447
448 static int perm_destroy(void *key, void *datum, void *p)
449 {
450         kfree(key);
451         kfree(datum);
452         return 0;
453 }
454
455 static int common_destroy(void *key, void *datum, void *p)
456 {
457         struct common_datum *comdatum;
458
459         kfree(key);
460         comdatum = datum;
461         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
462         hashtab_destroy(comdatum->permissions.table);
463         kfree(datum);
464         return 0;
465 }
466
467 static int class_destroy(void *key, void *datum, void *p)
468 {
469         struct class_datum *cladatum;
470         struct constraint_node *constraint, *ctemp;
471         struct constraint_expr *e, *etmp;
472
473         kfree(key);
474         cladatum = datum;
475         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
476         hashtab_destroy(cladatum->permissions.table);
477         constraint = cladatum->constraints;
478         while (constraint) {
479                 e = constraint->expr;
480                 while (e) {
481                         ebitmap_destroy(&e->names);
482                         etmp = e;
483                         e = e->next;
484                         kfree(etmp);
485                 }
486                 ctemp = constraint;
487                 constraint = constraint->next;
488                 kfree(ctemp);
489         }
490
491         constraint = cladatum->validatetrans;
492         while (constraint) {
493                 e = constraint->expr;
494                 while (e) {
495                         ebitmap_destroy(&e->names);
496                         etmp = e;
497                         e = e->next;
498                         kfree(etmp);
499                 }
500                 ctemp = constraint;
501                 constraint = constraint->next;
502                 kfree(ctemp);
503         }
504
505         kfree(cladatum->comkey);
506         kfree(datum);
507         return 0;
508 }
509
510 static int role_destroy(void *key, void *datum, void *p)
511 {
512         struct role_datum *role;
513
514         kfree(key);
515         role = datum;
516         ebitmap_destroy(&role->dominates);
517         ebitmap_destroy(&role->types);
518         kfree(datum);
519         return 0;
520 }
521
522 static int type_destroy(void *key, void *datum, void *p)
523 {
524         kfree(key);
525         kfree(datum);
526         return 0;
527 }
528
529 static int user_destroy(void *key, void *datum, void *p)
530 {
531         struct user_datum *usrdatum;
532
533         kfree(key);
534         usrdatum = datum;
535         ebitmap_destroy(&usrdatum->roles);
536         ebitmap_destroy(&usrdatum->range.level[0].cat);
537         ebitmap_destroy(&usrdatum->range.level[1].cat);
538         ebitmap_destroy(&usrdatum->dfltlevel.cat);
539         kfree(datum);
540         return 0;
541 }
542
543 static int sens_destroy(void *key, void *datum, void *p)
544 {
545         struct level_datum *levdatum;
546
547         kfree(key);
548         levdatum = datum;
549         ebitmap_destroy(&levdatum->level->cat);
550         kfree(levdatum->level);
551         kfree(datum);
552         return 0;
553 }
554
555 static int cat_destroy(void *key, void *datum, void *p)
556 {
557         kfree(key);
558         kfree(datum);
559         return 0;
560 }
561
562 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
563 {
564         common_destroy,
565         class_destroy,
566         role_destroy,
567         type_destroy,
568         user_destroy,
569         cond_destroy_bool,
570         sens_destroy,
571         cat_destroy,
572 };
573
574 static void ocontext_destroy(struct ocontext *c, int i)
575 {
576         context_destroy(&c->context[0]);
577         context_destroy(&c->context[1]);
578         if (i == OCON_ISID || i == OCON_FS ||
579             i == OCON_NETIF || i == OCON_FSUSE)
580                 kfree(c->u.name);
581         kfree(c);
582 }
583
584 /*
585  * Free any memory allocated by a policy database structure.
586  */
587 void policydb_destroy(struct policydb *p)
588 {
589         struct ocontext *c, *ctmp;
590         struct genfs *g, *gtmp;
591         int i;
592         struct role_allow *ra, *lra = NULL;
593         struct role_trans *tr, *ltr = NULL;
594         struct range_trans *rt, *lrt = NULL;
595
596         for (i = 0; i < SYM_NUM; i++) {
597                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
598                 hashtab_destroy(p->symtab[i].table);
599         }
600
601         for (i = 0; i < SYM_NUM; i++)
602                 kfree(p->sym_val_to_name[i]);
603
604         kfree(p->class_val_to_struct);
605         kfree(p->role_val_to_struct);
606         kfree(p->user_val_to_struct);
607
608         avtab_destroy(&p->te_avtab);
609
610         for (i = 0; i < OCON_NUM; i++) {
611                 c = p->ocontexts[i];
612                 while (c) {
613                         ctmp = c;
614                         c = c->next;
615                         ocontext_destroy(ctmp,i);
616                 }
617         }
618
619         g = p->genfs;
620         while (g) {
621                 kfree(g->fstype);
622                 c = g->head;
623                 while (c) {
624                         ctmp = c;
625                         c = c->next;
626                         ocontext_destroy(ctmp,OCON_FSUSE);
627                 }
628                 gtmp = g;
629                 g = g->next;
630                 kfree(gtmp);
631         }
632
633         cond_policydb_destroy(p);
634
635         for (tr = p->role_tr; tr; tr = tr->next) {
636                 if (ltr) kfree(ltr);
637                 ltr = tr;
638         }
639         if (ltr) kfree(ltr);
640
641         for (ra = p->role_allow; ra; ra = ra -> next) {
642                 if (lra) kfree(lra);
643                 lra = ra;
644         }
645         if (lra) kfree(lra);
646
647         for (rt = p->range_tr; rt; rt = rt -> next) {
648                 if (lrt) kfree(lrt);
649                 lrt = rt;
650         }
651         if (lrt) kfree(lrt);
652
653         for (i = 0; i < p->p_types.nprim; i++)
654                 ebitmap_destroy(&p->type_attr_map[i]);
655         kfree(p->type_attr_map);
656
657         return;
658 }
659
660 /*
661  * Load the initial SIDs specified in a policy database
662  * structure into a SID table.
663  */
664 int policydb_load_isids(struct policydb *p, struct sidtab *s)
665 {
666         struct ocontext *head, *c;
667         int rc;
668
669         rc = sidtab_init(s);
670         if (rc) {
671                 printk(KERN_ERR "security:  out of memory on SID table init\n");
672                 goto out;
673         }
674
675         head = p->ocontexts[OCON_ISID];
676         for (c = head; c; c = c->next) {
677                 if (!c->context[0].user) {
678                         printk(KERN_ERR "security:  SID %s was never "
679                                "defined.\n", c->u.name);
680                         rc = -EINVAL;
681                         goto out;
682                 }
683                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
684                         printk(KERN_ERR "security:  unable to load initial "
685                                "SID %s.\n", c->u.name);
686                         rc = -EINVAL;
687                         goto out;
688                 }
689         }
690 out:
691         return rc;
692 }
693
694 /*
695  * Return 1 if the fields in the security context
696  * structure `c' are valid.  Return 0 otherwise.
697  */
698 int policydb_context_isvalid(struct policydb *p, struct context *c)
699 {
700         struct role_datum *role;
701         struct user_datum *usrdatum;
702
703         if (!c->role || c->role > p->p_roles.nprim)
704                 return 0;
705
706         if (!c->user || c->user > p->p_users.nprim)
707                 return 0;
708
709         if (!c->type || c->type > p->p_types.nprim)
710                 return 0;
711
712         if (c->role != OBJECT_R_VAL) {
713                 /*
714                  * Role must be authorized for the type.
715                  */
716                 role = p->role_val_to_struct[c->role - 1];
717                 if (!ebitmap_get_bit(&role->types,
718                                      c->type - 1))
719                         /* role may not be associated with type */
720                         return 0;
721
722                 /*
723                  * User must be authorized for the role.
724                  */
725                 usrdatum = p->user_val_to_struct[c->user - 1];
726                 if (!usrdatum)
727                         return 0;
728
729                 if (!ebitmap_get_bit(&usrdatum->roles,
730                                      c->role - 1))
731                         /* user may not be associated with role */
732                         return 0;
733         }
734
735         if (!mls_context_isvalid(p, c))
736                 return 0;
737
738         return 1;
739 }
740
741 /*
742  * Read a MLS range structure from a policydb binary
743  * representation file.
744  */
745 static int mls_read_range_helper(struct mls_range *r, void *fp)
746 {
747         u32 buf[2], items;
748         int rc;
749
750         rc = next_entry(buf, fp, sizeof(u32));
751         if (rc < 0)
752                 goto out;
753
754         items = le32_to_cpu(buf[0]);
755         if (items > ARRAY_SIZE(buf)) {
756                 printk(KERN_ERR "security: mls:  range overflow\n");
757                 rc = -EINVAL;
758                 goto out;
759         }
760         rc = next_entry(buf, fp, sizeof(u32) * items);
761         if (rc < 0) {
762                 printk(KERN_ERR "security: mls:  truncated range\n");
763                 goto out;
764         }
765         r->level[0].sens = le32_to_cpu(buf[0]);
766         if (items > 1)
767                 r->level[1].sens = le32_to_cpu(buf[1]);
768         else
769                 r->level[1].sens = r->level[0].sens;
770
771         rc = ebitmap_read(&r->level[0].cat, fp);
772         if (rc) {
773                 printk(KERN_ERR "security: mls:  error reading low "
774                        "categories\n");
775                 goto out;
776         }
777         if (items > 1) {
778                 rc = ebitmap_read(&r->level[1].cat, fp);
779                 if (rc) {
780                         printk(KERN_ERR "security: mls:  error reading high "
781                                "categories\n");
782                         goto bad_high;
783                 }
784         } else {
785                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
786                 if (rc) {
787                         printk(KERN_ERR "security: mls:  out of memory\n");
788                         goto bad_high;
789                 }
790         }
791
792         rc = 0;
793 out:
794         return rc;
795 bad_high:
796         ebitmap_destroy(&r->level[0].cat);
797         goto out;
798 }
799
800 /*
801  * Read and validate a security context structure
802  * from a policydb binary representation file.
803  */
804 static int context_read_and_validate(struct context *c,
805                                      struct policydb *p,
806                                      void *fp)
807 {
808         u32 buf[3];
809         int rc;
810
811         rc = next_entry(buf, fp, sizeof buf);
812         if (rc < 0) {
813                 printk(KERN_ERR "security: context truncated\n");
814                 goto out;
815         }
816         c->user = le32_to_cpu(buf[0]);
817         c->role = le32_to_cpu(buf[1]);
818         c->type = le32_to_cpu(buf[2]);
819         if (p->policyvers >= POLICYDB_VERSION_MLS) {
820                 if (mls_read_range_helper(&c->range, fp)) {
821                         printk(KERN_ERR "security: error reading MLS range of "
822                                "context\n");
823                         rc = -EINVAL;
824                         goto out;
825                 }
826         }
827
828         if (!policydb_context_isvalid(p, c)) {
829                 printk(KERN_ERR "security:  invalid security context\n");
830                 context_destroy(c);
831                 rc = -EINVAL;
832         }
833 out:
834         return rc;
835 }
836
837 /*
838  * The following *_read functions are used to
839  * read the symbol data from a policy database
840  * binary representation file.
841  */
842
843 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
844 {
845         char *key = NULL;
846         struct perm_datum *perdatum;
847         int rc;
848         u32 buf[2], len;
849
850         perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
851         if (!perdatum) {
852                 rc = -ENOMEM;
853                 goto out;
854         }
855         memset(perdatum, 0, sizeof(*perdatum));
856
857         rc = next_entry(buf, fp, sizeof buf);
858         if (rc < 0)
859                 goto bad;
860
861         len = le32_to_cpu(buf[0]);
862         perdatum->value = le32_to_cpu(buf[1]);
863
864         key = kmalloc(len + 1,GFP_KERNEL);
865         if (!key) {
866                 rc = -ENOMEM;
867                 goto bad;
868         }
869         rc = next_entry(key, fp, len);
870         if (rc < 0)
871                 goto bad;
872         key[len] = 0;
873
874         rc = hashtab_insert(h, key, perdatum);
875         if (rc)
876                 goto bad;
877 out:
878         return rc;
879 bad:
880         perm_destroy(key, perdatum, NULL);
881         goto out;
882 }
883
884 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
885 {
886         char *key = NULL;
887         struct common_datum *comdatum;
888         u32 buf[4], len, nel;
889         int i, rc;
890
891         comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
892         if (!comdatum) {
893                 rc = -ENOMEM;
894                 goto out;
895         }
896         memset(comdatum, 0, sizeof(*comdatum));
897
898         rc = next_entry(buf, fp, sizeof buf);
899         if (rc < 0)
900                 goto bad;
901
902         len = le32_to_cpu(buf[0]);
903         comdatum->value = le32_to_cpu(buf[1]);
904
905         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
906         if (rc)
907                 goto bad;
908         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
909         nel = le32_to_cpu(buf[3]);
910
911         key = kmalloc(len + 1,GFP_KERNEL);
912         if (!key) {
913                 rc = -ENOMEM;
914                 goto bad;
915         }
916         rc = next_entry(key, fp, len);
917         if (rc < 0)
918                 goto bad;
919         key[len] = 0;
920
921         for (i = 0; i < nel; i++) {
922                 rc = perm_read(p, comdatum->permissions.table, fp);
923                 if (rc)
924                         goto bad;
925         }
926
927         rc = hashtab_insert(h, key, comdatum);
928         if (rc)
929                 goto bad;
930 out:
931         return rc;
932 bad:
933         common_destroy(key, comdatum, NULL);
934         goto out;
935 }
936
937 static int read_cons_helper(struct constraint_node **nodep, int ncons,
938                             int allowxtarget, void *fp)
939 {
940         struct constraint_node *c, *lc;
941         struct constraint_expr *e, *le;
942         u32 buf[3], nexpr;
943         int rc, i, j, depth;
944
945         lc = NULL;
946         for (i = 0; i < ncons; i++) {
947                 c = kmalloc(sizeof(*c), GFP_KERNEL);
948                 if (!c)
949                         return -ENOMEM;
950                 memset(c, 0, sizeof(*c));
951
952                 if (lc) {
953                         lc->next = c;
954                 } else {
955                         *nodep = c;
956                 }
957
958                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
959                 if (rc < 0)
960                         return rc;
961                 c->permissions = le32_to_cpu(buf[0]);
962                 nexpr = le32_to_cpu(buf[1]);
963                 le = NULL;
964                 depth = -1;
965                 for (j = 0; j < nexpr; j++) {
966                         e = kmalloc(sizeof(*e), GFP_KERNEL);
967                         if (!e)
968                                 return -ENOMEM;
969                         memset(e, 0, sizeof(*e));
970
971                         if (le) {
972                                 le->next = e;
973                         } else {
974                                 c->expr = e;
975                         }
976
977                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
978                         if (rc < 0)
979                                 return rc;
980                         e->expr_type = le32_to_cpu(buf[0]);
981                         e->attr = le32_to_cpu(buf[1]);
982                         e->op = le32_to_cpu(buf[2]);
983
984                         switch (e->expr_type) {
985                         case CEXPR_NOT:
986                                 if (depth < 0)
987                                         return -EINVAL;
988                                 break;
989                         case CEXPR_AND:
990                         case CEXPR_OR:
991                                 if (depth < 1)
992                                         return -EINVAL;
993                                 depth--;
994                                 break;
995                         case CEXPR_ATTR:
996                                 if (depth == (CEXPR_MAXDEPTH - 1))
997                                         return -EINVAL;
998                                 depth++;
999                                 break;
1000                         case CEXPR_NAMES:
1001                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1002                                         return -EINVAL;
1003                                 if (depth == (CEXPR_MAXDEPTH - 1))
1004                                         return -EINVAL;
1005                                 depth++;
1006                                 if (ebitmap_read(&e->names, fp))
1007                                         return -EINVAL;
1008                                 break;
1009                         default:
1010                                 return -EINVAL;
1011                         }
1012                         le = e;
1013                 }
1014                 if (depth != 0)
1015                         return -EINVAL;
1016                 lc = c;
1017         }
1018
1019         return 0;
1020 }
1021
1022 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1023 {
1024         char *key = NULL;
1025         struct class_datum *cladatum;
1026         u32 buf[6], len, len2, ncons, nel;
1027         int i, rc;
1028
1029         cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1030         if (!cladatum) {
1031                 rc = -ENOMEM;
1032                 goto out;
1033         }
1034         memset(cladatum, 0, sizeof(*cladatum));
1035
1036         rc = next_entry(buf, fp, sizeof(u32)*6);
1037         if (rc < 0)
1038                 goto bad;
1039
1040         len = le32_to_cpu(buf[0]);
1041         len2 = le32_to_cpu(buf[1]);
1042         cladatum->value = le32_to_cpu(buf[2]);
1043
1044         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1045         if (rc)
1046                 goto bad;
1047         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1048         nel = le32_to_cpu(buf[4]);
1049
1050         ncons = le32_to_cpu(buf[5]);
1051
1052         key = kmalloc(len + 1,GFP_KERNEL);
1053         if (!key) {
1054                 rc = -ENOMEM;
1055                 goto bad;
1056         }
1057         rc = next_entry(key, fp, len);
1058         if (rc < 0)
1059                 goto bad;
1060         key[len] = 0;
1061
1062         if (len2) {
1063                 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1064                 if (!cladatum->comkey) {
1065                         rc = -ENOMEM;
1066                         goto bad;
1067                 }
1068                 rc = next_entry(cladatum->comkey, fp, len2);
1069                 if (rc < 0)
1070                         goto bad;
1071                 cladatum->comkey[len2] = 0;
1072
1073                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1074                                                     cladatum->comkey);
1075                 if (!cladatum->comdatum) {
1076                         printk(KERN_ERR "security:  unknown common %s\n",
1077                                cladatum->comkey);
1078                         rc = -EINVAL;
1079                         goto bad;
1080                 }
1081         }
1082         for (i = 0; i < nel; i++) {
1083                 rc = perm_read(p, cladatum->permissions.table, fp);
1084                 if (rc)
1085                         goto bad;
1086         }
1087
1088         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1089         if (rc)
1090                 goto bad;
1091
1092         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1093                 /* grab the validatetrans rules */
1094                 rc = next_entry(buf, fp, sizeof(u32));
1095                 if (rc < 0)
1096                         goto bad;
1097                 ncons = le32_to_cpu(buf[0]);
1098                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1099                 if (rc)
1100                         goto bad;
1101         }
1102
1103         rc = hashtab_insert(h, key, cladatum);
1104         if (rc)
1105                 goto bad;
1106
1107         rc = 0;
1108 out:
1109         return rc;
1110 bad:
1111         class_destroy(key, cladatum, NULL);
1112         goto out;
1113 }
1114
1115 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1116 {
1117         char *key = NULL;
1118         struct role_datum *role;
1119         int rc;
1120         u32 buf[2], len;
1121
1122         role = kmalloc(sizeof(*role), GFP_KERNEL);
1123         if (!role) {
1124                 rc = -ENOMEM;
1125                 goto out;
1126         }
1127         memset(role, 0, sizeof(*role));
1128
1129         rc = next_entry(buf, fp, sizeof buf);
1130         if (rc < 0)
1131                 goto bad;
1132
1133         len = le32_to_cpu(buf[0]);
1134         role->value = le32_to_cpu(buf[1]);
1135
1136         key = kmalloc(len + 1,GFP_KERNEL);
1137         if (!key) {
1138                 rc = -ENOMEM;
1139                 goto bad;
1140         }
1141         rc = next_entry(key, fp, len);
1142         if (rc < 0)
1143                 goto bad;
1144         key[len] = 0;
1145
1146         rc = ebitmap_read(&role->dominates, fp);
1147         if (rc)
1148                 goto bad;
1149
1150         rc = ebitmap_read(&role->types, fp);
1151         if (rc)
1152                 goto bad;
1153
1154         if (strcmp(key, OBJECT_R) == 0) {
1155                 if (role->value != OBJECT_R_VAL) {
1156                         printk(KERN_ERR "Role %s has wrong value %d\n",
1157                                OBJECT_R, role->value);
1158                         rc = -EINVAL;
1159                         goto bad;
1160                 }
1161                 rc = 0;
1162                 goto bad;
1163         }
1164
1165         rc = hashtab_insert(h, key, role);
1166         if (rc)
1167                 goto bad;
1168 out:
1169         return rc;
1170 bad:
1171         role_destroy(key, role, NULL);
1172         goto out;
1173 }
1174
1175 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1176 {
1177         char *key = NULL;
1178         struct type_datum *typdatum;
1179         int rc;
1180         u32 buf[3], len;
1181
1182         typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1183         if (!typdatum) {
1184                 rc = -ENOMEM;
1185                 return rc;
1186         }
1187         memset(typdatum, 0, sizeof(*typdatum));
1188
1189         rc = next_entry(buf, fp, sizeof buf);
1190         if (rc < 0)
1191                 goto bad;
1192
1193         len = le32_to_cpu(buf[0]);
1194         typdatum->value = le32_to_cpu(buf[1]);
1195         typdatum->primary = le32_to_cpu(buf[2]);
1196
1197         key = kmalloc(len + 1,GFP_KERNEL);
1198         if (!key) {
1199                 rc = -ENOMEM;
1200                 goto bad;
1201         }
1202         rc = next_entry(key, fp, len);
1203         if (rc < 0)
1204                 goto bad;
1205         key[len] = 0;
1206
1207         rc = hashtab_insert(h, key, typdatum);
1208         if (rc)
1209                 goto bad;
1210 out:
1211         return rc;
1212 bad:
1213         type_destroy(key, typdatum, NULL);
1214         goto out;
1215 }
1216
1217
1218 /*
1219  * Read a MLS level structure from a policydb binary
1220  * representation file.
1221  */
1222 static int mls_read_level(struct mls_level *lp, void *fp)
1223 {
1224         u32 buf[1];
1225         int rc;
1226
1227         memset(lp, 0, sizeof(*lp));
1228
1229         rc = next_entry(buf, fp, sizeof buf);
1230         if (rc < 0) {
1231                 printk(KERN_ERR "security: mls: truncated level\n");
1232                 goto bad;
1233         }
1234         lp->sens = le32_to_cpu(buf[0]);
1235
1236         if (ebitmap_read(&lp->cat, fp)) {
1237                 printk(KERN_ERR "security: mls:  error reading level "
1238                        "categories\n");
1239                 goto bad;
1240         }
1241         return 0;
1242
1243 bad:
1244         return -EINVAL;
1245 }
1246
1247 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1248 {
1249         char *key = NULL;
1250         struct user_datum *usrdatum;
1251         int rc;
1252         u32 buf[2], len;
1253
1254         usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1255         if (!usrdatum) {
1256                 rc = -ENOMEM;
1257                 goto out;
1258         }
1259         memset(usrdatum, 0, sizeof(*usrdatum));
1260
1261         rc = next_entry(buf, fp, sizeof buf);
1262         if (rc < 0)
1263                 goto bad;
1264
1265         len = le32_to_cpu(buf[0]);
1266         usrdatum->value = le32_to_cpu(buf[1]);
1267
1268         key = kmalloc(len + 1,GFP_KERNEL);
1269         if (!key) {
1270                 rc = -ENOMEM;
1271                 goto bad;
1272         }
1273         rc = next_entry(key, fp, len);
1274         if (rc < 0)
1275                 goto bad;
1276         key[len] = 0;
1277
1278         rc = ebitmap_read(&usrdatum->roles, fp);
1279         if (rc)
1280                 goto bad;
1281
1282         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1283                 rc = mls_read_range_helper(&usrdatum->range, fp);
1284                 if (rc)
1285                         goto bad;
1286                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1287                 if (rc)
1288                         goto bad;
1289         }
1290
1291         rc = hashtab_insert(h, key, usrdatum);
1292         if (rc)
1293                 goto bad;
1294 out:
1295         return rc;
1296 bad:
1297         user_destroy(key, usrdatum, NULL);
1298         goto out;
1299 }
1300
1301 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1302 {
1303         char *key = NULL;
1304         struct level_datum *levdatum;
1305         int rc;
1306         u32 buf[2], len;
1307
1308         levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1309         if (!levdatum) {
1310                 rc = -ENOMEM;
1311                 goto out;
1312         }
1313         memset(levdatum, 0, sizeof(*levdatum));
1314
1315         rc = next_entry(buf, fp, sizeof buf);
1316         if (rc < 0)
1317                 goto bad;
1318
1319         len = le32_to_cpu(buf[0]);
1320         levdatum->isalias = le32_to_cpu(buf[1]);
1321
1322         key = kmalloc(len + 1,GFP_ATOMIC);
1323         if (!key) {
1324                 rc = -ENOMEM;
1325                 goto bad;
1326         }
1327         rc = next_entry(key, fp, len);
1328         if (rc < 0)
1329                 goto bad;
1330         key[len] = 0;
1331
1332         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1333         if (!levdatum->level) {
1334                 rc = -ENOMEM;
1335                 goto bad;
1336         }
1337         if (mls_read_level(levdatum->level, fp)) {
1338                 rc = -EINVAL;
1339                 goto bad;
1340         }
1341
1342         rc = hashtab_insert(h, key, levdatum);
1343         if (rc)
1344                 goto bad;
1345 out:
1346         return rc;
1347 bad:
1348         sens_destroy(key, levdatum, NULL);
1349         goto out;
1350 }
1351
1352 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1353 {
1354         char *key = NULL;
1355         struct cat_datum *catdatum;
1356         int rc;
1357         u32 buf[3], len;
1358
1359         catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1360         if (!catdatum) {
1361                 rc = -ENOMEM;
1362                 goto out;
1363         }
1364         memset(catdatum, 0, sizeof(*catdatum));
1365
1366         rc = next_entry(buf, fp, sizeof buf);
1367         if (rc < 0)
1368                 goto bad;
1369
1370         len = le32_to_cpu(buf[0]);
1371         catdatum->value = le32_to_cpu(buf[1]);
1372         catdatum->isalias = le32_to_cpu(buf[2]);
1373
1374         key = kmalloc(len + 1,GFP_ATOMIC);
1375         if (!key) {
1376                 rc = -ENOMEM;
1377                 goto bad;
1378         }
1379         rc = next_entry(key, fp, len);
1380         if (rc < 0)
1381                 goto bad;
1382         key[len] = 0;
1383
1384         rc = hashtab_insert(h, key, catdatum);
1385         if (rc)
1386                 goto bad;
1387 out:
1388         return rc;
1389
1390 bad:
1391         cat_destroy(key, catdatum, NULL);
1392         goto out;
1393 }
1394
1395 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1396 {
1397         common_read,
1398         class_read,
1399         role_read,
1400         type_read,
1401         user_read,
1402         cond_read_bool,
1403         sens_read,
1404         cat_read,
1405 };
1406
1407 extern int ss_initialized;
1408
1409 /*
1410  * Read the configuration data from a policy database binary
1411  * representation file into a policy database structure.
1412  */
1413 int policydb_read(struct policydb *p, void *fp)
1414 {
1415         struct role_allow *ra, *lra;
1416         struct role_trans *tr, *ltr;
1417         struct ocontext *l, *c, *newc;
1418         struct genfs *genfs_p, *genfs, *newgenfs;
1419         int i, j, rc;
1420         u32 buf[8], len, len2, config, nprim, nel, nel2;
1421         char *policydb_str;
1422         struct policydb_compat_info *info;
1423         struct range_trans *rt, *lrt;
1424
1425         config = 0;
1426
1427         rc = policydb_init(p);
1428         if (rc)
1429                 goto out;
1430
1431         /* Read the magic number and string length. */
1432         rc = next_entry(buf, fp, sizeof(u32)* 2);
1433         if (rc < 0)
1434                 goto bad;
1435
1436         for (i = 0; i < 2; i++)
1437                 buf[i] = le32_to_cpu(buf[i]);
1438
1439         if (buf[0] != POLICYDB_MAGIC) {
1440                 printk(KERN_ERR "security:  policydb magic number 0x%x does "
1441                        "not match expected magic number 0x%x\n",
1442                        buf[0], POLICYDB_MAGIC);
1443                 goto bad;
1444         }
1445
1446         len = buf[1];
1447         if (len != strlen(POLICYDB_STRING)) {
1448                 printk(KERN_ERR "security:  policydb string length %d does not "
1449                        "match expected length %Zu\n",
1450                        len, strlen(POLICYDB_STRING));
1451                 goto bad;
1452         }
1453         policydb_str = kmalloc(len + 1,GFP_KERNEL);
1454         if (!policydb_str) {
1455                 printk(KERN_ERR "security:  unable to allocate memory for policydb "
1456                        "string of length %d\n", len);
1457                 rc = -ENOMEM;
1458                 goto bad;
1459         }
1460         rc = next_entry(policydb_str, fp, len);
1461         if (rc < 0) {
1462                 printk(KERN_ERR "security:  truncated policydb string identifier\n");
1463                 kfree(policydb_str);
1464                 goto bad;
1465         }
1466         policydb_str[len] = 0;
1467         if (strcmp(policydb_str, POLICYDB_STRING)) {
1468                 printk(KERN_ERR "security:  policydb string %s does not match "
1469                        "my string %s\n", policydb_str, POLICYDB_STRING);
1470                 kfree(policydb_str);
1471                 goto bad;
1472         }
1473         /* Done with policydb_str. */
1474         kfree(policydb_str);
1475         policydb_str = NULL;
1476
1477         /* Read the version, config, and table sizes. */
1478         rc = next_entry(buf, fp, sizeof(u32)*4);
1479         if (rc < 0)
1480                 goto bad;
1481         for (i = 0; i < 4; i++)
1482                 buf[i] = le32_to_cpu(buf[i]);
1483
1484         p->policyvers = buf[0];
1485         if (p->policyvers < POLICYDB_VERSION_MIN ||
1486             p->policyvers > POLICYDB_VERSION_MAX) {
1487                 printk(KERN_ERR "security:  policydb version %d does not match "
1488                        "my version range %d-%d\n",
1489                        buf[0], POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1490                 goto bad;
1491         }
1492
1493         if ((buf[1] & POLICYDB_CONFIG_MLS)) {
1494                 if (ss_initialized && !selinux_mls_enabled) {
1495                         printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1496                                "policies\n");
1497                         goto bad;
1498                 }
1499                 selinux_mls_enabled = 1;
1500                 config |= POLICYDB_CONFIG_MLS;
1501
1502                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1503                         printk(KERN_ERR "security policydb version %d (MLS) "
1504                                "not backwards compatible\n", p->policyvers);
1505                         goto bad;
1506                 }
1507         } else {
1508                 if (ss_initialized && selinux_mls_enabled) {
1509                         printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1510                                "policies\n");
1511                         goto bad;
1512                 }
1513         }
1514
1515         info = policydb_lookup_compat(p->policyvers);
1516         if (!info) {
1517                 printk(KERN_ERR "security:  unable to find policy compat info "
1518                        "for version %d\n", p->policyvers);
1519                 goto bad;
1520         }
1521
1522         if (buf[2] != info->sym_num || buf[3] != info->ocon_num) {
1523                 printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1524                        "not match mine (%d,%d)\n", buf[2], buf[3],
1525                        info->sym_num, info->ocon_num);
1526                 goto bad;
1527         }
1528
1529         for (i = 0; i < info->sym_num; i++) {
1530                 rc = next_entry(buf, fp, sizeof(u32)*2);
1531                 if (rc < 0)
1532                         goto bad;
1533                 nprim = le32_to_cpu(buf[0]);
1534                 nel = le32_to_cpu(buf[1]);
1535                 for (j = 0; j < nel; j++) {
1536                         rc = read_f[i](p, p->symtab[i].table, fp);
1537                         if (rc)
1538                                 goto bad;
1539                 }
1540
1541                 p->symtab[i].nprim = nprim;
1542         }
1543
1544         rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1545         if (rc)
1546                 goto bad;
1547
1548         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1549                 rc = cond_read_list(p, fp);
1550                 if (rc)
1551                         goto bad;
1552         }
1553
1554         rc = next_entry(buf, fp, sizeof(u32));
1555         if (rc < 0)
1556                 goto bad;
1557         nel = le32_to_cpu(buf[0]);
1558         ltr = NULL;
1559         for (i = 0; i < nel; i++) {
1560                 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1561                 if (!tr) {
1562                         rc = -ENOMEM;
1563                         goto bad;
1564                 }
1565                 memset(tr, 0, sizeof(*tr));
1566                 if (ltr) {
1567                         ltr->next = tr;
1568                 } else {
1569                         p->role_tr = tr;
1570                 }
1571                 rc = next_entry(buf, fp, sizeof(u32)*3);
1572                 if (rc < 0)
1573                         goto bad;
1574                 tr->role = le32_to_cpu(buf[0]);
1575                 tr->type = le32_to_cpu(buf[1]);
1576                 tr->new_role = le32_to_cpu(buf[2]);
1577                 ltr = tr;
1578         }
1579
1580         rc = next_entry(buf, fp, sizeof(u32));
1581         if (rc < 0)
1582                 goto bad;
1583         nel = le32_to_cpu(buf[0]);
1584         lra = NULL;
1585         for (i = 0; i < nel; i++) {
1586                 ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1587                 if (!ra) {
1588                         rc = -ENOMEM;
1589                         goto bad;
1590                 }
1591                 memset(ra, 0, sizeof(*ra));
1592                 if (lra) {
1593                         lra->next = ra;
1594                 } else {
1595                         p->role_allow = ra;
1596                 }
1597                 rc = next_entry(buf, fp, sizeof(u32)*2);
1598                 if (rc < 0)
1599                         goto bad;
1600                 ra->role = le32_to_cpu(buf[0]);
1601                 ra->new_role = le32_to_cpu(buf[1]);
1602                 lra = ra;
1603         }
1604
1605         rc = policydb_index_classes(p);
1606         if (rc)
1607                 goto bad;
1608
1609         rc = policydb_index_others(p);
1610         if (rc)
1611                 goto bad;
1612
1613         for (i = 0; i < info->ocon_num; i++) {
1614                 rc = next_entry(buf, fp, sizeof(u32));
1615                 if (rc < 0)
1616                         goto bad;
1617                 nel = le32_to_cpu(buf[0]);
1618                 l = NULL;
1619                 for (j = 0; j < nel; j++) {
1620                         c = kmalloc(sizeof(*c), GFP_KERNEL);
1621                         if (!c) {
1622                                 rc = -ENOMEM;
1623                                 goto bad;
1624                         }
1625                         memset(c, 0, sizeof(*c));
1626                         if (l) {
1627                                 l->next = c;
1628                         } else {
1629                                 p->ocontexts[i] = c;
1630                         }
1631                         l = c;
1632                         rc = -EINVAL;
1633                         switch (i) {
1634                         case OCON_ISID:
1635                                 rc = next_entry(buf, fp, sizeof(u32));
1636                                 if (rc < 0)
1637                                         goto bad;
1638                                 c->sid[0] = le32_to_cpu(buf[0]);
1639                                 rc = context_read_and_validate(&c->context[0], p, fp);
1640                                 if (rc)
1641                                         goto bad;
1642                                 break;
1643                         case OCON_FS:
1644                         case OCON_NETIF:
1645                                 rc = next_entry(buf, fp, sizeof(u32));
1646                                 if (rc < 0)
1647                                         goto bad;
1648                                 len = le32_to_cpu(buf[0]);
1649                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1650                                 if (!c->u.name) {
1651                                         rc = -ENOMEM;
1652                                         goto bad;
1653                                 }
1654                                 rc = next_entry(c->u.name, fp, len);
1655                                 if (rc < 0)
1656                                         goto bad;
1657                                 c->u.name[len] = 0;
1658                                 rc = context_read_and_validate(&c->context[0], p, fp);
1659                                 if (rc)
1660                                         goto bad;
1661                                 rc = context_read_and_validate(&c->context[1], p, fp);
1662                                 if (rc)
1663                                         goto bad;
1664                                 break;
1665                         case OCON_PORT:
1666                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1667                                 if (rc < 0)
1668                                         goto bad;
1669                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1670                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1671                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1672                                 rc = context_read_and_validate(&c->context[0], p, fp);
1673                                 if (rc)
1674                                         goto bad;
1675                                 break;
1676                         case OCON_NODE:
1677                                 rc = next_entry(buf, fp, sizeof(u32)* 2);
1678                                 if (rc < 0)
1679                                         goto bad;
1680                                 c->u.node.addr = le32_to_cpu(buf[0]);
1681                                 c->u.node.mask = le32_to_cpu(buf[1]);
1682                                 rc = context_read_and_validate(&c->context[0], p, fp);
1683                                 if (rc)
1684                                         goto bad;
1685                                 break;
1686                         case OCON_FSUSE:
1687                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1688                                 if (rc < 0)
1689                                         goto bad;
1690                                 c->v.behavior = le32_to_cpu(buf[0]);
1691                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1692                                         goto bad;
1693                                 len = le32_to_cpu(buf[1]);
1694                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1695                                 if (!c->u.name) {
1696                                         rc = -ENOMEM;
1697                                         goto bad;
1698                                 }
1699                                 rc = next_entry(c->u.name, fp, len);
1700                                 if (rc < 0)
1701                                         goto bad;
1702                                 c->u.name[len] = 0;
1703                                 rc = context_read_and_validate(&c->context[0], p, fp);
1704                                 if (rc)
1705                                         goto bad;
1706                                 break;
1707                         case OCON_NODE6: {
1708                                 int k;
1709
1710                                 rc = next_entry(buf, fp, sizeof(u32) * 8);
1711                                 if (rc < 0)
1712                                         goto bad;
1713                                 for (k = 0; k < 4; k++)
1714                                         c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1715                                 for (k = 0; k < 4; k++)
1716                                         c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1717                                 if (context_read_and_validate(&c->context[0], p, fp))
1718                                         goto bad;
1719                                 break;
1720                         }
1721                         }
1722                 }
1723         }
1724
1725         rc = next_entry(buf, fp, sizeof(u32));
1726         if (rc < 0)
1727                 goto bad;
1728         nel = le32_to_cpu(buf[0]);
1729         genfs_p = NULL;
1730         rc = -EINVAL;
1731         for (i = 0; i < nel; i++) {
1732                 rc = next_entry(buf, fp, sizeof(u32));
1733                 if (rc < 0)
1734                         goto bad;
1735                 len = le32_to_cpu(buf[0]);
1736                 newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1737                 if (!newgenfs) {
1738                         rc = -ENOMEM;
1739                         goto bad;
1740                 }
1741                 memset(newgenfs, 0, sizeof(*newgenfs));
1742
1743                 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1744                 if (!newgenfs->fstype) {
1745                         rc = -ENOMEM;
1746                         kfree(newgenfs);
1747                         goto bad;
1748                 }
1749                 rc = next_entry(newgenfs->fstype, fp, len);
1750                 if (rc < 0) {
1751                         kfree(newgenfs->fstype);
1752                         kfree(newgenfs);
1753                         goto bad;
1754                 }
1755                 newgenfs->fstype[len] = 0;
1756                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1757                      genfs_p = genfs, genfs = genfs->next) {
1758                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1759                                 printk(KERN_ERR "security:  dup genfs "
1760                                        "fstype %s\n", newgenfs->fstype);
1761                                 kfree(newgenfs->fstype);
1762                                 kfree(newgenfs);
1763                                 goto bad;
1764                         }
1765                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1766                                 break;
1767                 }
1768                 newgenfs->next = genfs;
1769                 if (genfs_p)
1770                         genfs_p->next = newgenfs;
1771                 else
1772                         p->genfs = newgenfs;
1773                 rc = next_entry(buf, fp, sizeof(u32));
1774                 if (rc < 0)
1775                         goto bad;
1776                 nel2 = le32_to_cpu(buf[0]);
1777                 for (j = 0; j < nel2; j++) {
1778                         rc = next_entry(buf, fp, sizeof(u32));
1779                         if (rc < 0)
1780                                 goto bad;
1781                         len = le32_to_cpu(buf[0]);
1782
1783                         newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1784                         if (!newc) {
1785                                 rc = -ENOMEM;
1786                                 goto bad;
1787                         }
1788                         memset(newc, 0, sizeof(*newc));
1789
1790                         newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1791                         if (!newc->u.name) {
1792                                 rc = -ENOMEM;
1793                                 goto bad_newc;
1794                         }
1795                         rc = next_entry(newc->u.name, fp, len);
1796                         if (rc < 0)
1797                                 goto bad_newc;
1798                         newc->u.name[len] = 0;
1799                         rc = next_entry(buf, fp, sizeof(u32));
1800                         if (rc < 0)
1801                                 goto bad_newc;
1802                         newc->v.sclass = le32_to_cpu(buf[0]);
1803                         if (context_read_and_validate(&newc->context[0], p, fp))
1804                                 goto bad_newc;
1805                         for (l = NULL, c = newgenfs->head; c;
1806                              l = c, c = c->next) {
1807                                 if (!strcmp(newc->u.name, c->u.name) &&
1808                                     (!c->v.sclass || !newc->v.sclass ||
1809                                      newc->v.sclass == c->v.sclass)) {
1810                                         printk(KERN_ERR "security:  dup genfs "
1811                                                "entry (%s,%s)\n",
1812                                                newgenfs->fstype, c->u.name);
1813                                         goto bad_newc;
1814                                 }
1815                                 len = strlen(newc->u.name);
1816                                 len2 = strlen(c->u.name);
1817                                 if (len > len2)
1818                                         break;
1819                         }
1820
1821                         newc->next = c;
1822                         if (l)
1823                                 l->next = newc;
1824                         else
1825                                 newgenfs->head = newc;
1826                 }
1827         }
1828
1829         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1830                 rc = next_entry(buf, fp, sizeof(u32));
1831                 if (rc < 0)
1832                         goto bad;
1833                 nel = le32_to_cpu(buf[0]);
1834                 lrt = NULL;
1835                 for (i = 0; i < nel; i++) {
1836                         rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1837                         if (!rt) {
1838                                 rc = -ENOMEM;
1839                                 goto bad;
1840                         }
1841                         memset(rt, 0, sizeof(*rt));
1842                         if (lrt)
1843                                 lrt->next = rt;
1844                         else
1845                                 p->range_tr = rt;
1846                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1847                         if (rc < 0)
1848                                 goto bad;
1849                         rt->dom = le32_to_cpu(buf[0]);
1850                         rt->type = le32_to_cpu(buf[1]);
1851                         rc = mls_read_range_helper(&rt->range, fp);
1852                         if (rc)
1853                                 goto bad;
1854                         lrt = rt;
1855                 }
1856         }
1857
1858         p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1859         if (!p->type_attr_map)
1860                 goto bad;
1861
1862         for (i = 0; i < p->p_types.nprim; i++) {
1863                 ebitmap_init(&p->type_attr_map[i]);
1864                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1865                         if (ebitmap_read(&p->type_attr_map[i], fp))
1866                                 goto bad;
1867                 }
1868                 /* add the type itself as the degenerate case */
1869                 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1870                                 goto bad;
1871         }
1872
1873         rc = 0;
1874 out:
1875         return rc;
1876 bad_newc:
1877         ocontext_destroy(newc,OCON_FSUSE);
1878 bad:
1879         if (!rc)
1880                 rc = -EINVAL;
1881         policydb_destroy(p);
1882         goto out;
1883 }