2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
27 #include <net/af_unix.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
41 static const char *class_to_string[] = {
43 #include "class_to_string.h"
47 #define TB_(s) static const char * s [] = {
50 #include "common_perm_to_string.h"
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57 #include "av_inherit.h"
61 const struct selinux_class_perm selinux_class_perm = {
63 ARRAY_SIZE(av_perm_to_string),
65 ARRAY_SIZE(class_to_string),
67 ARRAY_SIZE(av_inherit)
70 #define AVC_CACHE_SLOTS 512
71 #define AVC_DEF_CACHE_THRESHOLD 512
72 #define AVC_CACHE_RECLAIM 16
74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75 #define avc_cache_stats_incr(field) \
77 per_cpu(avc_cache_stats, get_cpu()).field++; \
81 #define avc_cache_stats_incr(field) do {} while (0)
88 struct av_decision avd;
89 atomic_t used; /* used recently */
94 struct list_head list;
95 struct rcu_head rhead;
99 struct list_head slots[AVC_CACHE_SLOTS];
100 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 atomic_t lru_hint; /* LRU hint for reclaim scan */
102 atomic_t active_nodes;
103 u32 latest_notif; /* latest revocation notification */
106 struct avc_callback_node {
107 int (*callback) (u32 event, u32 ssid, u32 tsid,
108 u16 tclass, u32 perms,
115 struct avc_callback_node *next;
118 /* Exported via selinufs */
119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
125 static struct avc_cache avc_cache;
126 static struct avc_callback_node *avc_callbacks;
127 static struct kmem_cache *avc_node_cachep;
129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
135 * avc_dump_av - Display an access vector in human-readable form.
136 * @tclass: target security class
139 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
141 const char **common_pts = NULL;
146 audit_log_format(ab, " null");
150 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 if (av_inherit[i].tclass == tclass) {
152 common_pts = av_inherit[i].common_pts;
153 common_base = av_inherit[i].common_base;
158 audit_log_format(ab, " {");
161 while (perm < common_base) {
163 audit_log_format(ab, " %s", common_pts[i]);
170 while (i < sizeof(av) * 8) {
172 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 if ((av_perm_to_string[i2].tclass == tclass) &&
174 (av_perm_to_string[i2].value == perm))
177 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 audit_log_format(ab, " %s",
179 av_perm_to_string[i2].name);
188 audit_log_format(ab, " 0x%x", av);
190 audit_log_format(ab, " }");
194 * avc_dump_query - Display a SID pair and a class in human-readable form.
195 * @ssid: source security identifier
196 * @tsid: target security identifier
197 * @tclass: target security class
199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
205 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
207 audit_log_format(ab, "ssid=%d", ssid);
209 audit_log_format(ab, "scontext=%s", scontext);
213 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215 audit_log_format(ab, " tsid=%d", tsid);
217 audit_log_format(ab, " tcontext=%s", scontext);
221 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
222 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
226 * avc_init - Initialize the AVC.
228 * Initialize the access vector cache.
230 void __init avc_init(void)
234 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
235 INIT_LIST_HEAD(&avc_cache.slots[i]);
236 spin_lock_init(&avc_cache.slots_lock[i]);
238 atomic_set(&avc_cache.active_nodes, 0);
239 atomic_set(&avc_cache.lru_hint, 0);
241 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
242 0, SLAB_PANIC, NULL);
244 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
247 int avc_get_hash_stats(char *page)
249 int i, chain_len, max_chain_len, slots_used;
250 struct avc_node *node;
256 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
257 if (!list_empty(&avc_cache.slots[i])) {
260 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262 if (chain_len > max_chain_len)
263 max_chain_len = chain_len;
269 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
270 "longest chain: %d\n",
271 atomic_read(&avc_cache.active_nodes),
272 slots_used, AVC_CACHE_SLOTS, max_chain_len);
275 static void avc_node_free(struct rcu_head *rhead)
277 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
278 kmem_cache_free(avc_node_cachep, node);
279 avc_cache_stats_incr(frees);
282 static void avc_node_delete(struct avc_node *node)
284 list_del_rcu(&node->list);
285 call_rcu(&node->rhead, avc_node_free);
286 atomic_dec(&avc_cache.active_nodes);
289 static void avc_node_kill(struct avc_node *node)
291 kmem_cache_free(avc_node_cachep, node);
292 avc_cache_stats_incr(frees);
293 atomic_dec(&avc_cache.active_nodes);
296 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
298 list_replace_rcu(&old->list, &new->list);
299 call_rcu(&old->rhead, avc_node_free);
300 atomic_dec(&avc_cache.active_nodes);
303 static inline int avc_reclaim_node(void)
305 struct avc_node *node;
306 int hvalue, try, ecx;
309 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
310 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
312 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
315 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
316 if (atomic_dec_and_test(&node->ae.used)) {
317 /* Recently Unused */
318 avc_node_delete(node);
319 avc_cache_stats_incr(reclaims);
321 if (ecx >= AVC_CACHE_RECLAIM) {
322 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
327 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
333 static struct avc_node *avc_alloc_node(void)
335 struct avc_node *node;
337 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
341 INIT_RCU_HEAD(&node->rhead);
342 INIT_LIST_HEAD(&node->list);
343 atomic_set(&node->ae.used, 1);
344 avc_cache_stats_incr(allocations);
346 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
353 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
355 node->ae.ssid = ssid;
356 node->ae.tsid = tsid;
357 node->ae.tclass = tclass;
358 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
361 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
363 struct avc_node *node, *ret = NULL;
366 hvalue = avc_hash(ssid, tsid, tclass);
367 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
368 if (ssid == node->ae.ssid &&
369 tclass == node->ae.tclass &&
370 tsid == node->ae.tsid) {
382 if (atomic_read(&ret->ae.used) != 1)
383 atomic_set(&ret->ae.used, 1);
389 * avc_lookup - Look up an AVC entry.
390 * @ssid: source security identifier
391 * @tsid: target security identifier
392 * @tclass: target security class
393 * @requested: requested permissions, interpreted based on @tclass
395 * Look up an AVC entry that is valid for the
396 * @requested permissions between the SID pair
397 * (@ssid, @tsid), interpreting the permissions
398 * based on @tclass. If a valid AVC entry exists,
399 * then this function return the avc_node.
400 * Otherwise, this function returns NULL.
402 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
404 struct avc_node *node;
406 avc_cache_stats_incr(lookups);
407 node = avc_search_node(ssid, tsid, tclass);
409 if (node && ((node->ae.avd.decided & requested) == requested)) {
410 avc_cache_stats_incr(hits);
415 avc_cache_stats_incr(misses);
420 static int avc_latest_notif_update(int seqno, int is_insert)
423 static DEFINE_SPINLOCK(notif_lock);
426 spin_lock_irqsave(¬if_lock, flag);
428 if (seqno < avc_cache.latest_notif) {
429 printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n",
430 seqno, avc_cache.latest_notif);
434 if (seqno > avc_cache.latest_notif)
435 avc_cache.latest_notif = seqno;
437 spin_unlock_irqrestore(¬if_lock, flag);
443 * avc_insert - Insert an AVC entry.
444 * @ssid: source security identifier
445 * @tsid: target security identifier
446 * @tclass: target security class
449 * Insert an AVC entry for the SID pair
450 * (@ssid, @tsid) and class @tclass.
451 * The access vectors and the sequence number are
452 * normally provided by the security server in
453 * response to a security_compute_av() call. If the
454 * sequence number @ae->avd.seqno is not less than the latest
455 * revocation notification, then the function copies
456 * the access vectors into a cache entry, returns
457 * avc_node inserted. Otherwise, this function returns NULL.
459 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
461 struct avc_node *pos, *node = NULL;
465 if (avc_latest_notif_update(ae->avd.seqno, 1))
468 node = avc_alloc_node();
470 hvalue = avc_hash(ssid, tsid, tclass);
471 avc_node_populate(node, ssid, tsid, tclass, ae);
473 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
474 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
475 if (pos->ae.ssid == ssid &&
476 pos->ae.tsid == tsid &&
477 pos->ae.tclass == tclass) {
478 avc_node_replace(node, pos);
482 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
484 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
490 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
491 struct in6_addr *addr, __be16 port,
492 char *name1, char *name2)
494 if (!ipv6_addr_any(addr))
495 audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
497 audit_log_format(ab, " %s=%d", name2, ntohs(port));
500 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
501 __be16 port, char *name1, char *name2)
504 audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
506 audit_log_format(ab, " %s=%d", name2, ntohs(port));
510 * avc_audit - Audit the granting or denial of permissions.
511 * @ssid: source security identifier
512 * @tsid: target security identifier
513 * @tclass: target security class
514 * @requested: requested permissions
515 * @avd: access vector decisions
516 * @result: result from avc_has_perm_noaudit
517 * @a: auxiliary audit data
519 * Audit the granting or denial of permissions in accordance
520 * with the policy. This function is typically called by
521 * avc_has_perm() after a permission check, but can also be
522 * called directly by callers who use avc_has_perm_noaudit()
523 * in order to separate the permission check from the auditing.
524 * For example, this separation is useful when the permission check must
525 * be performed under a lock, to allow the lock to be released
526 * before calling the auditing code.
528 void avc_audit(u32 ssid, u32 tsid,
529 u16 tclass, u32 requested,
530 struct av_decision *avd, int result, struct avc_audit_data *a)
532 struct task_struct *tsk = current;
533 struct inode *inode = NULL;
535 struct audit_buffer *ab;
537 denied = requested & ~avd->allowed;
540 if (!(audited & avd->auditdeny))
543 audited = denied = requested;
546 if (!(audited & avd->auditallow))
550 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
552 return; /* audit_panic has been called */
553 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
554 avc_dump_av(ab, tclass,audited);
555 audit_log_format(ab, " for ");
558 if (tsk && tsk->pid) {
559 audit_log_format(ab, " pid=%d comm=", tsk->pid);
560 audit_log_untrustedstring(ab, tsk->comm);
564 case AVC_AUDIT_DATA_IPC:
565 audit_log_format(ab, " key=%d", a->u.ipc_id);
567 case AVC_AUDIT_DATA_CAP:
568 audit_log_format(ab, " capability=%d", a->u.cap);
570 case AVC_AUDIT_DATA_FS:
571 if (a->u.fs.path.dentry) {
572 struct dentry *dentry = a->u.fs.path.dentry;
573 if (a->u.fs.path.mnt) {
574 audit_log_d_path(ab, "path=",
577 audit_log_format(ab, " name=");
578 audit_log_untrustedstring(ab, dentry->d_name.name);
580 inode = dentry->d_inode;
581 } else if (a->u.fs.inode) {
582 struct dentry *dentry;
583 inode = a->u.fs.inode;
584 dentry = d_find_alias(inode);
586 audit_log_format(ab, " name=");
587 audit_log_untrustedstring(ab, dentry->d_name.name);
592 audit_log_format(ab, " dev=%s ino=%lu",
596 case AVC_AUDIT_DATA_NET:
598 struct sock *sk = a->u.net.sk;
603 switch (sk->sk_family) {
605 struct inet_sock *inet = inet_sk(sk);
607 avc_print_ipv4_addr(ab, inet->rcv_saddr,
610 avc_print_ipv4_addr(ab, inet->daddr,
616 struct inet_sock *inet = inet_sk(sk);
617 struct ipv6_pinfo *inet6 = inet6_sk(sk);
619 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
622 avc_print_ipv6_addr(ab, &inet6->daddr,
634 audit_log_d_path(ab, "path=",
640 len = u->addr->len-sizeof(short);
641 p = &u->addr->name->sun_path[0];
642 audit_log_format(ab, " path=");
644 audit_log_untrustedstring(ab, p);
646 audit_log_hex(ab, p, len);
651 switch (a->u.net.family) {
653 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
656 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
661 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
664 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
669 if (a->u.net.netif > 0) {
670 struct net_device *dev;
672 /* NOTE: we always use init's namespace */
673 dev = dev_get_by_index(&init_net,
676 audit_log_format(ab, " netif=%s",
684 audit_log_format(ab, " ");
685 avc_dump_query(ab, ssid, tsid, tclass);
690 * avc_add_callback - Register a callback for security events.
691 * @callback: callback function
692 * @events: security events
693 * @ssid: source security identifier or %SECSID_WILD
694 * @tsid: target security identifier or %SECSID_WILD
695 * @tclass: target security class
696 * @perms: permissions
698 * Register a callback function for events in the set @events
699 * related to the SID pair (@ssid, @tsid) and
700 * and the permissions @perms, interpreting
701 * @perms based on @tclass. Returns %0 on success or
702 * -%ENOMEM if insufficient memory exists to add the callback.
704 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
705 u16 tclass, u32 perms,
707 u32 events, u32 ssid, u32 tsid,
708 u16 tclass, u32 perms)
710 struct avc_callback_node *c;
713 c = kmalloc(sizeof(*c), GFP_ATOMIC);
719 c->callback = callback;
724 c->next = avc_callbacks;
730 static inline int avc_sidcmp(u32 x, u32 y)
732 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
736 * avc_update_node Update an AVC entry
737 * @event : Updating event
738 * @perms : Permission mask bits
739 * @ssid,@tsid,@tclass : identifier of an AVC entry
741 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
742 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
743 * otherwise, this function update the AVC entry. The original AVC-entry object
744 * will release later by RCU.
746 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
750 struct avc_node *pos, *node, *orig = NULL;
752 node = avc_alloc_node();
758 /* Lock the target slot */
759 hvalue = avc_hash(ssid, tsid, tclass);
760 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
762 list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
763 if ( ssid==pos->ae.ssid &&
764 tsid==pos->ae.tsid &&
765 tclass==pos->ae.tclass ){
778 * Copy and replace original node.
781 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
784 case AVC_CALLBACK_GRANT:
785 node->ae.avd.allowed |= perms;
787 case AVC_CALLBACK_TRY_REVOKE:
788 case AVC_CALLBACK_REVOKE:
789 node->ae.avd.allowed &= ~perms;
791 case AVC_CALLBACK_AUDITALLOW_ENABLE:
792 node->ae.avd.auditallow |= perms;
794 case AVC_CALLBACK_AUDITALLOW_DISABLE:
795 node->ae.avd.auditallow &= ~perms;
797 case AVC_CALLBACK_AUDITDENY_ENABLE:
798 node->ae.avd.auditdeny |= perms;
800 case AVC_CALLBACK_AUDITDENY_DISABLE:
801 node->ae.avd.auditdeny &= ~perms;
804 avc_node_replace(node, orig);
806 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
812 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
813 * @seqno: policy sequence number
815 int avc_ss_reset(u32 seqno)
817 struct avc_callback_node *c;
818 int i, rc = 0, tmprc;
820 struct avc_node *node;
822 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
823 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
824 list_for_each_entry(node, &avc_cache.slots[i], list)
825 avc_node_delete(node);
826 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
829 for (c = avc_callbacks; c; c = c->next) {
830 if (c->events & AVC_CALLBACK_RESET) {
831 tmprc = c->callback(AVC_CALLBACK_RESET,
833 /* save the first error encountered for the return
834 value and continue processing the callbacks */
840 avc_latest_notif_update(seqno, 0);
845 * avc_has_perm_noaudit - Check permissions but perform no auditing.
846 * @ssid: source security identifier
847 * @tsid: target security identifier
848 * @tclass: target security class
849 * @requested: requested permissions, interpreted based on @tclass
850 * @flags: AVC_STRICT or 0
851 * @avd: access vector decisions
853 * Check the AVC to determine whether the @requested permissions are granted
854 * for the SID pair (@ssid, @tsid), interpreting the permissions
855 * based on @tclass, and call the security server on a cache miss to obtain
856 * a new decision and add it to the cache. Return a copy of the decisions
857 * in @avd. Return %0 if all @requested permissions are granted,
858 * -%EACCES if any permissions are denied, or another -errno upon
859 * other errors. This function is typically called by avc_has_perm(),
860 * but may also be called directly to separate permission checking from
861 * auditing, e.g. in cases where a lock must be held for the check but
862 * should be released for the auditing.
864 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
865 u16 tclass, u32 requested,
867 struct av_decision *avd)
869 struct avc_node *node;
870 struct avc_entry entry, *p_ae;
878 node = avc_lookup(ssid, tsid, tclass, requested);
881 rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
885 node = avc_insert(ssid,tsid,tclass,&entry);
888 p_ae = node ? &node->ae : &entry;
891 memcpy(avd, &p_ae->avd, sizeof(*avd));
893 denied = requested & ~(p_ae->avd.allowed);
896 if (flags & AVC_STRICT)
898 else if (!selinux_enforcing || security_permissive_sid(ssid))
899 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
911 * avc_has_perm - Check permissions and perform any appropriate auditing.
912 * @ssid: source security identifier
913 * @tsid: target security identifier
914 * @tclass: target security class
915 * @requested: requested permissions, interpreted based on @tclass
916 * @auditdata: auxiliary audit data
918 * Check the AVC to determine whether the @requested permissions are granted
919 * for the SID pair (@ssid, @tsid), interpreting the permissions
920 * based on @tclass, and call the security server on a cache miss to obtain
921 * a new decision and add it to the cache. Audit the granting or denial of
922 * permissions in accordance with the policy. Return %0 if all @requested
923 * permissions are granted, -%EACCES if any permissions are denied, or
924 * another -errno upon other errors.
926 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
927 u32 requested, struct avc_audit_data *auditdata)
929 struct av_decision avd;
932 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
933 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
937 u32 avc_policy_seqno(void)
939 return avc_cache.latest_notif;