]> err.no Git - linux-2.6/blob - net/sunrpc/sched.c
043eef4c15a2a975be9bfda9b8739bf295aba40c
[linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102         struct list_head *q;
103         struct rpc_task *t;
104
105         INIT_LIST_HEAD(&task->u.tk_wait.links);
106         q = &queue->tasks[task->tk_priority];
107         if (unlikely(task->tk_priority > queue->maxpriority))
108                 q = &queue->tasks[queue->maxpriority];
109         list_for_each_entry(t, q, u.tk_wait.list) {
110                 if (t->tk_owner == task->tk_owner) {
111                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112                         return;
113                 }
114         }
115         list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128         BUG_ON (RPC_IS_QUEUED(task));
129
130         if (RPC_IS_PRIORITY(queue))
131                 __rpc_add_wait_queue_priority(queue, task);
132         else if (RPC_IS_SWAPPER(task))
133                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134         else
135                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136         task->tk_waitqueue = queue;
137         queue->qlen++;
138         rpc_set_queued(task);
139
140         dprintk("RPC: %5u added to queue %p \"%s\"\n",
141                         task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         if (!list_empty(&task->u.tk_wait.links)) {
152                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155         }
156 }
157
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164         __rpc_disable_timer(queue, task);
165         if (RPC_IS_PRIORITY(queue))
166                 __rpc_remove_wait_queue_priority(task);
167         list_del(&task->u.tk_wait.list);
168         queue->qlen--;
169         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170                         task->tk_pid, queue, rpc_qname(queue));
171 }
172
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175         queue->priority = priority;
176         queue->count = 1 << (priority * 2);
177 }
178
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181         queue->owner = pid;
182         queue->nr = RPC_BATCH_COUNT;
183 }
184
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187         rpc_set_waitqueue_priority(queue, queue->maxpriority);
188         rpc_set_waitqueue_owner(queue, 0);
189 }
190
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193         int i;
194
195         spin_lock_init(&queue->lock);
196         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197                 INIT_LIST_HEAD(&queue->tasks[i]);
198         queue->maxpriority = nr_queues - 1;
199         rpc_reset_waitqueue_priority(queue);
200         queue->qlen = 0;
201         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202         INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204         queue->name = qname;
205 #endif
206 }
207
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212
213 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
214 {
215         __rpc_init_priority_wait_queue(queue, qname, 1);
216 }
217 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
218
219 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
220 {
221         del_timer_sync(&queue->timer_list.timer);
222 }
223 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
224
225 static int rpc_wait_bit_killable(void *word)
226 {
227         if (fatal_signal_pending(current))
228                 return -ERESTARTSYS;
229         schedule();
230         return 0;
231 }
232
233 #ifdef RPC_DEBUG
234 static void rpc_task_set_debuginfo(struct rpc_task *task)
235 {
236         static atomic_t rpc_pid;
237
238         task->tk_magic = RPC_TASK_MAGIC_ID;
239         task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246
247 static void rpc_set_active(struct rpc_task *task)
248 {
249         struct rpc_clnt *clnt;
250         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
251                 return;
252         rpc_task_set_debuginfo(task);
253         /* Add to global list of all tasks */
254         clnt = task->tk_client;
255         if (clnt != NULL) {
256                 spin_lock(&clnt->cl_lock);
257                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
258                 spin_unlock(&clnt->cl_lock);
259         }
260 }
261
262 /*
263  * Mark an RPC call as having completed by clearing the 'active' bit
264  */
265 static void rpc_mark_complete_task(struct rpc_task *task)
266 {
267         smp_mb__before_clear_bit();
268         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
269         smp_mb__after_clear_bit();
270         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
271 }
272
273 /*
274  * Allow callers to wait for completion of an RPC call
275  */
276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
277 {
278         if (action == NULL)
279                 action = rpc_wait_bit_killable;
280         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
281                         action, TASK_KILLABLE);
282 }
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
284
285 /*
286  * Make an RPC task runnable.
287  *
288  * Note: If the task is ASYNC, this must be called with
289  * the spinlock held to protect the wait queue operation.
290  */
291 static void rpc_make_runnable(struct rpc_task *task)
292 {
293         rpc_clear_queued(task);
294         if (rpc_test_and_set_running(task))
295                 return;
296         /* We might have raced */
297         if (RPC_IS_QUEUED(task)) {
298                 rpc_clear_running(task);
299                 return;
300         }
301         if (RPC_IS_ASYNC(task)) {
302                 int status;
303
304                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
305                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
306                 if (status < 0) {
307                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
308                         task->tk_status = status;
309                         return;
310                 }
311         } else
312                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
313 }
314
315 /*
316  * Prepare for sleeping on a wait queue.
317  * By always appending tasks to the list we ensure FIFO behavior.
318  * NB: An RPC task will only receive interrupt-driven events as long
319  * as it's on a wait queue.
320  */
321 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
322                         rpc_action action)
323 {
324         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325                         task->tk_pid, rpc_qname(q), jiffies);
326
327         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
328                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
329                 return;
330         }
331
332         __rpc_add_wait_queue(q, task);
333
334         BUG_ON(task->tk_callback != NULL);
335         task->tk_callback = action;
336         __rpc_add_timer(q, task);
337 }
338
339 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
340                                 rpc_action action)
341 {
342         /* Mark the task as being activated if so needed */
343         rpc_set_active(task);
344
345         /*
346          * Protect the queue operations.
347          */
348         spin_lock_bh(&q->lock);
349         __rpc_sleep_on(q, task, action);
350         spin_unlock_bh(&q->lock);
351 }
352 EXPORT_SYMBOL_GPL(rpc_sleep_on);
353
354 /**
355  * __rpc_do_wake_up_task - wake up a single rpc_task
356  * @queue: wait queue
357  * @task: task to be woken up
358  *
359  * Caller must hold queue->lock, and have cleared the task queued flag.
360  */
361 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
362 {
363         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
364                         task->tk_pid, jiffies);
365
366 #ifdef RPC_DEBUG
367         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
368 #endif
369         /* Has the task been executed yet? If not, we cannot wake it up! */
370         if (!RPC_IS_ACTIVATED(task)) {
371                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
372                 return;
373         }
374
375         __rpc_remove_wait_queue(queue, task);
376
377         rpc_make_runnable(task);
378
379         dprintk("RPC:       __rpc_wake_up_task done\n");
380 }
381
382 /*
383  * Wake up a queued task while the queue lock is being held
384  */
385 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
386 {
387         if (!RPC_IS_QUEUED(task) || task->tk_waitqueue != queue)
388                 return;
389         if (rpc_start_wakeup(task)) {
390                         __rpc_do_wake_up_task(queue, task);
391                 rpc_finish_wakeup(task);
392         }
393 }
394
395 /*
396  * Wake up a task on a specific queue
397  */
398 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
399 {
400         rcu_read_lock_bh();
401         spin_lock(&queue->lock);
402         rpc_wake_up_task_queue_locked(queue, task);
403         spin_unlock(&queue->lock);
404         rcu_read_unlock_bh();
405 }
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
407
408 /*
409  * Wake up the specified task
410  */
411 static void rpc_wake_up_task(struct rpc_task *task)
412 {
413         rpc_wake_up_queued_task(task->tk_waitqueue, task);
414 }
415
416 /*
417  * Wake up the next task on a priority queue.
418  */
419 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
420 {
421         struct list_head *q;
422         struct rpc_task *task;
423
424         /*
425          * Service a batch of tasks from a single owner.
426          */
427         q = &queue->tasks[queue->priority];
428         if (!list_empty(q)) {
429                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
430                 if (queue->owner == task->tk_owner) {
431                         if (--queue->nr)
432                                 goto out;
433                         list_move_tail(&task->u.tk_wait.list, q);
434                 }
435                 /*
436                  * Check if we need to switch queues.
437                  */
438                 if (--queue->count)
439                         goto new_owner;
440         }
441
442         /*
443          * Service the next queue.
444          */
445         do {
446                 if (q == &queue->tasks[0])
447                         q = &queue->tasks[queue->maxpriority];
448                 else
449                         q = q - 1;
450                 if (!list_empty(q)) {
451                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
452                         goto new_queue;
453                 }
454         } while (q != &queue->tasks[queue->priority]);
455
456         rpc_reset_waitqueue_priority(queue);
457         return NULL;
458
459 new_queue:
460         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
461 new_owner:
462         rpc_set_waitqueue_owner(queue, task->tk_owner);
463 out:
464         rpc_wake_up_task_queue_locked(queue, task);
465         return task;
466 }
467
468 /*
469  * Wake up the next task on the wait queue.
470  */
471 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
472 {
473         struct rpc_task *task = NULL;
474
475         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
476                         queue, rpc_qname(queue));
477         rcu_read_lock_bh();
478         spin_lock(&queue->lock);
479         if (RPC_IS_PRIORITY(queue))
480                 task = __rpc_wake_up_next_priority(queue);
481         else {
482                 task_for_first(task, &queue->tasks[0])
483                         rpc_wake_up_task_queue_locked(queue, task);
484         }
485         spin_unlock(&queue->lock);
486         rcu_read_unlock_bh();
487
488         return task;
489 }
490 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
491
492 /**
493  * rpc_wake_up - wake up all rpc_tasks
494  * @queue: rpc_wait_queue on which the tasks are sleeping
495  *
496  * Grabs queue->lock
497  */
498 void rpc_wake_up(struct rpc_wait_queue *queue)
499 {
500         struct rpc_task *task, *next;
501         struct list_head *head;
502
503         rcu_read_lock_bh();
504         spin_lock(&queue->lock);
505         head = &queue->tasks[queue->maxpriority];
506         for (;;) {
507                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
508                         rpc_wake_up_task_queue_locked(queue, task);
509                 if (head == &queue->tasks[0])
510                         break;
511                 head--;
512         }
513         spin_unlock(&queue->lock);
514         rcu_read_unlock_bh();
515 }
516 EXPORT_SYMBOL_GPL(rpc_wake_up);
517
518 /**
519  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
520  * @queue: rpc_wait_queue on which the tasks are sleeping
521  * @status: status value to set
522  *
523  * Grabs queue->lock
524  */
525 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
526 {
527         struct rpc_task *task, *next;
528         struct list_head *head;
529
530         rcu_read_lock_bh();
531         spin_lock(&queue->lock);
532         head = &queue->tasks[queue->maxpriority];
533         for (;;) {
534                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535                         task->tk_status = status;
536                         rpc_wake_up_task_queue_locked(queue, task);
537                 }
538                 if (head == &queue->tasks[0])
539                         break;
540                 head--;
541         }
542         spin_unlock(&queue->lock);
543         rcu_read_unlock_bh();
544 }
545 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
546
547 static void __rpc_queue_timer_fn(unsigned long ptr)
548 {
549         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
550         struct rpc_task *task, *n;
551         unsigned long expires, now, timeo;
552
553         spin_lock(&queue->lock);
554         expires = now = jiffies;
555         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
556                 timeo = task->u.tk_wait.expires;
557                 if (time_after_eq(now, timeo)) {
558                         dprintk("RPC: %5u timeout\n", task->tk_pid);
559                         task->tk_status = -ETIMEDOUT;
560                         rpc_wake_up_task_queue_locked(queue, task);
561                         continue;
562                 }
563                 if (expires == now || time_after(expires, timeo))
564                         expires = timeo;
565         }
566         if (!list_empty(&queue->timer_list.list))
567                 rpc_set_queue_timer(queue, expires);
568         spin_unlock(&queue->lock);
569 }
570
571 static void __rpc_atrun(struct rpc_task *task)
572 {
573         task->tk_status = 0;
574 }
575
576 /*
577  * Run a task at a later time
578  */
579 void rpc_delay(struct rpc_task *task, unsigned long delay)
580 {
581         task->tk_timeout = delay;
582         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
583 }
584 EXPORT_SYMBOL_GPL(rpc_delay);
585
586 /*
587  * Helper to call task->tk_ops->rpc_call_prepare
588  */
589 static void rpc_prepare_task(struct rpc_task *task)
590 {
591         lock_kernel();
592         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
593         unlock_kernel();
594 }
595
596 /*
597  * Helper that calls task->tk_ops->rpc_call_done if it exists
598  */
599 void rpc_exit_task(struct rpc_task *task)
600 {
601         task->tk_action = NULL;
602         if (task->tk_ops->rpc_call_done != NULL) {
603                 lock_kernel();
604                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
605                 unlock_kernel();
606                 if (task->tk_action != NULL) {
607                         WARN_ON(RPC_ASSASSINATED(task));
608                         /* Always release the RPC slot and buffer memory */
609                         xprt_release(task);
610                 }
611         }
612 }
613 EXPORT_SYMBOL_GPL(rpc_exit_task);
614
615 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
616 {
617         if (ops->rpc_release != NULL) {
618                 lock_kernel();
619                 ops->rpc_release(calldata);
620                 unlock_kernel();
621         }
622 }
623
624 /*
625  * This is the RPC `scheduler' (or rather, the finite state machine).
626  */
627 static void __rpc_execute(struct rpc_task *task)
628 {
629         int             status = 0;
630
631         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
632                         task->tk_pid, task->tk_flags);
633
634         BUG_ON(RPC_IS_QUEUED(task));
635
636         for (;;) {
637
638                 /*
639                  * Execute any pending callback.
640                  */
641                 if (RPC_DO_CALLBACK(task)) {
642                         /* Define a callback save pointer */
643                         void (*save_callback)(struct rpc_task *);
644
645                         /*
646                          * If a callback exists, save it, reset it,
647                          * call it.
648                          * The save is needed to stop from resetting
649                          * another callback set within the callback handler
650                          * - Dave
651                          */
652                         save_callback=task->tk_callback;
653                         task->tk_callback=NULL;
654                         save_callback(task);
655                 }
656
657                 /*
658                  * Perform the next FSM step.
659                  * tk_action may be NULL when the task has been killed
660                  * by someone else.
661                  */
662                 if (!RPC_IS_QUEUED(task)) {
663                         if (task->tk_action == NULL)
664                                 break;
665                         task->tk_action(task);
666                 }
667
668                 /*
669                  * Lockless check for whether task is sleeping or not.
670                  */
671                 if (!RPC_IS_QUEUED(task))
672                         continue;
673                 rpc_clear_running(task);
674                 if (RPC_IS_ASYNC(task)) {
675                         /* Careful! we may have raced... */
676                         if (RPC_IS_QUEUED(task))
677                                 return;
678                         if (rpc_test_and_set_running(task))
679                                 return;
680                         continue;
681                 }
682
683                 /* sync task: sleep here */
684                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
685                 status = out_of_line_wait_on_bit(&task->tk_runstate,
686                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
687                                 TASK_KILLABLE);
688                 if (status == -ERESTARTSYS) {
689                         /*
690                          * When a sync task receives a signal, it exits with
691                          * -ERESTARTSYS. In order to catch any callbacks that
692                          * clean up after sleeping on some queue, we don't
693                          * break the loop here, but go around once more.
694                          */
695                         dprintk("RPC: %5u got signal\n", task->tk_pid);
696                         task->tk_flags |= RPC_TASK_KILLED;
697                         rpc_exit(task, -ERESTARTSYS);
698                         rpc_wake_up_task(task);
699                 }
700                 rpc_set_running(task);
701                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
702         }
703
704         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
705                         task->tk_status);
706         /* Release all resources associated with the task */
707         rpc_release_task(task);
708 }
709
710 /*
711  * User-visible entry point to the scheduler.
712  *
713  * This may be called recursively if e.g. an async NFS task updates
714  * the attributes and finds that dirty pages must be flushed.
715  * NOTE: Upon exit of this function the task is guaranteed to be
716  *       released. In particular note that tk_release() will have
717  *       been called, so your task memory may have been freed.
718  */
719 void rpc_execute(struct rpc_task *task)
720 {
721         rpc_set_active(task);
722         rpc_set_running(task);
723         __rpc_execute(task);
724 }
725
726 static void rpc_async_schedule(struct work_struct *work)
727 {
728         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
729 }
730
731 struct rpc_buffer {
732         size_t  len;
733         char    data[];
734 };
735
736 /**
737  * rpc_malloc - allocate an RPC buffer
738  * @task: RPC task that will use this buffer
739  * @size: requested byte size
740  *
741  * To prevent rpciod from hanging, this allocator never sleeps,
742  * returning NULL if the request cannot be serviced immediately.
743  * The caller can arrange to sleep in a way that is safe for rpciod.
744  *
745  * Most requests are 'small' (under 2KiB) and can be serviced from a
746  * mempool, ensuring that NFS reads and writes can always proceed,
747  * and that there is good locality of reference for these buffers.
748  *
749  * In order to avoid memory starvation triggering more writebacks of
750  * NFS requests, we avoid using GFP_KERNEL.
751  */
752 void *rpc_malloc(struct rpc_task *task, size_t size)
753 {
754         struct rpc_buffer *buf;
755         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
756
757         size += sizeof(struct rpc_buffer);
758         if (size <= RPC_BUFFER_MAXSIZE)
759                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
760         else
761                 buf = kmalloc(size, gfp);
762
763         if (!buf)
764                 return NULL;
765
766         buf->len = size;
767         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
768                         task->tk_pid, size, buf);
769         return &buf->data;
770 }
771 EXPORT_SYMBOL_GPL(rpc_malloc);
772
773 /**
774  * rpc_free - free buffer allocated via rpc_malloc
775  * @buffer: buffer to free
776  *
777  */
778 void rpc_free(void *buffer)
779 {
780         size_t size;
781         struct rpc_buffer *buf;
782
783         if (!buffer)
784                 return;
785
786         buf = container_of(buffer, struct rpc_buffer, data);
787         size = buf->len;
788
789         dprintk("RPC:       freeing buffer of size %zu at %p\n",
790                         size, buf);
791
792         if (size <= RPC_BUFFER_MAXSIZE)
793                 mempool_free(buf, rpc_buffer_mempool);
794         else
795                 kfree(buf);
796 }
797 EXPORT_SYMBOL_GPL(rpc_free);
798
799 /*
800  * Creation and deletion of RPC task structures
801  */
802 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
803 {
804         memset(task, 0, sizeof(*task));
805         atomic_set(&task->tk_count, 1);
806         task->tk_flags  = task_setup_data->flags;
807         task->tk_ops = task_setup_data->callback_ops;
808         task->tk_calldata = task_setup_data->callback_data;
809         INIT_LIST_HEAD(&task->tk_task);
810
811         /* Initialize retry counters */
812         task->tk_garb_retry = 2;
813         task->tk_cred_retry = 2;
814
815         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
816         task->tk_owner = current->tgid;
817
818         /* Initialize workqueue for async tasks */
819         task->tk_workqueue = task_setup_data->workqueue;
820
821         task->tk_client = task_setup_data->rpc_client;
822         if (task->tk_client != NULL) {
823                 kref_get(&task->tk_client->cl_kref);
824                 if (task->tk_client->cl_softrtry)
825                         task->tk_flags |= RPC_TASK_SOFT;
826         }
827
828         if (task->tk_ops->rpc_call_prepare != NULL)
829                 task->tk_action = rpc_prepare_task;
830
831         if (task_setup_data->rpc_message != NULL) {
832                 memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
833                 /* Bind the user cred */
834                 if (task->tk_msg.rpc_cred != NULL)
835                         rpcauth_holdcred(task);
836                 else
837                         rpcauth_bindcred(task);
838                 if (task->tk_action == NULL)
839                         rpc_call_start(task);
840         }
841
842         /* starting timestamp */
843         task->tk_start = jiffies;
844
845         dprintk("RPC:       new task initialized, procpid %u\n",
846                                 task_pid_nr(current));
847 }
848
849 static struct rpc_task *
850 rpc_alloc_task(void)
851 {
852         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
853 }
854
855 static void rpc_free_task_rcu(struct rcu_head *rcu)
856 {
857         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
858         dprintk("RPC: %5u freeing task\n", task->tk_pid);
859         mempool_free(task, rpc_task_mempool);
860 }
861
862 /*
863  * Create a new task for the specified client.
864  */
865 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
866 {
867         struct rpc_task *task = setup_data->task;
868         unsigned short flags = 0;
869
870         if (task == NULL) {
871                 task = rpc_alloc_task();
872                 if (task == NULL)
873                         goto out;
874                 flags = RPC_TASK_DYNAMIC;
875         }
876
877         rpc_init_task(task, setup_data);
878
879         task->tk_flags |= flags;
880         dprintk("RPC:       allocated task %p\n", task);
881 out:
882         return task;
883 }
884
885 static void rpc_free_task(struct rpc_task *task)
886 {
887         const struct rpc_call_ops *tk_ops = task->tk_ops;
888         void *calldata = task->tk_calldata;
889
890         if (task->tk_flags & RPC_TASK_DYNAMIC)
891                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
892         rpc_release_calldata(tk_ops, calldata);
893 }
894
895 static void rpc_async_release(struct work_struct *work)
896 {
897         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
898 }
899
900 void rpc_put_task(struct rpc_task *task)
901 {
902         if (!atomic_dec_and_test(&task->tk_count))
903                 return;
904         /* Release resources */
905         if (task->tk_rqstp)
906                 xprt_release(task);
907         if (task->tk_msg.rpc_cred)
908                 rpcauth_unbindcred(task);
909         if (task->tk_client) {
910                 rpc_release_client(task->tk_client);
911                 task->tk_client = NULL;
912         }
913         if (task->tk_workqueue != NULL) {
914                 INIT_WORK(&task->u.tk_work, rpc_async_release);
915                 queue_work(task->tk_workqueue, &task->u.tk_work);
916         } else
917                 rpc_free_task(task);
918 }
919 EXPORT_SYMBOL_GPL(rpc_put_task);
920
921 static void rpc_release_task(struct rpc_task *task)
922 {
923 #ifdef RPC_DEBUG
924         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
925 #endif
926         dprintk("RPC: %5u release task\n", task->tk_pid);
927
928         if (!list_empty(&task->tk_task)) {
929                 struct rpc_clnt *clnt = task->tk_client;
930                 /* Remove from client task list */
931                 spin_lock(&clnt->cl_lock);
932                 list_del(&task->tk_task);
933                 spin_unlock(&clnt->cl_lock);
934         }
935         BUG_ON (RPC_IS_QUEUED(task));
936
937 #ifdef RPC_DEBUG
938         task->tk_magic = 0;
939 #endif
940         /* Wake up anyone who is waiting for task completion */
941         rpc_mark_complete_task(task);
942
943         rpc_put_task(task);
944 }
945
946 /*
947  * Kill all tasks for the given client.
948  * XXX: kill their descendants as well?
949  */
950 void rpc_killall_tasks(struct rpc_clnt *clnt)
951 {
952         struct rpc_task *rovr;
953
954
955         if (list_empty(&clnt->cl_tasks))
956                 return;
957         dprintk("RPC:       killing all tasks for client %p\n", clnt);
958         /*
959          * Spin lock all_tasks to prevent changes...
960          */
961         spin_lock(&clnt->cl_lock);
962         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
963                 if (! RPC_IS_ACTIVATED(rovr))
964                         continue;
965                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
966                         rovr->tk_flags |= RPC_TASK_KILLED;
967                         rpc_exit(rovr, -EIO);
968                         rpc_wake_up_task(rovr);
969                 }
970         }
971         spin_unlock(&clnt->cl_lock);
972 }
973 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
974
975 int rpciod_up(void)
976 {
977         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
978 }
979
980 void rpciod_down(void)
981 {
982         module_put(THIS_MODULE);
983 }
984
985 /*
986  * Start up the rpciod workqueue.
987  */
988 static int rpciod_start(void)
989 {
990         struct workqueue_struct *wq;
991
992         /*
993          * Create the rpciod thread and wait for it to start.
994          */
995         dprintk("RPC:       creating workqueue rpciod\n");
996         wq = create_workqueue("rpciod");
997         rpciod_workqueue = wq;
998         return rpciod_workqueue != NULL;
999 }
1000
1001 static void rpciod_stop(void)
1002 {
1003         struct workqueue_struct *wq = NULL;
1004
1005         if (rpciod_workqueue == NULL)
1006                 return;
1007         dprintk("RPC:       destroying workqueue rpciod\n");
1008
1009         wq = rpciod_workqueue;
1010         rpciod_workqueue = NULL;
1011         destroy_workqueue(wq);
1012 }
1013
1014 void
1015 rpc_destroy_mempool(void)
1016 {
1017         rpciod_stop();
1018         if (rpc_buffer_mempool)
1019                 mempool_destroy(rpc_buffer_mempool);
1020         if (rpc_task_mempool)
1021                 mempool_destroy(rpc_task_mempool);
1022         if (rpc_task_slabp)
1023                 kmem_cache_destroy(rpc_task_slabp);
1024         if (rpc_buffer_slabp)
1025                 kmem_cache_destroy(rpc_buffer_slabp);
1026         rpc_destroy_wait_queue(&delay_queue);
1027 }
1028
1029 int
1030 rpc_init_mempool(void)
1031 {
1032         /*
1033          * The following is not strictly a mempool initialisation,
1034          * but there is no harm in doing it here
1035          */
1036         rpc_init_wait_queue(&delay_queue, "delayq");
1037         if (!rpciod_start())
1038                 goto err_nomem;
1039
1040         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1041                                              sizeof(struct rpc_task),
1042                                              0, SLAB_HWCACHE_ALIGN,
1043                                              NULL);
1044         if (!rpc_task_slabp)
1045                 goto err_nomem;
1046         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1047                                              RPC_BUFFER_MAXSIZE,
1048                                              0, SLAB_HWCACHE_ALIGN,
1049                                              NULL);
1050         if (!rpc_buffer_slabp)
1051                 goto err_nomem;
1052         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1053                                                     rpc_task_slabp);
1054         if (!rpc_task_mempool)
1055                 goto err_nomem;
1056         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1057                                                       rpc_buffer_slabp);
1058         if (!rpc_buffer_mempool)
1059                 goto err_nomem;
1060         return 0;
1061 err_nomem:
1062         rpc_destroy_mempool();
1063         return -ENOMEM;
1064 }