]> err.no Git - linux-2.6/blob - net/ipv4/tcp_ipv4.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/linville/wireles...
[linux-2.6] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9  *
10  *              IPv4 specific functions
11  *
12  *
13  *              code split from:
14  *              linux/ipv4/tcp.c
15  *              linux/ipv4/tcp_input.c
16  *              linux/ipv4/tcp_output.c
17  *
18  *              See tcp.c for author information
19  *
20  *      This program is free software; you can redistribute it and/or
21  *      modify it under the terms of the GNU General Public License
22  *      as published by the Free Software Foundation; either version
23  *      2 of the License, or (at your option) any later version.
24  */
25
26 /*
27  * Changes:
28  *              David S. Miller :       New socket lookup architecture.
29  *                                      This code is dedicated to John Dyson.
30  *              David S. Miller :       Change semantics of established hash,
31  *                                      half is devoted to TIME_WAIT sockets
32  *                                      and the rest go in the other half.
33  *              Andi Kleen :            Add support for syncookies and fixed
34  *                                      some bugs: ip options weren't passed to
35  *                                      the TCP layer, missed a check for an
36  *                                      ACK bit.
37  *              Andi Kleen :            Implemented fast path mtu discovery.
38  *                                      Fixed many serious bugs in the
39  *                                      request_sock handling and moved
40  *                                      most of it into the af independent code.
41  *                                      Added tail drop and some other bugfixes.
42  *                                      Added new listen semantics.
43  *              Mike McLagan    :       Routing by source
44  *      Juan Jose Ciarlante:            ip_dynaddr bits
45  *              Andi Kleen:             various fixes.
46  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
47  *                                      coma.
48  *      Andi Kleen              :       Fix new listen.
49  *      Andi Kleen              :       Fix accept error reporting.
50  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
51  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
52  *                                      a single port at the same time.
53  */
54
55
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88 /* Check TCP sequence numbers in ICMP packets. */
89 #define ICMP_MIN_LENGTH 8
90
91 /* Socket used for sending RSTs */
92 static struct socket *tcp_socket __read_mostly;
93
94 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
95
96 #ifdef CONFIG_TCP_MD5SIG
97 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
98                                                    __be32 addr);
99 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
100                                    __be32 saddr, __be32 daddr,
101                                    struct tcphdr *th, int protocol,
102                                    unsigned int tcplen);
103 #endif
104
105 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
106         .lhash_lock  = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
107         .lhash_users = ATOMIC_INIT(0),
108         .lhash_wait  = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
109 };
110
111 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
112 {
113         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
114                                           ip_hdr(skb)->saddr,
115                                           tcp_hdr(skb)->dest,
116                                           tcp_hdr(skb)->source);
117 }
118
119 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
120 {
121         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
122         struct tcp_sock *tp = tcp_sk(sk);
123
124         /* With PAWS, it is safe from the viewpoint
125            of data integrity. Even without PAWS it is safe provided sequence
126            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
127
128            Actually, the idea is close to VJ's one, only timestamp cache is
129            held not per host, but per port pair and TW bucket is used as state
130            holder.
131
132            If TW bucket has been already destroyed we fall back to VJ's scheme
133            and use initial timestamp retrieved from peer table.
134          */
135         if (tcptw->tw_ts_recent_stamp &&
136             (twp == NULL || (sysctl_tcp_tw_reuse &&
137                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
138                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
139                 if (tp->write_seq == 0)
140                         tp->write_seq = 1;
141                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
142                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
143                 sock_hold(sktw);
144                 return 1;
145         }
146
147         return 0;
148 }
149
150 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
151
152 /* This will initiate an outgoing connection. */
153 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
154 {
155         struct inet_sock *inet = inet_sk(sk);
156         struct tcp_sock *tp = tcp_sk(sk);
157         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
158         struct rtable *rt;
159         __be32 daddr, nexthop;
160         int tmp;
161         int err;
162
163         if (addr_len < sizeof(struct sockaddr_in))
164                 return -EINVAL;
165
166         if (usin->sin_family != AF_INET)
167                 return -EAFNOSUPPORT;
168
169         nexthop = daddr = usin->sin_addr.s_addr;
170         if (inet->opt && inet->opt->srr) {
171                 if (!daddr)
172                         return -EINVAL;
173                 nexthop = inet->opt->faddr;
174         }
175
176         tmp = ip_route_connect(&rt, nexthop, inet->saddr,
177                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
178                                IPPROTO_TCP,
179                                inet->sport, usin->sin_port, sk, 1);
180         if (tmp < 0) {
181                 if (tmp == -ENETUNREACH)
182                         IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
183                 return tmp;
184         }
185
186         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187                 ip_rt_put(rt);
188                 return -ENETUNREACH;
189         }
190
191         if (!inet->opt || !inet->opt->srr)
192                 daddr = rt->rt_dst;
193
194         if (!inet->saddr)
195                 inet->saddr = rt->rt_src;
196         inet->rcv_saddr = inet->saddr;
197
198         if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199                 /* Reset inherited state */
200                 tp->rx_opt.ts_recent       = 0;
201                 tp->rx_opt.ts_recent_stamp = 0;
202                 tp->write_seq              = 0;
203         }
204
205         if (tcp_death_row.sysctl_tw_recycle &&
206             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207                 struct inet_peer *peer = rt_get_peer(rt);
208                 /*
209                  * VJ's idea. We save last timestamp seen from
210                  * the destination in peer table, when entering state
211                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
212                  * when trying new connection.
213                  */
214                 if (peer != NULL &&
215                     peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
216                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
217                         tp->rx_opt.ts_recent = peer->tcp_ts;
218                 }
219         }
220
221         inet->dport = usin->sin_port;
222         inet->daddr = daddr;
223
224         inet_csk(sk)->icsk_ext_hdr_len = 0;
225         if (inet->opt)
226                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
227
228         tp->rx_opt.mss_clamp = 536;
229
230         /* Socket identity is still unknown (sport may be zero).
231          * However we set state to SYN-SENT and not releasing socket
232          * lock select source port, enter ourselves into the hash tables and
233          * complete initialization after this.
234          */
235         tcp_set_state(sk, TCP_SYN_SENT);
236         err = inet_hash_connect(&tcp_death_row, sk);
237         if (err)
238                 goto failure;
239
240         err = ip_route_newports(&rt, IPPROTO_TCP,
241                                 inet->sport, inet->dport, sk);
242         if (err)
243                 goto failure;
244
245         /* OK, now commit destination to socket.  */
246         sk->sk_gso_type = SKB_GSO_TCPV4;
247         sk_setup_caps(sk, &rt->u.dst);
248
249         if (!tp->write_seq)
250                 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
251                                                            inet->daddr,
252                                                            inet->sport,
253                                                            usin->sin_port);
254
255         inet->id = tp->write_seq ^ jiffies;
256
257         err = tcp_connect(sk);
258         rt = NULL;
259         if (err)
260                 goto failure;
261
262         return 0;
263
264 failure:
265         /*
266          * This unhashes the socket and releases the local port,
267          * if necessary.
268          */
269         tcp_set_state(sk, TCP_CLOSE);
270         ip_rt_put(rt);
271         sk->sk_route_caps = 0;
272         inet->dport = 0;
273         return err;
274 }
275
276 /*
277  * This routine does path mtu discovery as defined in RFC1191.
278  */
279 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
280 {
281         struct dst_entry *dst;
282         struct inet_sock *inet = inet_sk(sk);
283
284         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
285          * send out by Linux are always <576bytes so they should go through
286          * unfragmented).
287          */
288         if (sk->sk_state == TCP_LISTEN)
289                 return;
290
291         /* We don't check in the destentry if pmtu discovery is forbidden
292          * on this route. We just assume that no packet_to_big packets
293          * are send back when pmtu discovery is not active.
294          * There is a small race when the user changes this flag in the
295          * route, but I think that's acceptable.
296          */
297         if ((dst = __sk_dst_check(sk, 0)) == NULL)
298                 return;
299
300         dst->ops->update_pmtu(dst, mtu);
301
302         /* Something is about to be wrong... Remember soft error
303          * for the case, if this connection will not able to recover.
304          */
305         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
306                 sk->sk_err_soft = EMSGSIZE;
307
308         mtu = dst_mtu(dst);
309
310         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
311             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
312                 tcp_sync_mss(sk, mtu);
313
314                 /* Resend the TCP packet because it's
315                  * clear that the old packet has been
316                  * dropped. This is the new "fast" path mtu
317                  * discovery.
318                  */
319                 tcp_simple_retransmit(sk);
320         } /* else let the usual retransmit timer handle it */
321 }
322
323 /*
324  * This routine is called by the ICMP module when it gets some
325  * sort of error condition.  If err < 0 then the socket should
326  * be closed and the error returned to the user.  If err > 0
327  * it's just the icmp type << 8 | icmp code.  After adjustment
328  * header points to the first 8 bytes of the tcp header.  We need
329  * to find the appropriate port.
330  *
331  * The locking strategy used here is very "optimistic". When
332  * someone else accesses the socket the ICMP is just dropped
333  * and for some paths there is no check at all.
334  * A more general error queue to queue errors for later handling
335  * is probably better.
336  *
337  */
338
339 void tcp_v4_err(struct sk_buff *skb, u32 info)
340 {
341         struct iphdr *iph = (struct iphdr *)skb->data;
342         struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
343         struct tcp_sock *tp;
344         struct inet_sock *inet;
345         const int type = icmp_hdr(skb)->type;
346         const int code = icmp_hdr(skb)->code;
347         struct sock *sk;
348         __u32 seq;
349         int err;
350
351         if (skb->len < (iph->ihl << 2) + 8) {
352                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
353                 return;
354         }
355
356         sk = inet_lookup(skb->dev->nd_net, &tcp_hashinfo, iph->daddr, th->dest,
357                         iph->saddr, th->source, inet_iif(skb));
358         if (!sk) {
359                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
360                 return;
361         }
362         if (sk->sk_state == TCP_TIME_WAIT) {
363                 inet_twsk_put(inet_twsk(sk));
364                 return;
365         }
366
367         bh_lock_sock(sk);
368         /* If too many ICMPs get dropped on busy
369          * servers this needs to be solved differently.
370          */
371         if (sock_owned_by_user(sk))
372                 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
373
374         if (sk->sk_state == TCP_CLOSE)
375                 goto out;
376
377         tp = tcp_sk(sk);
378         seq = ntohl(th->seq);
379         if (sk->sk_state != TCP_LISTEN &&
380             !between(seq, tp->snd_una, tp->snd_nxt)) {
381                 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
382                 goto out;
383         }
384
385         switch (type) {
386         case ICMP_SOURCE_QUENCH:
387                 /* Just silently ignore these. */
388                 goto out;
389         case ICMP_PARAMETERPROB:
390                 err = EPROTO;
391                 break;
392         case ICMP_DEST_UNREACH:
393                 if (code > NR_ICMP_UNREACH)
394                         goto out;
395
396                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
397                         if (!sock_owned_by_user(sk))
398                                 do_pmtu_discovery(sk, iph, info);
399                         goto out;
400                 }
401
402                 err = icmp_err_convert[code].errno;
403                 break;
404         case ICMP_TIME_EXCEEDED:
405                 err = EHOSTUNREACH;
406                 break;
407         default:
408                 goto out;
409         }
410
411         switch (sk->sk_state) {
412                 struct request_sock *req, **prev;
413         case TCP_LISTEN:
414                 if (sock_owned_by_user(sk))
415                         goto out;
416
417                 req = inet_csk_search_req(sk, &prev, th->dest,
418                                           iph->daddr, iph->saddr);
419                 if (!req)
420                         goto out;
421
422                 /* ICMPs are not backlogged, hence we cannot get
423                    an established socket here.
424                  */
425                 BUG_TRAP(!req->sk);
426
427                 if (seq != tcp_rsk(req)->snt_isn) {
428                         NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
429                         goto out;
430                 }
431
432                 /*
433                  * Still in SYN_RECV, just remove it silently.
434                  * There is no good way to pass the error to the newly
435                  * created socket, and POSIX does not want network
436                  * errors returned from accept().
437                  */
438                 inet_csk_reqsk_queue_drop(sk, req, prev);
439                 goto out;
440
441         case TCP_SYN_SENT:
442         case TCP_SYN_RECV:  /* Cannot happen.
443                                It can f.e. if SYNs crossed.
444                              */
445                 if (!sock_owned_by_user(sk)) {
446                         sk->sk_err = err;
447
448                         sk->sk_error_report(sk);
449
450                         tcp_done(sk);
451                 } else {
452                         sk->sk_err_soft = err;
453                 }
454                 goto out;
455         }
456
457         /* If we've already connected we will keep trying
458          * until we time out, or the user gives up.
459          *
460          * rfc1122 4.2.3.9 allows to consider as hard errors
461          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
462          * but it is obsoleted by pmtu discovery).
463          *
464          * Note, that in modern internet, where routing is unreliable
465          * and in each dark corner broken firewalls sit, sending random
466          * errors ordered by their masters even this two messages finally lose
467          * their original sense (even Linux sends invalid PORT_UNREACHs)
468          *
469          * Now we are in compliance with RFCs.
470          *                                                      --ANK (980905)
471          */
472
473         inet = inet_sk(sk);
474         if (!sock_owned_by_user(sk) && inet->recverr) {
475                 sk->sk_err = err;
476                 sk->sk_error_report(sk);
477         } else  { /* Only an error on timeout */
478                 sk->sk_err_soft = err;
479         }
480
481 out:
482         bh_unlock_sock(sk);
483         sock_put(sk);
484 }
485
486 /* This routine computes an IPv4 TCP checksum. */
487 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
488 {
489         struct inet_sock *inet = inet_sk(sk);
490         struct tcphdr *th = tcp_hdr(skb);
491
492         if (skb->ip_summed == CHECKSUM_PARTIAL) {
493                 th->check = ~tcp_v4_check(len, inet->saddr,
494                                           inet->daddr, 0);
495                 skb->csum_start = skb_transport_header(skb) - skb->head;
496                 skb->csum_offset = offsetof(struct tcphdr, check);
497         } else {
498                 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
499                                          csum_partial((char *)th,
500                                                       th->doff << 2,
501                                                       skb->csum));
502         }
503 }
504
505 int tcp_v4_gso_send_check(struct sk_buff *skb)
506 {
507         const struct iphdr *iph;
508         struct tcphdr *th;
509
510         if (!pskb_may_pull(skb, sizeof(*th)))
511                 return -EINVAL;
512
513         iph = ip_hdr(skb);
514         th = tcp_hdr(skb);
515
516         th->check = 0;
517         th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
518         skb->csum_start = skb_transport_header(skb) - skb->head;
519         skb->csum_offset = offsetof(struct tcphdr, check);
520         skb->ip_summed = CHECKSUM_PARTIAL;
521         return 0;
522 }
523
524 /*
525  *      This routine will send an RST to the other tcp.
526  *
527  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
528  *                    for reset.
529  *      Answer: if a packet caused RST, it is not for a socket
530  *              existing in our system, if it is matched to a socket,
531  *              it is just duplicate segment or bug in other side's TCP.
532  *              So that we build reply only basing on parameters
533  *              arrived with segment.
534  *      Exception: precedence violation. We do not implement it in any case.
535  */
536
537 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
538 {
539         struct tcphdr *th = tcp_hdr(skb);
540         struct {
541                 struct tcphdr th;
542 #ifdef CONFIG_TCP_MD5SIG
543                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
544 #endif
545         } rep;
546         struct ip_reply_arg arg;
547 #ifdef CONFIG_TCP_MD5SIG
548         struct tcp_md5sig_key *key;
549 #endif
550
551         /* Never send a reset in response to a reset. */
552         if (th->rst)
553                 return;
554
555         if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
556                 return;
557
558         /* Swap the send and the receive. */
559         memset(&rep, 0, sizeof(rep));
560         rep.th.dest   = th->source;
561         rep.th.source = th->dest;
562         rep.th.doff   = sizeof(struct tcphdr) / 4;
563         rep.th.rst    = 1;
564
565         if (th->ack) {
566                 rep.th.seq = th->ack_seq;
567         } else {
568                 rep.th.ack = 1;
569                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
570                                        skb->len - (th->doff << 2));
571         }
572
573         memset(&arg, 0, sizeof(arg));
574         arg.iov[0].iov_base = (unsigned char *)&rep;
575         arg.iov[0].iov_len  = sizeof(rep.th);
576
577 #ifdef CONFIG_TCP_MD5SIG
578         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
579         if (key) {
580                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
581                                    (TCPOPT_NOP << 16) |
582                                    (TCPOPT_MD5SIG << 8) |
583                                    TCPOLEN_MD5SIG);
584                 /* Update length and the length the header thinks exists */
585                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
586                 rep.th.doff = arg.iov[0].iov_len / 4;
587
588                 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
589                                         key,
590                                         ip_hdr(skb)->daddr,
591                                         ip_hdr(skb)->saddr,
592                                         &rep.th, IPPROTO_TCP,
593                                         arg.iov[0].iov_len);
594         }
595 #endif
596         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
597                                       ip_hdr(skb)->saddr, /* XXX */
598                                       sizeof(struct tcphdr), IPPROTO_TCP, 0);
599         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
600
601         ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
602
603         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
604         TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
605 }
606
607 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
608    outside socket context is ugly, certainly. What can I do?
609  */
610
611 static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk,
612                             struct sk_buff *skb, u32 seq, u32 ack,
613                             u32 win, u32 ts)
614 {
615         struct tcphdr *th = tcp_hdr(skb);
616         struct {
617                 struct tcphdr th;
618                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
619 #ifdef CONFIG_TCP_MD5SIG
620                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
621 #endif
622                         ];
623         } rep;
624         struct ip_reply_arg arg;
625 #ifdef CONFIG_TCP_MD5SIG
626         struct tcp_md5sig_key *key;
627         struct tcp_md5sig_key tw_key;
628 #endif
629
630         memset(&rep.th, 0, sizeof(struct tcphdr));
631         memset(&arg, 0, sizeof(arg));
632
633         arg.iov[0].iov_base = (unsigned char *)&rep;
634         arg.iov[0].iov_len  = sizeof(rep.th);
635         if (ts) {
636                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
637                                    (TCPOPT_TIMESTAMP << 8) |
638                                    TCPOLEN_TIMESTAMP);
639                 rep.opt[1] = htonl(tcp_time_stamp);
640                 rep.opt[2] = htonl(ts);
641                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
642         }
643
644         /* Swap the send and the receive. */
645         rep.th.dest    = th->source;
646         rep.th.source  = th->dest;
647         rep.th.doff    = arg.iov[0].iov_len / 4;
648         rep.th.seq     = htonl(seq);
649         rep.th.ack_seq = htonl(ack);
650         rep.th.ack     = 1;
651         rep.th.window  = htons(win);
652
653 #ifdef CONFIG_TCP_MD5SIG
654         /*
655          * The SKB holds an imcoming packet, but may not have a valid ->sk
656          * pointer. This is especially the case when we're dealing with a
657          * TIME_WAIT ack, because the sk structure is long gone, and only
658          * the tcp_timewait_sock remains. So the md5 key is stashed in that
659          * structure, and we use it in preference.  I believe that (twsk ||
660          * skb->sk) holds true, but we program defensively.
661          */
662         if (!twsk && skb->sk) {
663                 key = tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr);
664         } else if (twsk && twsk->tw_md5_keylen) {
665                 tw_key.key = twsk->tw_md5_key;
666                 tw_key.keylen = twsk->tw_md5_keylen;
667                 key = &tw_key;
668         } else
669                 key = NULL;
670
671         if (key) {
672                 int offset = (ts) ? 3 : 0;
673
674                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
675                                           (TCPOPT_NOP << 16) |
676                                           (TCPOPT_MD5SIG << 8) |
677                                           TCPOLEN_MD5SIG);
678                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
679                 rep.th.doff = arg.iov[0].iov_len/4;
680
681                 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
682                                         key,
683                                         ip_hdr(skb)->daddr,
684                                         ip_hdr(skb)->saddr,
685                                         &rep.th, IPPROTO_TCP,
686                                         arg.iov[0].iov_len);
687         }
688 #endif
689         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
690                                       ip_hdr(skb)->saddr, /* XXX */
691                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
692         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
693         if (twsk)
694                 arg.bound_dev_if = twsk->tw_sk.tw_bound_dev_if;
695
696         ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
697
698         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
699 }
700
701 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
702 {
703         struct inet_timewait_sock *tw = inet_twsk(sk);
704         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
705
706         tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
707                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
708                         tcptw->tw_ts_recent);
709
710         inet_twsk_put(tw);
711 }
712
713 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
714                                   struct request_sock *req)
715 {
716         tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1,
717                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
718                         req->ts_recent);
719 }
720
721 /*
722  *      Send a SYN-ACK after having received a SYN.
723  *      This still operates on a request_sock only, not on a big
724  *      socket.
725  */
726 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
727                                 struct dst_entry *dst)
728 {
729         const struct inet_request_sock *ireq = inet_rsk(req);
730         int err = -1;
731         struct sk_buff * skb;
732
733         /* First, grab a route. */
734         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
735                 return -1;
736
737         skb = tcp_make_synack(sk, dst, req);
738
739         if (skb) {
740                 struct tcphdr *th = tcp_hdr(skb);
741
742                 th->check = tcp_v4_check(skb->len,
743                                          ireq->loc_addr,
744                                          ireq->rmt_addr,
745                                          csum_partial((char *)th, skb->len,
746                                                       skb->csum));
747
748                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
749                                             ireq->rmt_addr,
750                                             ireq->opt);
751                 err = net_xmit_eval(err);
752         }
753
754         dst_release(dst);
755         return err;
756 }
757
758 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
759 {
760         return __tcp_v4_send_synack(sk, req, NULL);
761 }
762
763 /*
764  *      IPv4 request_sock destructor.
765  */
766 static void tcp_v4_reqsk_destructor(struct request_sock *req)
767 {
768         kfree(inet_rsk(req)->opt);
769 }
770
771 #ifdef CONFIG_SYN_COOKIES
772 static void syn_flood_warning(struct sk_buff *skb)
773 {
774         static unsigned long warntime;
775
776         if (time_after(jiffies, (warntime + HZ * 60))) {
777                 warntime = jiffies;
778                 printk(KERN_INFO
779                        "possible SYN flooding on port %d. Sending cookies.\n",
780                        ntohs(tcp_hdr(skb)->dest));
781         }
782 }
783 #endif
784
785 /*
786  * Save and compile IPv4 options into the request_sock if needed.
787  */
788 static struct ip_options *tcp_v4_save_options(struct sock *sk,
789                                               struct sk_buff *skb)
790 {
791         struct ip_options *opt = &(IPCB(skb)->opt);
792         struct ip_options *dopt = NULL;
793
794         if (opt && opt->optlen) {
795                 int opt_size = optlength(opt);
796                 dopt = kmalloc(opt_size, GFP_ATOMIC);
797                 if (dopt) {
798                         if (ip_options_echo(dopt, skb)) {
799                                 kfree(dopt);
800                                 dopt = NULL;
801                         }
802                 }
803         }
804         return dopt;
805 }
806
807 #ifdef CONFIG_TCP_MD5SIG
808 /*
809  * RFC2385 MD5 checksumming requires a mapping of
810  * IP address->MD5 Key.
811  * We need to maintain these in the sk structure.
812  */
813
814 /* Find the Key structure for an address.  */
815 static struct tcp_md5sig_key *
816                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
817 {
818         struct tcp_sock *tp = tcp_sk(sk);
819         int i;
820
821         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
822                 return NULL;
823         for (i = 0; i < tp->md5sig_info->entries4; i++) {
824                 if (tp->md5sig_info->keys4[i].addr == addr)
825                         return &tp->md5sig_info->keys4[i].base;
826         }
827         return NULL;
828 }
829
830 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
831                                          struct sock *addr_sk)
832 {
833         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
834 }
835
836 EXPORT_SYMBOL(tcp_v4_md5_lookup);
837
838 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
839                                                       struct request_sock *req)
840 {
841         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
842 }
843
844 /* This can be called on a newly created socket, from other files */
845 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
846                       u8 *newkey, u8 newkeylen)
847 {
848         /* Add Key to the list */
849         struct tcp_md5sig_key *key;
850         struct tcp_sock *tp = tcp_sk(sk);
851         struct tcp4_md5sig_key *keys;
852
853         key = tcp_v4_md5_do_lookup(sk, addr);
854         if (key) {
855                 /* Pre-existing entry - just update that one. */
856                 kfree(key->key);
857                 key->key = newkey;
858                 key->keylen = newkeylen;
859         } else {
860                 struct tcp_md5sig_info *md5sig;
861
862                 if (!tp->md5sig_info) {
863                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
864                                                   GFP_ATOMIC);
865                         if (!tp->md5sig_info) {
866                                 kfree(newkey);
867                                 return -ENOMEM;
868                         }
869                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
870                 }
871                 if (tcp_alloc_md5sig_pool() == NULL) {
872                         kfree(newkey);
873                         return -ENOMEM;
874                 }
875                 md5sig = tp->md5sig_info;
876
877                 if (md5sig->alloced4 == md5sig->entries4) {
878                         keys = kmalloc((sizeof(*keys) *
879                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
880                         if (!keys) {
881                                 kfree(newkey);
882                                 tcp_free_md5sig_pool();
883                                 return -ENOMEM;
884                         }
885
886                         if (md5sig->entries4)
887                                 memcpy(keys, md5sig->keys4,
888                                        sizeof(*keys) * md5sig->entries4);
889
890                         /* Free old key list, and reference new one */
891                         kfree(md5sig->keys4);
892                         md5sig->keys4 = keys;
893                         md5sig->alloced4++;
894                 }
895                 md5sig->entries4++;
896                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
897                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
898                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
899         }
900         return 0;
901 }
902
903 EXPORT_SYMBOL(tcp_v4_md5_do_add);
904
905 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
906                                u8 *newkey, u8 newkeylen)
907 {
908         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
909                                  newkey, newkeylen);
910 }
911
912 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
913 {
914         struct tcp_sock *tp = tcp_sk(sk);
915         int i;
916
917         for (i = 0; i < tp->md5sig_info->entries4; i++) {
918                 if (tp->md5sig_info->keys4[i].addr == addr) {
919                         /* Free the key */
920                         kfree(tp->md5sig_info->keys4[i].base.key);
921                         tp->md5sig_info->entries4--;
922
923                         if (tp->md5sig_info->entries4 == 0) {
924                                 kfree(tp->md5sig_info->keys4);
925                                 tp->md5sig_info->keys4 = NULL;
926                                 tp->md5sig_info->alloced4 = 0;
927                         } else if (tp->md5sig_info->entries4 != i) {
928                                 /* Need to do some manipulation */
929                                 memmove(&tp->md5sig_info->keys4[i],
930                                         &tp->md5sig_info->keys4[i+1],
931                                         (tp->md5sig_info->entries4 - i) *
932                                          sizeof(struct tcp4_md5sig_key));
933                         }
934                         tcp_free_md5sig_pool();
935                         return 0;
936                 }
937         }
938         return -ENOENT;
939 }
940
941 EXPORT_SYMBOL(tcp_v4_md5_do_del);
942
943 static void tcp_v4_clear_md5_list(struct sock *sk)
944 {
945         struct tcp_sock *tp = tcp_sk(sk);
946
947         /* Free each key, then the set of key keys,
948          * the crypto element, and then decrement our
949          * hold on the last resort crypto.
950          */
951         if (tp->md5sig_info->entries4) {
952                 int i;
953                 for (i = 0; i < tp->md5sig_info->entries4; i++)
954                         kfree(tp->md5sig_info->keys4[i].base.key);
955                 tp->md5sig_info->entries4 = 0;
956                 tcp_free_md5sig_pool();
957         }
958         if (tp->md5sig_info->keys4) {
959                 kfree(tp->md5sig_info->keys4);
960                 tp->md5sig_info->keys4 = NULL;
961                 tp->md5sig_info->alloced4  = 0;
962         }
963 }
964
965 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
966                                  int optlen)
967 {
968         struct tcp_md5sig cmd;
969         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
970         u8 *newkey;
971
972         if (optlen < sizeof(cmd))
973                 return -EINVAL;
974
975         if (copy_from_user(&cmd, optval, sizeof(cmd)))
976                 return -EFAULT;
977
978         if (sin->sin_family != AF_INET)
979                 return -EINVAL;
980
981         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
982                 if (!tcp_sk(sk)->md5sig_info)
983                         return -ENOENT;
984                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
985         }
986
987         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
988                 return -EINVAL;
989
990         if (!tcp_sk(sk)->md5sig_info) {
991                 struct tcp_sock *tp = tcp_sk(sk);
992                 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
993
994                 if (!p)
995                         return -EINVAL;
996
997                 tp->md5sig_info = p;
998                 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
999         }
1000
1001         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1002         if (!newkey)
1003                 return -ENOMEM;
1004         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1005                                  newkey, cmd.tcpm_keylen);
1006 }
1007
1008 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1009                                    __be32 saddr, __be32 daddr,
1010                                    struct tcphdr *th, int protocol,
1011                                    unsigned int tcplen)
1012 {
1013         struct scatterlist sg[4];
1014         __u16 data_len;
1015         int block = 0;
1016         __sum16 old_checksum;
1017         struct tcp_md5sig_pool *hp;
1018         struct tcp4_pseudohdr *bp;
1019         struct hash_desc *desc;
1020         int err;
1021         unsigned int nbytes = 0;
1022
1023         /*
1024          * Okay, so RFC2385 is turned on for this connection,
1025          * so we need to generate the MD5 hash for the packet now.
1026          */
1027
1028         hp = tcp_get_md5sig_pool();
1029         if (!hp)
1030                 goto clear_hash_noput;
1031
1032         bp = &hp->md5_blk.ip4;
1033         desc = &hp->md5_desc;
1034
1035         /*
1036          * 1. the TCP pseudo-header (in the order: source IP address,
1037          * destination IP address, zero-padded protocol number, and
1038          * segment length)
1039          */
1040         bp->saddr = saddr;
1041         bp->daddr = daddr;
1042         bp->pad = 0;
1043         bp->protocol = protocol;
1044         bp->len = htons(tcplen);
1045
1046         sg_init_table(sg, 4);
1047
1048         sg_set_buf(&sg[block++], bp, sizeof(*bp));
1049         nbytes += sizeof(*bp);
1050
1051         /* 2. the TCP header, excluding options, and assuming a
1052          * checksum of zero/
1053          */
1054         old_checksum = th->check;
1055         th->check = 0;
1056         sg_set_buf(&sg[block++], th, sizeof(struct tcphdr));
1057         nbytes += sizeof(struct tcphdr);
1058
1059         /* 3. the TCP segment data (if any) */
1060         data_len = tcplen - (th->doff << 2);
1061         if (data_len > 0) {
1062                 unsigned char *data = (unsigned char *)th + (th->doff << 2);
1063                 sg_set_buf(&sg[block++], data, data_len);
1064                 nbytes += data_len;
1065         }
1066
1067         /* 4. an independently-specified key or password, known to both
1068          * TCPs and presumably connection-specific
1069          */
1070         sg_set_buf(&sg[block++], key->key, key->keylen);
1071         nbytes += key->keylen;
1072
1073         sg_mark_end(&sg[block - 1]);
1074
1075         /* Now store the Hash into the packet */
1076         err = crypto_hash_init(desc);
1077         if (err)
1078                 goto clear_hash;
1079         err = crypto_hash_update(desc, sg, nbytes);
1080         if (err)
1081                 goto clear_hash;
1082         err = crypto_hash_final(desc, md5_hash);
1083         if (err)
1084                 goto clear_hash;
1085
1086         /* Reset header, and free up the crypto */
1087         tcp_put_md5sig_pool();
1088         th->check = old_checksum;
1089
1090 out:
1091         return 0;
1092 clear_hash:
1093         tcp_put_md5sig_pool();
1094 clear_hash_noput:
1095         memset(md5_hash, 0, 16);
1096         goto out;
1097 }
1098
1099 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1100                          struct sock *sk,
1101                          struct dst_entry *dst,
1102                          struct request_sock *req,
1103                          struct tcphdr *th, int protocol,
1104                          unsigned int tcplen)
1105 {
1106         __be32 saddr, daddr;
1107
1108         if (sk) {
1109                 saddr = inet_sk(sk)->saddr;
1110                 daddr = inet_sk(sk)->daddr;
1111         } else {
1112                 struct rtable *rt = (struct rtable *)dst;
1113                 BUG_ON(!rt);
1114                 saddr = rt->rt_src;
1115                 daddr = rt->rt_dst;
1116         }
1117         return tcp_v4_do_calc_md5_hash(md5_hash, key,
1118                                        saddr, daddr,
1119                                        th, protocol, tcplen);
1120 }
1121
1122 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1123
1124 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1125 {
1126         /*
1127          * This gets called for each TCP segment that arrives
1128          * so we want to be efficient.
1129          * We have 3 drop cases:
1130          * o No MD5 hash and one expected.
1131          * o MD5 hash and we're not expecting one.
1132          * o MD5 hash and its wrong.
1133          */
1134         __u8 *hash_location = NULL;
1135         struct tcp_md5sig_key *hash_expected;
1136         const struct iphdr *iph = ip_hdr(skb);
1137         struct tcphdr *th = tcp_hdr(skb);
1138         int length = (th->doff << 2) - sizeof(struct tcphdr);
1139         int genhash;
1140         unsigned char *ptr;
1141         unsigned char newhash[16];
1142
1143         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1144
1145         /*
1146          * If the TCP option length is less than the TCP_MD5SIG
1147          * option length, then we can shortcut
1148          */
1149         if (length < TCPOLEN_MD5SIG) {
1150                 if (hash_expected)
1151                         return 1;
1152                 else
1153                         return 0;
1154         }
1155
1156         /* Okay, we can't shortcut - we have to grub through the options */
1157         ptr = (unsigned char *)(th + 1);
1158         while (length > 0) {
1159                 int opcode = *ptr++;
1160                 int opsize;
1161
1162                 switch (opcode) {
1163                 case TCPOPT_EOL:
1164                         goto done_opts;
1165                 case TCPOPT_NOP:
1166                         length--;
1167                         continue;
1168                 default:
1169                         opsize = *ptr++;
1170                         if (opsize < 2)
1171                                 goto done_opts;
1172                         if (opsize > length)
1173                                 goto done_opts;
1174
1175                         if (opcode == TCPOPT_MD5SIG) {
1176                                 hash_location = ptr;
1177                                 goto done_opts;
1178                         }
1179                 }
1180                 ptr += opsize-2;
1181                 length -= opsize;
1182         }
1183 done_opts:
1184         /* We've parsed the options - do we have a hash? */
1185         if (!hash_expected && !hash_location)
1186                 return 0;
1187
1188         if (hash_expected && !hash_location) {
1189                 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1190                                "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1191                                NIPQUAD(iph->saddr), ntohs(th->source),
1192                                NIPQUAD(iph->daddr), ntohs(th->dest));
1193                 return 1;
1194         }
1195
1196         if (!hash_expected && hash_location) {
1197                 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1198                                "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1199                                NIPQUAD(iph->saddr), ntohs(th->source),
1200                                NIPQUAD(iph->daddr), ntohs(th->dest));
1201                 return 1;
1202         }
1203
1204         /* Okay, so this is hash_expected and hash_location -
1205          * so we need to calculate the checksum.
1206          */
1207         genhash = tcp_v4_do_calc_md5_hash(newhash,
1208                                           hash_expected,
1209                                           iph->saddr, iph->daddr,
1210                                           th, sk->sk_protocol,
1211                                           skb->len);
1212
1213         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1214                 if (net_ratelimit()) {
1215                         printk(KERN_INFO "MD5 Hash failed for "
1216                                "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1217                                NIPQUAD(iph->saddr), ntohs(th->source),
1218                                NIPQUAD(iph->daddr), ntohs(th->dest),
1219                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1220                 }
1221                 return 1;
1222         }
1223         return 0;
1224 }
1225
1226 #endif
1227
1228 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1229         .family         =       PF_INET,
1230         .obj_size       =       sizeof(struct tcp_request_sock),
1231         .rtx_syn_ack    =       tcp_v4_send_synack,
1232         .send_ack       =       tcp_v4_reqsk_send_ack,
1233         .destructor     =       tcp_v4_reqsk_destructor,
1234         .send_reset     =       tcp_v4_send_reset,
1235 };
1236
1237 #ifdef CONFIG_TCP_MD5SIG
1238 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1239         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1240 };
1241 #endif
1242
1243 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1244         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1245         .twsk_unique    = tcp_twsk_unique,
1246         .twsk_destructor= tcp_twsk_destructor,
1247 };
1248
1249 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1250 {
1251         struct inet_request_sock *ireq;
1252         struct tcp_options_received tmp_opt;
1253         struct request_sock *req;
1254         __be32 saddr = ip_hdr(skb)->saddr;
1255         __be32 daddr = ip_hdr(skb)->daddr;
1256         __u32 isn = TCP_SKB_CB(skb)->when;
1257         struct dst_entry *dst = NULL;
1258 #ifdef CONFIG_SYN_COOKIES
1259         int want_cookie = 0;
1260 #else
1261 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1262 #endif
1263
1264         /* Never answer to SYNs send to broadcast or multicast */
1265         if (((struct rtable *)skb->dst)->rt_flags &
1266             (RTCF_BROADCAST | RTCF_MULTICAST))
1267                 goto drop;
1268
1269         /* TW buckets are converted to open requests without
1270          * limitations, they conserve resources and peer is
1271          * evidently real one.
1272          */
1273         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1274 #ifdef CONFIG_SYN_COOKIES
1275                 if (sysctl_tcp_syncookies) {
1276                         want_cookie = 1;
1277                 } else
1278 #endif
1279                 goto drop;
1280         }
1281
1282         /* Accept backlog is full. If we have already queued enough
1283          * of warm entries in syn queue, drop request. It is better than
1284          * clogging syn queue with openreqs with exponentially increasing
1285          * timeout.
1286          */
1287         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1288                 goto drop;
1289
1290         req = reqsk_alloc(&tcp_request_sock_ops);
1291         if (!req)
1292                 goto drop;
1293
1294 #ifdef CONFIG_TCP_MD5SIG
1295         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1296 #endif
1297
1298         tcp_clear_options(&tmp_opt);
1299         tmp_opt.mss_clamp = 536;
1300         tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
1301
1302         tcp_parse_options(skb, &tmp_opt, 0);
1303
1304         if (want_cookie) {
1305                 tcp_clear_options(&tmp_opt);
1306                 tmp_opt.saw_tstamp = 0;
1307         }
1308
1309         if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1310                 /* Some OSes (unknown ones, but I see them on web server, which
1311                  * contains information interesting only for windows'
1312                  * users) do not send their stamp in SYN. It is easy case.
1313                  * We simply do not advertise TS support.
1314                  */
1315                 tmp_opt.saw_tstamp = 0;
1316                 tmp_opt.tstamp_ok  = 0;
1317         }
1318         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1319
1320         tcp_openreq_init(req, &tmp_opt, skb);
1321
1322         if (security_inet_conn_request(sk, skb, req))
1323                 goto drop_and_free;
1324
1325         ireq = inet_rsk(req);
1326         ireq->loc_addr = daddr;
1327         ireq->rmt_addr = saddr;
1328         ireq->opt = tcp_v4_save_options(sk, skb);
1329         if (!want_cookie)
1330                 TCP_ECN_create_request(req, tcp_hdr(skb));
1331
1332         if (want_cookie) {
1333 #ifdef CONFIG_SYN_COOKIES
1334                 syn_flood_warning(skb);
1335 #endif
1336                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1337         } else if (!isn) {
1338                 struct inet_peer *peer = NULL;
1339
1340                 /* VJ's idea. We save last timestamp seen
1341                  * from the destination in peer table, when entering
1342                  * state TIME-WAIT, and check against it before
1343                  * accepting new connection request.
1344                  *
1345                  * If "isn" is not zero, this request hit alive
1346                  * timewait bucket, so that all the necessary checks
1347                  * are made in the function processing timewait state.
1348                  */
1349                 if (tmp_opt.saw_tstamp &&
1350                     tcp_death_row.sysctl_tw_recycle &&
1351                     (dst = inet_csk_route_req(sk, req)) != NULL &&
1352                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1353                     peer->v4daddr == saddr) {
1354                         if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1355                             (s32)(peer->tcp_ts - req->ts_recent) >
1356                                                         TCP_PAWS_WINDOW) {
1357                                 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1358                                 dst_release(dst);
1359                                 goto drop_and_free;
1360                         }
1361                 }
1362                 /* Kill the following clause, if you dislike this way. */
1363                 else if (!sysctl_tcp_syncookies &&
1364                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1365                           (sysctl_max_syn_backlog >> 2)) &&
1366                          (!peer || !peer->tcp_ts_stamp) &&
1367                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1368                         /* Without syncookies last quarter of
1369                          * backlog is filled with destinations,
1370                          * proven to be alive.
1371                          * It means that we continue to communicate
1372                          * to destinations, already remembered
1373                          * to the moment of synflood.
1374                          */
1375                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1376                                        "request from %u.%u.%u.%u/%u\n",
1377                                        NIPQUAD(saddr),
1378                                        ntohs(tcp_hdr(skb)->source));
1379                         dst_release(dst);
1380                         goto drop_and_free;
1381                 }
1382
1383                 isn = tcp_v4_init_sequence(skb);
1384         }
1385         tcp_rsk(req)->snt_isn = isn;
1386
1387         if (__tcp_v4_send_synack(sk, req, dst))
1388                 goto drop_and_free;
1389
1390         if (want_cookie) {
1391                 reqsk_free(req);
1392         } else {
1393                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1394         }
1395         return 0;
1396
1397 drop_and_free:
1398         reqsk_free(req);
1399 drop:
1400         return 0;
1401 }
1402
1403
1404 /*
1405  * The three way handshake has completed - we got a valid synack -
1406  * now create the new socket.
1407  */
1408 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1409                                   struct request_sock *req,
1410                                   struct dst_entry *dst)
1411 {
1412         struct inet_request_sock *ireq;
1413         struct inet_sock *newinet;
1414         struct tcp_sock *newtp;
1415         struct sock *newsk;
1416 #ifdef CONFIG_TCP_MD5SIG
1417         struct tcp_md5sig_key *key;
1418 #endif
1419
1420         if (sk_acceptq_is_full(sk))
1421                 goto exit_overflow;
1422
1423         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1424                 goto exit;
1425
1426         newsk = tcp_create_openreq_child(sk, req, skb);
1427         if (!newsk)
1428                 goto exit;
1429
1430         newsk->sk_gso_type = SKB_GSO_TCPV4;
1431         sk_setup_caps(newsk, dst);
1432
1433         newtp                 = tcp_sk(newsk);
1434         newinet               = inet_sk(newsk);
1435         ireq                  = inet_rsk(req);
1436         newinet->daddr        = ireq->rmt_addr;
1437         newinet->rcv_saddr    = ireq->loc_addr;
1438         newinet->saddr        = ireq->loc_addr;
1439         newinet->opt          = ireq->opt;
1440         ireq->opt             = NULL;
1441         newinet->mc_index     = inet_iif(skb);
1442         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1443         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1444         if (newinet->opt)
1445                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1446         newinet->id = newtp->write_seq ^ jiffies;
1447
1448         tcp_mtup_init(newsk);
1449         tcp_sync_mss(newsk, dst_mtu(dst));
1450         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1451         tcp_initialize_rcv_mss(newsk);
1452
1453 #ifdef CONFIG_TCP_MD5SIG
1454         /* Copy over the MD5 key from the original socket */
1455         if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1456                 /*
1457                  * We're using one, so create a matching key
1458                  * on the newsk structure. If we fail to get
1459                  * memory, then we end up not copying the key
1460                  * across. Shucks.
1461                  */
1462                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1463                 if (newkey != NULL)
1464                         tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1465                                           newkey, key->keylen);
1466         }
1467 #endif
1468
1469         __inet_hash_nolisten(newsk);
1470         __inet_inherit_port(sk, newsk);
1471
1472         return newsk;
1473
1474 exit_overflow:
1475         NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1476 exit:
1477         NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1478         dst_release(dst);
1479         return NULL;
1480 }
1481
1482 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1483 {
1484         struct tcphdr *th = tcp_hdr(skb);
1485         const struct iphdr *iph = ip_hdr(skb);
1486         struct sock *nsk;
1487         struct request_sock **prev;
1488         /* Find possible connection requests. */
1489         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1490                                                        iph->saddr, iph->daddr);
1491         if (req)
1492                 return tcp_check_req(sk, skb, req, prev);
1493
1494         nsk = inet_lookup_established(sk->sk_net, &tcp_hashinfo, iph->saddr,
1495                         th->source, iph->daddr, th->dest, inet_iif(skb));
1496
1497         if (nsk) {
1498                 if (nsk->sk_state != TCP_TIME_WAIT) {
1499                         bh_lock_sock(nsk);
1500                         return nsk;
1501                 }
1502                 inet_twsk_put(inet_twsk(nsk));
1503                 return NULL;
1504         }
1505
1506 #ifdef CONFIG_SYN_COOKIES
1507         if (!th->rst && !th->syn && th->ack)
1508                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1509 #endif
1510         return sk;
1511 }
1512
1513 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1514 {
1515         const struct iphdr *iph = ip_hdr(skb);
1516
1517         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1518                 if (!tcp_v4_check(skb->len, iph->saddr,
1519                                   iph->daddr, skb->csum)) {
1520                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1521                         return 0;
1522                 }
1523         }
1524
1525         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1526                                        skb->len, IPPROTO_TCP, 0);
1527
1528         if (skb->len <= 76) {
1529                 return __skb_checksum_complete(skb);
1530         }
1531         return 0;
1532 }
1533
1534
1535 /* The socket must have it's spinlock held when we get
1536  * here.
1537  *
1538  * We have a potential double-lock case here, so even when
1539  * doing backlog processing we use the BH locking scheme.
1540  * This is because we cannot sleep with the original spinlock
1541  * held.
1542  */
1543 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1544 {
1545         struct sock *rsk;
1546 #ifdef CONFIG_TCP_MD5SIG
1547         /*
1548          * We really want to reject the packet as early as possible
1549          * if:
1550          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1551          *  o There is an MD5 option and we're not expecting one
1552          */
1553         if (tcp_v4_inbound_md5_hash(sk, skb))
1554                 goto discard;
1555 #endif
1556
1557         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1558                 TCP_CHECK_TIMER(sk);
1559                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1560                         rsk = sk;
1561                         goto reset;
1562                 }
1563                 TCP_CHECK_TIMER(sk);
1564                 return 0;
1565         }
1566
1567         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1568                 goto csum_err;
1569
1570         if (sk->sk_state == TCP_LISTEN) {
1571                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1572                 if (!nsk)
1573                         goto discard;
1574
1575                 if (nsk != sk) {
1576                         if (tcp_child_process(sk, nsk, skb)) {
1577                                 rsk = nsk;
1578                                 goto reset;
1579                         }
1580                         return 0;
1581                 }
1582         }
1583
1584         TCP_CHECK_TIMER(sk);
1585         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1586                 rsk = sk;
1587                 goto reset;
1588         }
1589         TCP_CHECK_TIMER(sk);
1590         return 0;
1591
1592 reset:
1593         tcp_v4_send_reset(rsk, skb);
1594 discard:
1595         kfree_skb(skb);
1596         /* Be careful here. If this function gets more complicated and
1597          * gcc suffers from register pressure on the x86, sk (in %ebx)
1598          * might be destroyed here. This current version compiles correctly,
1599          * but you have been warned.
1600          */
1601         return 0;
1602
1603 csum_err:
1604         TCP_INC_STATS_BH(TCP_MIB_INERRS);
1605         goto discard;
1606 }
1607
1608 /*
1609  *      From tcp_input.c
1610  */
1611
1612 int tcp_v4_rcv(struct sk_buff *skb)
1613 {
1614         const struct iphdr *iph;
1615         struct tcphdr *th;
1616         struct sock *sk;
1617         int ret;
1618
1619         if (skb->pkt_type != PACKET_HOST)
1620                 goto discard_it;
1621
1622         /* Count it even if it's bad */
1623         TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1624
1625         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1626                 goto discard_it;
1627
1628         th = tcp_hdr(skb);
1629
1630         if (th->doff < sizeof(struct tcphdr) / 4)
1631                 goto bad_packet;
1632         if (!pskb_may_pull(skb, th->doff * 4))
1633                 goto discard_it;
1634
1635         /* An explanation is required here, I think.
1636          * Packet length and doff are validated by header prediction,
1637          * provided case of th->doff==0 is eliminated.
1638          * So, we defer the checks. */
1639         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1640                 goto bad_packet;
1641
1642         th = tcp_hdr(skb);
1643         iph = ip_hdr(skb);
1644         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1645         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1646                                     skb->len - th->doff * 4);
1647         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1648         TCP_SKB_CB(skb)->when    = 0;
1649         TCP_SKB_CB(skb)->flags   = iph->tos;
1650         TCP_SKB_CB(skb)->sacked  = 0;
1651
1652         sk = __inet_lookup(skb->dev->nd_net, &tcp_hashinfo, iph->saddr,
1653                         th->source, iph->daddr, th->dest, inet_iif(skb));
1654         if (!sk)
1655                 goto no_tcp_socket;
1656
1657 process:
1658         if (sk->sk_state == TCP_TIME_WAIT)
1659                 goto do_time_wait;
1660
1661         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1662                 goto discard_and_relse;
1663         nf_reset(skb);
1664
1665         if (sk_filter(sk, skb))
1666                 goto discard_and_relse;
1667
1668         skb->dev = NULL;
1669
1670         bh_lock_sock_nested(sk);
1671         ret = 0;
1672         if (!sock_owned_by_user(sk)) {
1673 #ifdef CONFIG_NET_DMA
1674                 struct tcp_sock *tp = tcp_sk(sk);
1675                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1676                         tp->ucopy.dma_chan = get_softnet_dma();
1677                 if (tp->ucopy.dma_chan)
1678                         ret = tcp_v4_do_rcv(sk, skb);
1679                 else
1680 #endif
1681                 {
1682                         if (!tcp_prequeue(sk, skb))
1683                         ret = tcp_v4_do_rcv(sk, skb);
1684                 }
1685         } else
1686                 sk_add_backlog(sk, skb);
1687         bh_unlock_sock(sk);
1688
1689         sock_put(sk);
1690
1691         return ret;
1692
1693 no_tcp_socket:
1694         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1695                 goto discard_it;
1696
1697         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1698 bad_packet:
1699                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1700         } else {
1701                 tcp_v4_send_reset(NULL, skb);
1702         }
1703
1704 discard_it:
1705         /* Discard frame. */
1706         kfree_skb(skb);
1707         return 0;
1708
1709 discard_and_relse:
1710         sock_put(sk);
1711         goto discard_it;
1712
1713 do_time_wait:
1714         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1715                 inet_twsk_put(inet_twsk(sk));
1716                 goto discard_it;
1717         }
1718
1719         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1720                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1721                 inet_twsk_put(inet_twsk(sk));
1722                 goto discard_it;
1723         }
1724         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1725         case TCP_TW_SYN: {
1726                 struct sock *sk2 = inet_lookup_listener(skb->dev->nd_net,
1727                                                         &tcp_hashinfo,
1728                                                         iph->daddr, th->dest,
1729                                                         inet_iif(skb));
1730                 if (sk2) {
1731                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1732                         inet_twsk_put(inet_twsk(sk));
1733                         sk = sk2;
1734                         goto process;
1735                 }
1736                 /* Fall through to ACK */
1737         }
1738         case TCP_TW_ACK:
1739                 tcp_v4_timewait_ack(sk, skb);
1740                 break;
1741         case TCP_TW_RST:
1742                 goto no_tcp_socket;
1743         case TCP_TW_SUCCESS:;
1744         }
1745         goto discard_it;
1746 }
1747
1748 /* VJ's idea. Save last timestamp seen from this destination
1749  * and hold it at least for normal timewait interval to use for duplicate
1750  * segment detection in subsequent connections, before they enter synchronized
1751  * state.
1752  */
1753
1754 int tcp_v4_remember_stamp(struct sock *sk)
1755 {
1756         struct inet_sock *inet = inet_sk(sk);
1757         struct tcp_sock *tp = tcp_sk(sk);
1758         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1759         struct inet_peer *peer = NULL;
1760         int release_it = 0;
1761
1762         if (!rt || rt->rt_dst != inet->daddr) {
1763                 peer = inet_getpeer(inet->daddr, 1);
1764                 release_it = 1;
1765         } else {
1766                 if (!rt->peer)
1767                         rt_bind_peer(rt, 1);
1768                 peer = rt->peer;
1769         }
1770
1771         if (peer) {
1772                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1773                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1774                      peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1775                         peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1776                         peer->tcp_ts = tp->rx_opt.ts_recent;
1777                 }
1778                 if (release_it)
1779                         inet_putpeer(peer);
1780                 return 1;
1781         }
1782
1783         return 0;
1784 }
1785
1786 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1787 {
1788         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1789
1790         if (peer) {
1791                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1792
1793                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1794                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1795                      peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1796                         peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1797                         peer->tcp_ts       = tcptw->tw_ts_recent;
1798                 }
1799                 inet_putpeer(peer);
1800                 return 1;
1801         }
1802
1803         return 0;
1804 }
1805
1806 struct inet_connection_sock_af_ops ipv4_specific = {
1807         .queue_xmit        = ip_queue_xmit,
1808         .send_check        = tcp_v4_send_check,
1809         .rebuild_header    = inet_sk_rebuild_header,
1810         .conn_request      = tcp_v4_conn_request,
1811         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1812         .remember_stamp    = tcp_v4_remember_stamp,
1813         .net_header_len    = sizeof(struct iphdr),
1814         .setsockopt        = ip_setsockopt,
1815         .getsockopt        = ip_getsockopt,
1816         .addr2sockaddr     = inet_csk_addr2sockaddr,
1817         .sockaddr_len      = sizeof(struct sockaddr_in),
1818         .bind_conflict     = inet_csk_bind_conflict,
1819 #ifdef CONFIG_COMPAT
1820         .compat_setsockopt = compat_ip_setsockopt,
1821         .compat_getsockopt = compat_ip_getsockopt,
1822 #endif
1823 };
1824
1825 #ifdef CONFIG_TCP_MD5SIG
1826 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1827         .md5_lookup             = tcp_v4_md5_lookup,
1828         .calc_md5_hash          = tcp_v4_calc_md5_hash,
1829         .md5_add                = tcp_v4_md5_add_func,
1830         .md5_parse              = tcp_v4_parse_md5_keys,
1831 };
1832 #endif
1833
1834 /* NOTE: A lot of things set to zero explicitly by call to
1835  *       sk_alloc() so need not be done here.
1836  */
1837 static int tcp_v4_init_sock(struct sock *sk)
1838 {
1839         struct inet_connection_sock *icsk = inet_csk(sk);
1840         struct tcp_sock *tp = tcp_sk(sk);
1841
1842         skb_queue_head_init(&tp->out_of_order_queue);
1843         tcp_init_xmit_timers(sk);
1844         tcp_prequeue_init(tp);
1845
1846         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1847         tp->mdev = TCP_TIMEOUT_INIT;
1848
1849         /* So many TCP implementations out there (incorrectly) count the
1850          * initial SYN frame in their delayed-ACK and congestion control
1851          * algorithms that we must have the following bandaid to talk
1852          * efficiently to them.  -DaveM
1853          */
1854         tp->snd_cwnd = 2;
1855
1856         /* See draft-stevens-tcpca-spec-01 for discussion of the
1857          * initialization of these values.
1858          */
1859         tp->snd_ssthresh = 0x7fffffff;  /* Infinity */
1860         tp->snd_cwnd_clamp = ~0;
1861         tp->mss_cache = 536;
1862
1863         tp->reordering = sysctl_tcp_reordering;
1864         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1865
1866         sk->sk_state = TCP_CLOSE;
1867
1868         sk->sk_write_space = sk_stream_write_space;
1869         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1870
1871         icsk->icsk_af_ops = &ipv4_specific;
1872         icsk->icsk_sync_mss = tcp_sync_mss;
1873 #ifdef CONFIG_TCP_MD5SIG
1874         tp->af_specific = &tcp_sock_ipv4_specific;
1875 #endif
1876
1877         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1878         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1879
1880         atomic_inc(&tcp_sockets_allocated);
1881
1882         return 0;
1883 }
1884
1885 int tcp_v4_destroy_sock(struct sock *sk)
1886 {
1887         struct tcp_sock *tp = tcp_sk(sk);
1888
1889         tcp_clear_xmit_timers(sk);
1890
1891         tcp_cleanup_congestion_control(sk);
1892
1893         /* Cleanup up the write buffer. */
1894         tcp_write_queue_purge(sk);
1895
1896         /* Cleans up our, hopefully empty, out_of_order_queue. */
1897         __skb_queue_purge(&tp->out_of_order_queue);
1898
1899 #ifdef CONFIG_TCP_MD5SIG
1900         /* Clean up the MD5 key list, if any */
1901         if (tp->md5sig_info) {
1902                 tcp_v4_clear_md5_list(sk);
1903                 kfree(tp->md5sig_info);
1904                 tp->md5sig_info = NULL;
1905         }
1906 #endif
1907
1908 #ifdef CONFIG_NET_DMA
1909         /* Cleans up our sk_async_wait_queue */
1910         __skb_queue_purge(&sk->sk_async_wait_queue);
1911 #endif
1912
1913         /* Clean prequeue, it must be empty really */
1914         __skb_queue_purge(&tp->ucopy.prequeue);
1915
1916         /* Clean up a referenced TCP bind bucket. */
1917         if (inet_csk(sk)->icsk_bind_hash)
1918                 inet_put_port(sk);
1919
1920         /*
1921          * If sendmsg cached page exists, toss it.
1922          */
1923         if (sk->sk_sndmsg_page) {
1924                 __free_page(sk->sk_sndmsg_page);
1925                 sk->sk_sndmsg_page = NULL;
1926         }
1927
1928         atomic_dec(&tcp_sockets_allocated);
1929
1930         return 0;
1931 }
1932
1933 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1934
1935 #ifdef CONFIG_PROC_FS
1936 /* Proc filesystem TCP sock list dumping. */
1937
1938 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1939 {
1940         return hlist_empty(head) ? NULL :
1941                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1942 }
1943
1944 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1945 {
1946         return tw->tw_node.next ?
1947                 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1948 }
1949
1950 static void *listening_get_next(struct seq_file *seq, void *cur)
1951 {
1952         struct inet_connection_sock *icsk;
1953         struct hlist_node *node;
1954         struct sock *sk = cur;
1955         struct tcp_iter_state* st = seq->private;
1956
1957         if (!sk) {
1958                 st->bucket = 0;
1959                 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1960                 goto get_sk;
1961         }
1962
1963         ++st->num;
1964
1965         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1966                 struct request_sock *req = cur;
1967
1968                 icsk = inet_csk(st->syn_wait_sk);
1969                 req = req->dl_next;
1970                 while (1) {
1971                         while (req) {
1972                                 if (req->rsk_ops->family == st->family) {
1973                                         cur = req;
1974                                         goto out;
1975                                 }
1976                                 req = req->dl_next;
1977                         }
1978                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1979                                 break;
1980 get_req:
1981                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1982                 }
1983                 sk        = sk_next(st->syn_wait_sk);
1984                 st->state = TCP_SEQ_STATE_LISTENING;
1985                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1986         } else {
1987                 icsk = inet_csk(sk);
1988                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1989                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1990                         goto start_req;
1991                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1992                 sk = sk_next(sk);
1993         }
1994 get_sk:
1995         sk_for_each_from(sk, node) {
1996                 if (sk->sk_family == st->family) {
1997                         cur = sk;
1998                         goto out;
1999                 }
2000                 icsk = inet_csk(sk);
2001                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2002                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2003 start_req:
2004                         st->uid         = sock_i_uid(sk);
2005                         st->syn_wait_sk = sk;
2006                         st->state       = TCP_SEQ_STATE_OPENREQ;
2007                         st->sbucket     = 0;
2008                         goto get_req;
2009                 }
2010                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2011         }
2012         if (++st->bucket < INET_LHTABLE_SIZE) {
2013                 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
2014                 goto get_sk;
2015         }
2016         cur = NULL;
2017 out:
2018         return cur;
2019 }
2020
2021 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2022 {
2023         void *rc = listening_get_next(seq, NULL);
2024
2025         while (rc && *pos) {
2026                 rc = listening_get_next(seq, rc);
2027                 --*pos;
2028         }
2029         return rc;
2030 }
2031
2032 static void *established_get_first(struct seq_file *seq)
2033 {
2034         struct tcp_iter_state* st = seq->private;
2035         void *rc = NULL;
2036
2037         for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2038                 struct sock *sk;
2039                 struct hlist_node *node;
2040                 struct inet_timewait_sock *tw;
2041                 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2042
2043                 read_lock_bh(lock);
2044                 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2045                         if (sk->sk_family != st->family) {
2046                                 continue;
2047                         }
2048                         rc = sk;
2049                         goto out;
2050                 }
2051                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2052                 inet_twsk_for_each(tw, node,
2053                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2054                         if (tw->tw_family != st->family) {
2055                                 continue;
2056                         }
2057                         rc = tw;
2058                         goto out;
2059                 }
2060                 read_unlock_bh(lock);
2061                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2062         }
2063 out:
2064         return rc;
2065 }
2066
2067 static void *established_get_next(struct seq_file *seq, void *cur)
2068 {
2069         struct sock *sk = cur;
2070         struct inet_timewait_sock *tw;
2071         struct hlist_node *node;
2072         struct tcp_iter_state* st = seq->private;
2073
2074         ++st->num;
2075
2076         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2077                 tw = cur;
2078                 tw = tw_next(tw);
2079 get_tw:
2080                 while (tw && tw->tw_family != st->family) {
2081                         tw = tw_next(tw);
2082                 }
2083                 if (tw) {
2084                         cur = tw;
2085                         goto out;
2086                 }
2087                 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2088                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2089
2090                 if (++st->bucket < tcp_hashinfo.ehash_size) {
2091                         read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2092                         sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2093                 } else {
2094                         cur = NULL;
2095                         goto out;
2096                 }
2097         } else
2098                 sk = sk_next(sk);
2099
2100         sk_for_each_from(sk, node) {
2101                 if (sk->sk_family == st->family)
2102                         goto found;
2103         }
2104
2105         st->state = TCP_SEQ_STATE_TIME_WAIT;
2106         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2107         goto get_tw;
2108 found:
2109         cur = sk;
2110 out:
2111         return cur;
2112 }
2113
2114 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2115 {
2116         void *rc = established_get_first(seq);
2117
2118         while (rc && pos) {
2119                 rc = established_get_next(seq, rc);
2120                 --pos;
2121         }
2122         return rc;
2123 }
2124
2125 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2126 {
2127         void *rc;
2128         struct tcp_iter_state* st = seq->private;
2129
2130         inet_listen_lock(&tcp_hashinfo);
2131         st->state = TCP_SEQ_STATE_LISTENING;
2132         rc        = listening_get_idx(seq, &pos);
2133
2134         if (!rc) {
2135                 inet_listen_unlock(&tcp_hashinfo);
2136                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2137                 rc        = established_get_idx(seq, pos);
2138         }
2139
2140         return rc;
2141 }
2142
2143 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2144 {
2145         struct tcp_iter_state* st = seq->private;
2146         st->state = TCP_SEQ_STATE_LISTENING;
2147         st->num = 0;
2148         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2149 }
2150
2151 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2152 {
2153         void *rc = NULL;
2154         struct tcp_iter_state* st;
2155
2156         if (v == SEQ_START_TOKEN) {
2157                 rc = tcp_get_idx(seq, 0);
2158                 goto out;
2159         }
2160         st = seq->private;
2161
2162         switch (st->state) {
2163         case TCP_SEQ_STATE_OPENREQ:
2164         case TCP_SEQ_STATE_LISTENING:
2165                 rc = listening_get_next(seq, v);
2166                 if (!rc) {
2167                         inet_listen_unlock(&tcp_hashinfo);
2168                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2169                         rc        = established_get_first(seq);
2170                 }
2171                 break;
2172         case TCP_SEQ_STATE_ESTABLISHED:
2173         case TCP_SEQ_STATE_TIME_WAIT:
2174                 rc = established_get_next(seq, v);
2175                 break;
2176         }
2177 out:
2178         ++*pos;
2179         return rc;
2180 }
2181
2182 static void tcp_seq_stop(struct seq_file *seq, void *v)
2183 {
2184         struct tcp_iter_state* st = seq->private;
2185
2186         switch (st->state) {
2187         case TCP_SEQ_STATE_OPENREQ:
2188                 if (v) {
2189                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2190                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2191                 }
2192         case TCP_SEQ_STATE_LISTENING:
2193                 if (v != SEQ_START_TOKEN)
2194                         inet_listen_unlock(&tcp_hashinfo);
2195                 break;
2196         case TCP_SEQ_STATE_TIME_WAIT:
2197         case TCP_SEQ_STATE_ESTABLISHED:
2198                 if (v)
2199                         read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2200                 break;
2201         }
2202 }
2203
2204 static int tcp_seq_open(struct inode *inode, struct file *file)
2205 {
2206         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2207         struct seq_file *seq;
2208         struct tcp_iter_state *s;
2209         int rc;
2210
2211         if (unlikely(afinfo == NULL))
2212                 return -EINVAL;
2213
2214         s = kzalloc(sizeof(*s), GFP_KERNEL);
2215         if (!s)
2216                 return -ENOMEM;
2217         s->family               = afinfo->family;
2218         s->seq_ops.start        = tcp_seq_start;
2219         s->seq_ops.next         = tcp_seq_next;
2220         s->seq_ops.show         = afinfo->seq_show;
2221         s->seq_ops.stop         = tcp_seq_stop;
2222
2223         rc = seq_open(file, &s->seq_ops);
2224         if (rc)
2225                 goto out_kfree;
2226         seq          = file->private_data;
2227         seq->private = s;
2228 out:
2229         return rc;
2230 out_kfree:
2231         kfree(s);
2232         goto out;
2233 }
2234
2235 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
2236 {
2237         int rc = 0;
2238         struct proc_dir_entry *p;
2239
2240         if (!afinfo)
2241                 return -EINVAL;
2242         afinfo->seq_fops->owner         = afinfo->owner;
2243         afinfo->seq_fops->open          = tcp_seq_open;
2244         afinfo->seq_fops->read          = seq_read;
2245         afinfo->seq_fops->llseek        = seq_lseek;
2246         afinfo->seq_fops->release       = seq_release_private;
2247
2248         p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops);
2249         if (p)
2250                 p->data = afinfo;
2251         else
2252                 rc = -ENOMEM;
2253         return rc;
2254 }
2255
2256 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
2257 {
2258         if (!afinfo)
2259                 return;
2260         proc_net_remove(&init_net, afinfo->name);
2261         memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
2262 }
2263
2264 static void get_openreq4(struct sock *sk, struct request_sock *req,
2265                          char *tmpbuf, int i, int uid)
2266 {
2267         const struct inet_request_sock *ireq = inet_rsk(req);
2268         int ttd = req->expires - jiffies;
2269
2270         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2271                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2272                 i,
2273                 ireq->loc_addr,
2274                 ntohs(inet_sk(sk)->sport),
2275                 ireq->rmt_addr,
2276                 ntohs(ireq->rmt_port),
2277                 TCP_SYN_RECV,
2278                 0, 0, /* could print option size, but that is af dependent. */
2279                 1,    /* timers active (only the expire timer) */
2280                 jiffies_to_clock_t(ttd),
2281                 req->retrans,
2282                 uid,
2283                 0,  /* non standard timer */
2284                 0, /* open_requests have no inode */
2285                 atomic_read(&sk->sk_refcnt),
2286                 req);
2287 }
2288
2289 static void get_tcp4_sock(struct sock *sk, char *tmpbuf, int i)
2290 {
2291         int timer_active;
2292         unsigned long timer_expires;
2293         struct tcp_sock *tp = tcp_sk(sk);
2294         const struct inet_connection_sock *icsk = inet_csk(sk);
2295         struct inet_sock *inet = inet_sk(sk);
2296         __be32 dest = inet->daddr;
2297         __be32 src = inet->rcv_saddr;
2298         __u16 destp = ntohs(inet->dport);
2299         __u16 srcp = ntohs(inet->sport);
2300
2301         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2302                 timer_active    = 1;
2303                 timer_expires   = icsk->icsk_timeout;
2304         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2305                 timer_active    = 4;
2306                 timer_expires   = icsk->icsk_timeout;
2307         } else if (timer_pending(&sk->sk_timer)) {
2308                 timer_active    = 2;
2309                 timer_expires   = sk->sk_timer.expires;
2310         } else {
2311                 timer_active    = 0;
2312                 timer_expires = jiffies;
2313         }
2314
2315         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2316                         "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2317                 i, src, srcp, dest, destp, sk->sk_state,
2318                 tp->write_seq - tp->snd_una,
2319                 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2320                                              (tp->rcv_nxt - tp->copied_seq),
2321                 timer_active,
2322                 jiffies_to_clock_t(timer_expires - jiffies),
2323                 icsk->icsk_retransmits,
2324                 sock_i_uid(sk),
2325                 icsk->icsk_probes_out,
2326                 sock_i_ino(sk),
2327                 atomic_read(&sk->sk_refcnt), sk,
2328                 icsk->icsk_rto,
2329                 icsk->icsk_ack.ato,
2330                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2331                 tp->snd_cwnd,
2332                 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
2333 }
2334
2335 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2336                                char *tmpbuf, int i)
2337 {
2338         __be32 dest, src;
2339         __u16 destp, srcp;
2340         int ttd = tw->tw_ttd - jiffies;
2341
2342         if (ttd < 0)
2343                 ttd = 0;
2344
2345         dest  = tw->tw_daddr;
2346         src   = tw->tw_rcv_saddr;
2347         destp = ntohs(tw->tw_dport);
2348         srcp  = ntohs(tw->tw_sport);
2349
2350         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2351                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2352                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2353                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2354                 atomic_read(&tw->tw_refcnt), tw);
2355 }
2356
2357 #define TMPSZ 150
2358
2359 static int tcp4_seq_show(struct seq_file *seq, void *v)
2360 {
2361         struct tcp_iter_state* st;
2362         char tmpbuf[TMPSZ + 1];
2363
2364         if (v == SEQ_START_TOKEN) {
2365                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2366                            "  sl  local_address rem_address   st tx_queue "
2367                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2368                            "inode");
2369                 goto out;
2370         }
2371         st = seq->private;
2372
2373         switch (st->state) {
2374         case TCP_SEQ_STATE_LISTENING:
2375         case TCP_SEQ_STATE_ESTABLISHED:
2376                 get_tcp4_sock(v, tmpbuf, st->num);
2377                 break;
2378         case TCP_SEQ_STATE_OPENREQ:
2379                 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
2380                 break;
2381         case TCP_SEQ_STATE_TIME_WAIT:
2382                 get_timewait4_sock(v, tmpbuf, st->num);
2383                 break;
2384         }
2385         seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
2386 out:
2387         return 0;
2388 }
2389
2390 static struct file_operations tcp4_seq_fops;
2391 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2392         .owner          = THIS_MODULE,
2393         .name           = "tcp",
2394         .family         = AF_INET,
2395         .seq_show       = tcp4_seq_show,
2396         .seq_fops       = &tcp4_seq_fops,
2397 };
2398
2399 int __init tcp4_proc_init(void)
2400 {
2401         return tcp_proc_register(&tcp4_seq_afinfo);
2402 }
2403
2404 void tcp4_proc_exit(void)
2405 {
2406         tcp_proc_unregister(&tcp4_seq_afinfo);
2407 }
2408 #endif /* CONFIG_PROC_FS */
2409
2410 DEFINE_PROTO_INUSE(tcp)
2411
2412 struct proto tcp_prot = {
2413         .name                   = "TCP",
2414         .owner                  = THIS_MODULE,
2415         .close                  = tcp_close,
2416         .connect                = tcp_v4_connect,
2417         .disconnect             = tcp_disconnect,
2418         .accept                 = inet_csk_accept,
2419         .ioctl                  = tcp_ioctl,
2420         .init                   = tcp_v4_init_sock,
2421         .destroy                = tcp_v4_destroy_sock,
2422         .shutdown               = tcp_shutdown,
2423         .setsockopt             = tcp_setsockopt,
2424         .getsockopt             = tcp_getsockopt,
2425         .recvmsg                = tcp_recvmsg,
2426         .backlog_rcv            = tcp_v4_do_rcv,
2427         .hash                   = inet_hash,
2428         .unhash                 = inet_unhash,
2429         .get_port               = inet_csk_get_port,
2430         .enter_memory_pressure  = tcp_enter_memory_pressure,
2431         .sockets_allocated      = &tcp_sockets_allocated,
2432         .orphan_count           = &tcp_orphan_count,
2433         .memory_allocated       = &tcp_memory_allocated,
2434         .memory_pressure        = &tcp_memory_pressure,
2435         .sysctl_mem             = sysctl_tcp_mem,
2436         .sysctl_wmem            = sysctl_tcp_wmem,
2437         .sysctl_rmem            = sysctl_tcp_rmem,
2438         .max_header             = MAX_TCP_HEADER,
2439         .obj_size               = sizeof(struct tcp_sock),
2440         .twsk_prot              = &tcp_timewait_sock_ops,
2441         .rsk_prot               = &tcp_request_sock_ops,
2442         .hashinfo               = &tcp_hashinfo,
2443 #ifdef CONFIG_COMPAT
2444         .compat_setsockopt      = compat_tcp_setsockopt,
2445         .compat_getsockopt      = compat_tcp_getsockopt,
2446 #endif
2447         REF_PROTO_INUSE(tcp)
2448 };
2449
2450 void __init tcp_v4_init(void)
2451 {
2452         if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW,
2453                                      IPPROTO_TCP) < 0)
2454                 panic("Failed to create the TCP control socket.\n");
2455 }
2456
2457 EXPORT_SYMBOL(ipv4_specific);
2458 EXPORT_SYMBOL(tcp_hashinfo);
2459 EXPORT_SYMBOL(tcp_prot);
2460 EXPORT_SYMBOL(tcp_v4_conn_request);
2461 EXPORT_SYMBOL(tcp_v4_connect);
2462 EXPORT_SYMBOL(tcp_v4_do_rcv);
2463 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2464 EXPORT_SYMBOL(tcp_v4_send_check);
2465 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2466
2467 #ifdef CONFIG_PROC_FS
2468 EXPORT_SYMBOL(tcp_proc_register);
2469 EXPORT_SYMBOL(tcp_proc_unregister);
2470 #endif
2471 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2472