2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
72 #include <linux/skbuff.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/mroute.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
85 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 int __ip_local_out(struct sk_buff *skb)
96 struct iphdr *iph = ip_hdr(skb);
98 iph->tot_len = htons(skb->len);
100 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
104 int ip_local_out(struct sk_buff *skb)
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
114 EXPORT_SYMBOL_GPL(ip_local_out);
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 skb_reset_mac_header(newskb);
120 __skb_pull(newskb, skb_network_offset(newskb));
121 newskb->pkt_type = PACKET_LOOPBACK;
122 newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 BUG_TRAP(newskb->dst);
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 int ttl = inet->uc_ttl;
133 ttl = dst_metric(dst, RTAX_HOPLIMIT);
138 * Add an ip header to a skbuff and send it out.
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 __be32 saddr, __be32 daddr, struct ip_options *opt)
144 struct inet_sock *inet = inet_sk(sk);
145 struct rtable *rt = skb->rtable;
148 /* Build the IP header. */
149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 skb_reset_network_header(skb);
154 iph->tos = inet->tos;
155 if (ip_dont_fragment(sk, &rt->u.dst))
156 iph->frag_off = htons(IP_DF);
159 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
160 iph->daddr = rt->rt_dst;
161 iph->saddr = rt->rt_src;
162 iph->protocol = sk->sk_protocol;
163 ip_select_ident(iph, &rt->u.dst, sk);
165 if (opt && opt->optlen) {
166 iph->ihl += opt->optlen>>2;
167 ip_options_build(skb, opt, daddr, rt, 0);
170 skb->priority = sk->sk_priority;
171 skb->mark = sk->sk_mark;
174 return ip_local_out(skb);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 static inline int ip_finish_output2(struct sk_buff *skb)
181 struct dst_entry *dst = skb->dst;
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 if (rt->rt_type == RTN_MULTICAST)
187 IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
188 else if (rt->rt_type == RTN_BROADCAST)
189 IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
201 skb_set_owner_w(skb2, skb->sk);
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb->dst->dev->mtu : dst_mtu(skb->dst);
225 static int ip_finish_output(struct sk_buff *skb)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb->dst->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
237 return ip_finish_output2(skb);
240 int ip_mc_output(struct sk_buff *skb)
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb->rtable;
244 struct net_device *dev = rt->u.dst.dev;
247 * If the indicated interface is up and running, send the packet.
249 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
252 skb->protocol = htons(ETH_P_IP);
255 * Multicasts are looped back for other local users
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if ((!sk || inet_sk(sk)->mc_loop)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
267 This check is duplicated in ip_mr_input at the moment.
269 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
272 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
276 ip_dev_loopback_xmit);
279 /* Multicasts with ttl 0 must not go beyond the host */
281 if (ip_hdr(skb)->ttl == 0) {
287 if (rt->rt_flags&RTCF_BROADCAST) {
288 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
291 newskb->dev, ip_dev_loopback_xmit);
294 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
296 !(IPCB(skb)->flags & IPSKB_REROUTED));
299 int ip_output(struct sk_buff *skb)
301 struct net_device *dev = skb->dst->dev;
303 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
306 skb->protocol = htons(ETH_P_IP);
308 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
310 !(IPCB(skb)->flags & IPSKB_REROUTED));
313 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
315 struct sock *sk = skb->sk;
316 struct inet_sock *inet = inet_sk(sk);
317 struct ip_options *opt = inet->opt;
321 /* Skip all of this if the packet is already routed,
322 * f.e. by something like SCTP.
328 /* Make sure we can route this packet. */
329 rt = (struct rtable *)__sk_dst_check(sk, 0);
333 /* Use correct destination address if we have options. */
339 struct flowi fl = { .oif = sk->sk_bound_dev_if,
342 .saddr = inet->saddr,
343 .tos = RT_CONN_FLAGS(sk) } },
344 .proto = sk->sk_protocol,
346 { .sport = inet->sport,
347 .dport = inet->dport } } };
349 /* If this fails, retransmit mechanism of transport layer will
350 * keep trying until route appears or the connection times
353 security_sk_classify_flow(sk, &fl);
354 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
357 sk_setup_caps(sk, &rt->u.dst);
359 skb->dst = dst_clone(&rt->u.dst);
362 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
365 /* OK, we know where to send it, allocate and build IP header. */
366 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
367 skb_reset_network_header(skb);
369 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
370 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
371 iph->frag_off = htons(IP_DF);
374 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
375 iph->protocol = sk->sk_protocol;
376 iph->saddr = rt->rt_src;
377 iph->daddr = rt->rt_dst;
378 /* Transport layer set skb->h.foo itself. */
380 if (opt && opt->optlen) {
381 iph->ihl += opt->optlen >> 2;
382 ip_options_build(skb, opt, inet->daddr, rt, 0);
385 ip_select_ident_more(iph, &rt->u.dst, sk,
386 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388 skb->priority = sk->sk_priority;
389 skb->mark = sk->sk_mark;
391 return ip_local_out(skb);
394 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
396 return -EHOSTUNREACH;
400 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
402 to->pkt_type = from->pkt_type;
403 to->priority = from->priority;
404 to->protocol = from->protocol;
405 dst_release(to->dst);
406 to->dst = dst_clone(from->dst);
408 to->mark = from->mark;
410 /* Copy the flags to each fragment. */
411 IPCB(to)->flags = IPCB(from)->flags;
413 #ifdef CONFIG_NET_SCHED
414 to->tc_index = from->tc_index;
417 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
418 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
419 to->nf_trace = from->nf_trace;
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
422 to->ipvs_property = from->ipvs_property;
424 skb_copy_secmark(to, from);
428 * This IP datagram is too large to be sent in one piece. Break it up into
429 * smaller pieces (each of size equal to IP header plus
430 * a block of the data of the original IP data part) that will yet fit in a
431 * single device frame, and queue such a frame for sending.
434 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
439 struct net_device *dev;
440 struct sk_buff *skb2;
441 unsigned int mtu, hlen, left, len, ll_rs, pad;
443 __be16 not_last_frag;
444 struct rtable *rt = skb->rtable;
450 * Point into the IP datagram header.
455 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
456 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
457 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
458 htonl(ip_skb_dst_mtu(skb)));
464 * Setup starting values.
468 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
469 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
471 /* When frag_list is given, use it. First, check its validity:
472 * some transformers could create wrong frag_list or break existing
473 * one, it is not prohibited. In this case fall back to copying.
475 * LATER: this step can be merged to real generation of fragments,
476 * we can switch to copy when see the first bad fragment.
478 if (skb_shinfo(skb)->frag_list) {
479 struct sk_buff *frag;
480 int first_len = skb_pagelen(skb);
483 if (first_len - hlen > mtu ||
484 ((first_len - hlen) & 7) ||
485 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
489 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
490 /* Correct geometry. */
491 if (frag->len > mtu ||
492 ((frag->len & 7) && frag->next) ||
493 skb_headroom(frag) < hlen)
496 /* Partially cloned skb? */
497 if (skb_shared(frag))
504 frag->destructor = sock_wfree;
505 truesizes += frag->truesize;
509 /* Everything is OK. Generate! */
513 frag = skb_shinfo(skb)->frag_list;
514 skb_shinfo(skb)->frag_list = NULL;
515 skb->data_len = first_len - skb_headlen(skb);
516 skb->truesize -= truesizes;
517 skb->len = first_len;
518 iph->tot_len = htons(first_len);
519 iph->frag_off = htons(IP_MF);
523 /* Prepare header of the next frame,
524 * before previous one went down. */
526 frag->ip_summed = CHECKSUM_NONE;
527 skb_reset_transport_header(frag);
528 __skb_push(frag, hlen);
529 skb_reset_network_header(frag);
530 memcpy(skb_network_header(frag), iph, hlen);
532 iph->tot_len = htons(frag->len);
533 ip_copy_metadata(frag, skb);
535 ip_options_fragment(frag);
536 offset += skb->len - hlen;
537 iph->frag_off = htons(offset>>3);
538 if (frag->next != NULL)
539 iph->frag_off |= htons(IP_MF);
540 /* Ready, complete checksum */
547 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
557 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
566 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
571 left = skb->len - hlen; /* Space per frame */
572 ptr = raw + hlen; /* Where to start from */
574 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
575 * we need to make room for the encapsulating header
577 pad = nf_bridge_pad(skb);
578 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
582 * Fragment the datagram.
585 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
586 not_last_frag = iph->frag_off & htons(IP_MF);
589 * Keep copying data until we run out.
594 /* IF: it doesn't fit, use 'mtu' - the data space left */
597 /* IF: we are not sending upto and including the packet end
598 then align the next start on an eight byte boundary */
606 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
607 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
613 * Set up data on packet
616 ip_copy_metadata(skb2, skb);
617 skb_reserve(skb2, ll_rs);
618 skb_put(skb2, len + hlen);
619 skb_reset_network_header(skb2);
620 skb2->transport_header = skb2->network_header + hlen;
623 * Charge the memory for the fragment to any owner
628 skb_set_owner_w(skb2, skb->sk);
631 * Copy the packet header into the new buffer.
634 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
637 * Copy a block of the IP datagram.
639 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
644 * Fill in the new header fields.
647 iph->frag_off = htons((offset >> 3));
649 /* ANK: dirty, but effective trick. Upgrade options only if
650 * the segment to be fragmented was THE FIRST (otherwise,
651 * options are already fixed) and make it ONCE
652 * on the initial skb, so that all the following fragments
653 * will inherit fixed options.
656 ip_options_fragment(skb);
659 * Added AC : If we are fragmenting a fragment that's not the
660 * last fragment then keep MF on each bit
662 if (left > 0 || not_last_frag)
663 iph->frag_off |= htons(IP_MF);
668 * Put this fragment into the sending queue.
670 iph->tot_len = htons(len + hlen);
678 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
681 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
686 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
690 EXPORT_SYMBOL(ip_fragment);
693 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
695 struct iovec *iov = from;
697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
698 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
702 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
704 skb->csum = csum_block_add(skb->csum, csum, odd);
710 csum_page(struct page *page, int offset, int copy)
715 csum = csum_partial(kaddr + offset, copy, 0);
720 static inline int ip_ufo_append_data(struct sock *sk,
721 int getfrag(void *from, char *to, int offset, int len,
722 int odd, struct sk_buff *skb),
723 void *from, int length, int hh_len, int fragheaderlen,
724 int transhdrlen, int mtu,unsigned int flags)
729 /* There is support for UDP fragmentation offload by network
730 * device, so create one single skb packet containing complete
733 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
734 skb = sock_alloc_send_skb(sk,
735 hh_len + fragheaderlen + transhdrlen + 20,
736 (flags & MSG_DONTWAIT), &err);
741 /* reserve space for Hardware header */
742 skb_reserve(skb, hh_len);
744 /* create space for UDP/IP header */
745 skb_put(skb,fragheaderlen + transhdrlen);
747 /* initialize network header pointer */
748 skb_reset_network_header(skb);
750 /* initialize protocol header pointer */
751 skb->transport_header = skb->network_header + fragheaderlen;
753 skb->ip_summed = CHECKSUM_PARTIAL;
755 sk->sk_sndmsg_off = 0;
758 err = skb_append_datato_frags(sk,skb, getfrag, from,
759 (length - transhdrlen));
761 /* specify the length of each IP datagram fragment*/
762 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
763 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
764 __skb_queue_tail(&sk->sk_write_queue, skb);
768 /* There is not enough support do UFO ,
769 * so follow normal path
776 * ip_append_data() and ip_append_page() can make one large IP datagram
777 * from many pieces of data. Each pieces will be holded on the socket
778 * until ip_push_pending_frames() is called. Each piece can be a page
781 * Not only UDP, other transport protocols - e.g. raw sockets - can use
782 * this interface potentially.
784 * LATER: length must be adjusted by pad at tail, when it is required.
786 int ip_append_data(struct sock *sk,
787 int getfrag(void *from, char *to, int offset, int len,
788 int odd, struct sk_buff *skb),
789 void *from, int length, int transhdrlen,
790 struct ipcm_cookie *ipc, struct rtable *rt,
793 struct inet_sock *inet = inet_sk(sk);
796 struct ip_options *opt = NULL;
803 unsigned int maxfraglen, fragheaderlen;
804 int csummode = CHECKSUM_NONE;
809 if (skb_queue_empty(&sk->sk_write_queue)) {
815 if (inet->cork.opt == NULL) {
816 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
817 if (unlikely(inet->cork.opt == NULL))
820 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
821 inet->cork.flags |= IPCORK_OPT;
822 inet->cork.addr = ipc->addr;
824 dst_hold(&rt->u.dst);
825 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
827 dst_mtu(rt->u.dst.path);
828 inet->cork.dst = &rt->u.dst;
829 inet->cork.length = 0;
830 sk->sk_sndmsg_page = NULL;
831 sk->sk_sndmsg_off = 0;
832 if ((exthdrlen = rt->u.dst.header_len) != 0) {
834 transhdrlen += exthdrlen;
837 rt = (struct rtable *)inet->cork.dst;
838 if (inet->cork.flags & IPCORK_OPT)
839 opt = inet->cork.opt;
843 mtu = inet->cork.fragsize;
845 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
847 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
848 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
850 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
851 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
856 * transhdrlen > 0 means that this is the first fragment and we wish
857 * it won't be fragmented in the future.
860 length + fragheaderlen <= mtu &&
861 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
863 csummode = CHECKSUM_PARTIAL;
865 inet->cork.length += length;
866 if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
867 (rt->u.dst.dev->features & NETIF_F_UFO)) {
869 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
870 fragheaderlen, transhdrlen, mtu,
877 /* So, what's going on in the loop below?
879 * We use calculated fragment length to generate chained skb,
880 * each of segments is IP fragment ready for sending to network after
881 * adding appropriate IP header.
884 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
888 /* Check if the remaining data fits into current packet. */
889 copy = mtu - skb->len;
891 copy = maxfraglen - skb->len;
894 unsigned int datalen;
895 unsigned int fraglen;
896 unsigned int fraggap;
897 unsigned int alloclen;
898 struct sk_buff *skb_prev;
902 fraggap = skb_prev->len - maxfraglen;
907 * If remaining data exceeds the mtu,
908 * we know we need more fragment(s).
910 datalen = length + fraggap;
911 if (datalen > mtu - fragheaderlen)
912 datalen = maxfraglen - fragheaderlen;
913 fraglen = datalen + fragheaderlen;
915 if ((flags & MSG_MORE) &&
916 !(rt->u.dst.dev->features&NETIF_F_SG))
919 alloclen = datalen + fragheaderlen;
921 /* The last fragment gets additional space at tail.
922 * Note, with MSG_MORE we overallocate on fragments,
923 * because we have no idea what fragment will be
926 if (datalen == length + fraggap)
927 alloclen += rt->u.dst.trailer_len;
930 skb = sock_alloc_send_skb(sk,
931 alloclen + hh_len + 15,
932 (flags & MSG_DONTWAIT), &err);
935 if (atomic_read(&sk->sk_wmem_alloc) <=
937 skb = sock_wmalloc(sk,
938 alloclen + hh_len + 15, 1,
940 if (unlikely(skb == NULL))
947 * Fill in the control structures
949 skb->ip_summed = csummode;
951 skb_reserve(skb, hh_len);
954 * Find where to start putting bytes.
956 data = skb_put(skb, fraglen);
957 skb_set_network_header(skb, exthdrlen);
958 skb->transport_header = (skb->network_header +
960 data += fragheaderlen;
963 skb->csum = skb_copy_and_csum_bits(
964 skb_prev, maxfraglen,
965 data + transhdrlen, fraggap, 0);
966 skb_prev->csum = csum_sub(skb_prev->csum,
969 pskb_trim_unique(skb_prev, maxfraglen);
972 copy = datalen - transhdrlen - fraggap;
973 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
980 length -= datalen - fraggap;
983 csummode = CHECKSUM_NONE;
986 * Put the packet on the pending queue.
988 __skb_queue_tail(&sk->sk_write_queue, skb);
995 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
999 if (getfrag(from, skb_put(skb, copy),
1000 offset, copy, off, skb) < 0) {
1001 __skb_trim(skb, off);
1006 int i = skb_shinfo(skb)->nr_frags;
1007 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1008 struct page *page = sk->sk_sndmsg_page;
1009 int off = sk->sk_sndmsg_off;
1012 if (page && (left = PAGE_SIZE - off) > 0) {
1015 if (page != frag->page) {
1016 if (i == MAX_SKB_FRAGS) {
1021 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1022 frag = &skb_shinfo(skb)->frags[i];
1024 } else if (i < MAX_SKB_FRAGS) {
1025 if (copy > PAGE_SIZE)
1027 page = alloc_pages(sk->sk_allocation, 0);
1032 sk->sk_sndmsg_page = page;
1033 sk->sk_sndmsg_off = 0;
1035 skb_fill_page_desc(skb, i, page, 0, 0);
1036 frag = &skb_shinfo(skb)->frags[i];
1041 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1045 sk->sk_sndmsg_off += copy;
1048 skb->data_len += copy;
1049 skb->truesize += copy;
1050 atomic_add(copy, &sk->sk_wmem_alloc);
1059 inet->cork.length -= length;
1060 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1064 ssize_t ip_append_page(struct sock *sk, struct page *page,
1065 int offset, size_t size, int flags)
1067 struct inet_sock *inet = inet_sk(sk);
1068 struct sk_buff *skb;
1070 struct ip_options *opt = NULL;
1075 unsigned int maxfraglen, fragheaderlen, fraggap;
1080 if (flags&MSG_PROBE)
1083 if (skb_queue_empty(&sk->sk_write_queue))
1086 rt = (struct rtable *)inet->cork.dst;
1087 if (inet->cork.flags & IPCORK_OPT)
1088 opt = inet->cork.opt;
1090 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1093 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1094 mtu = inet->cork.fragsize;
1096 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1097 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1099 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1100 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1104 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1107 inet->cork.length += size;
1108 if ((sk->sk_protocol == IPPROTO_UDP) &&
1109 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1110 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1111 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1118 if (skb_is_gso(skb))
1122 /* Check if the remaining data fits into current packet. */
1123 len = mtu - skb->len;
1125 len = maxfraglen - skb->len;
1128 struct sk_buff *skb_prev;
1132 fraggap = skb_prev->len - maxfraglen;
1134 alloclen = fragheaderlen + hh_len + fraggap + 15;
1135 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1136 if (unlikely(!skb)) {
1142 * Fill in the control structures
1144 skb->ip_summed = CHECKSUM_NONE;
1146 skb_reserve(skb, hh_len);
1149 * Find where to start putting bytes.
1151 skb_put(skb, fragheaderlen + fraggap);
1152 skb_reset_network_header(skb);
1153 skb->transport_header = (skb->network_header +
1156 skb->csum = skb_copy_and_csum_bits(skb_prev,
1158 skb_transport_header(skb),
1160 skb_prev->csum = csum_sub(skb_prev->csum,
1162 pskb_trim_unique(skb_prev, maxfraglen);
1166 * Put the packet on the pending queue.
1168 __skb_queue_tail(&sk->sk_write_queue, skb);
1172 i = skb_shinfo(skb)->nr_frags;
1175 if (skb_can_coalesce(skb, i, page, offset)) {
1176 skb_shinfo(skb)->frags[i-1].size += len;
1177 } else if (i < MAX_SKB_FRAGS) {
1179 skb_fill_page_desc(skb, i, page, offset, len);
1185 if (skb->ip_summed == CHECKSUM_NONE) {
1187 csum = csum_page(page, offset, len);
1188 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1192 skb->data_len += len;
1193 skb->truesize += len;
1194 atomic_add(len, &sk->sk_wmem_alloc);
1201 inet->cork.length -= size;
1202 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1206 static void ip_cork_release(struct inet_sock *inet)
1208 inet->cork.flags &= ~IPCORK_OPT;
1209 kfree(inet->cork.opt);
1210 inet->cork.opt = NULL;
1211 dst_release(inet->cork.dst);
1212 inet->cork.dst = NULL;
1216 * Combined all pending IP fragments on the socket as one IP datagram
1217 * and push them out.
1219 int ip_push_pending_frames(struct sock *sk)
1221 struct sk_buff *skb, *tmp_skb;
1222 struct sk_buff **tail_skb;
1223 struct inet_sock *inet = inet_sk(sk);
1224 struct ip_options *opt = NULL;
1225 struct rtable *rt = (struct rtable *)inet->cork.dst;
1231 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1233 tail_skb = &(skb_shinfo(skb)->frag_list);
1235 /* move skb->data to ip header from ext header */
1236 if (skb->data < skb_network_header(skb))
1237 __skb_pull(skb, skb_network_offset(skb));
1238 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1239 __skb_pull(tmp_skb, skb_network_header_len(skb));
1240 *tail_skb = tmp_skb;
1241 tail_skb = &(tmp_skb->next);
1242 skb->len += tmp_skb->len;
1243 skb->data_len += tmp_skb->len;
1244 skb->truesize += tmp_skb->truesize;
1245 __sock_put(tmp_skb->sk);
1246 tmp_skb->destructor = NULL;
1250 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1251 * to fragment the frame generated here. No matter, what transforms
1252 * how transforms change size of the packet, it will come out.
1254 if (inet->pmtudisc < IP_PMTUDISC_DO)
1257 /* DF bit is set when we want to see DF on outgoing frames.
1258 * If local_df is set too, we still allow to fragment this frame
1260 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1261 (skb->len <= dst_mtu(&rt->u.dst) &&
1262 ip_dont_fragment(sk, &rt->u.dst)))
1265 if (inet->cork.flags & IPCORK_OPT)
1266 opt = inet->cork.opt;
1268 if (rt->rt_type == RTN_MULTICAST)
1271 ttl = ip_select_ttl(inet, &rt->u.dst);
1273 iph = (struct iphdr *)skb->data;
1277 iph->ihl += opt->optlen>>2;
1278 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1280 iph->tos = inet->tos;
1282 ip_select_ident(iph, &rt->u.dst, sk);
1284 iph->protocol = sk->sk_protocol;
1285 iph->saddr = rt->rt_src;
1286 iph->daddr = rt->rt_dst;
1288 skb->priority = sk->sk_priority;
1289 skb->mark = sk->sk_mark;
1290 skb->dst = dst_clone(&rt->u.dst);
1292 if (iph->protocol == IPPROTO_ICMP)
1293 icmp_out_count(((struct icmphdr *)
1294 skb_transport_header(skb))->type);
1296 /* Netfilter gets whole the not fragmented skb. */
1297 err = ip_local_out(skb);
1300 err = inet->recverr ? net_xmit_errno(err) : 0;
1306 ip_cork_release(inet);
1310 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1315 * Throw away all pending data on the socket.
1317 void ip_flush_pending_frames(struct sock *sk)
1319 struct sk_buff *skb;
1321 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1324 ip_cork_release(inet_sk(sk));
1329 * Fetch data from kernel space and fill in checksum if needed.
1331 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1332 int len, int odd, struct sk_buff *skb)
1336 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1337 skb->csum = csum_block_add(skb->csum, csum, odd);
1342 * Generic function to send a packet as reply to another packet.
1343 * Used to send TCP resets so far. ICMP should use this function too.
1345 * Should run single threaded per socket because it uses the sock
1346 * structure to pass arguments.
1348 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1351 struct inet_sock *inet = inet_sk(sk);
1353 struct ip_options opt;
1356 struct ipcm_cookie ipc;
1358 struct rtable *rt = skb->rtable;
1360 if (ip_options_echo(&replyopts.opt, skb))
1363 daddr = ipc.addr = rt->rt_src;
1366 if (replyopts.opt.optlen) {
1367 ipc.opt = &replyopts.opt;
1370 daddr = replyopts.opt.faddr;
1374 struct flowi fl = { .oif = arg->bound_dev_if,
1377 .saddr = rt->rt_spec_dst,
1378 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1379 /* Not quite clean, but right. */
1381 { .sport = tcp_hdr(skb)->dest,
1382 .dport = tcp_hdr(skb)->source } },
1383 .proto = sk->sk_protocol };
1384 security_skb_classify_flow(skb, &fl);
1385 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1389 /* And let IP do all the hard work.
1391 This chunk is not reenterable, hence spinlock.
1392 Note that it uses the fact, that this function is called
1393 with locally disabled BH and that sk cannot be already spinlocked.
1396 inet->tos = ip_hdr(skb)->tos;
1397 sk->sk_priority = skb->priority;
1398 sk->sk_protocol = ip_hdr(skb)->protocol;
1399 sk->sk_bound_dev_if = arg->bound_dev_if;
1400 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1401 &ipc, rt, MSG_DONTWAIT);
1402 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1403 if (arg->csumoffset >= 0)
1404 *((__sum16 *)skb_transport_header(skb) +
1405 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1407 skb->ip_summed = CHECKSUM_NONE;
1408 ip_push_pending_frames(sk);
1416 void __init ip_init(void)
1421 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1422 igmp_mc_proc_init();
1426 EXPORT_SYMBOL(ip_generic_getfrag);
1427 EXPORT_SYMBOL(ip_queue_xmit);
1428 EXPORT_SYMBOL(ip_send_check);