2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
72 #include <linux/skbuff.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/mroute.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
85 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 /* dev_loopback_xmit for use with netfilter. */
95 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
97 skb_reset_mac_header(newskb);
98 __skb_pull(newskb, skb_network_offset(newskb));
99 newskb->pkt_type = PACKET_LOOPBACK;
100 newskb->ip_summed = CHECKSUM_UNNECESSARY;
101 BUG_TRAP(newskb->dst);
106 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
108 int ttl = inet->uc_ttl;
111 ttl = dst_metric(dst, RTAX_HOPLIMIT);
116 * Add an ip header to a skbuff and send it out.
119 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
120 __be32 saddr, __be32 daddr, struct ip_options *opt)
122 struct inet_sock *inet = inet_sk(sk);
123 struct rtable *rt = (struct rtable *)skb->dst;
126 /* Build the IP header. */
127 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
128 skb_reset_network_header(skb);
132 iph->tos = inet->tos;
133 if (ip_dont_fragment(sk, &rt->u.dst))
134 iph->frag_off = htons(IP_DF);
137 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
138 iph->daddr = rt->rt_dst;
139 iph->saddr = rt->rt_src;
140 iph->protocol = sk->sk_protocol;
141 iph->tot_len = htons(skb->len);
142 ip_select_ident(iph, &rt->u.dst, sk);
144 if (opt && opt->optlen) {
145 iph->ihl += opt->optlen>>2;
146 ip_options_build(skb, opt, daddr, rt, 0);
150 skb->priority = sk->sk_priority;
153 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
157 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
159 static inline int ip_finish_output2(struct sk_buff *skb)
161 struct dst_entry *dst = skb->dst;
162 struct rtable *rt = (struct rtable *)dst;
163 struct net_device *dev = dst->dev;
164 unsigned int hh_len = LL_RESERVED_SPACE(dev);
166 if (rt->rt_type == RTN_MULTICAST)
167 IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
168 else if (rt->rt_type == RTN_BROADCAST)
169 IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
171 /* Be paranoid, rather than too clever. */
172 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
173 struct sk_buff *skb2;
175 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
181 skb_set_owner_w(skb2, skb->sk);
187 return neigh_hh_output(dst->hh, skb);
188 else if (dst->neighbour)
189 return dst->neighbour->output(skb);
192 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
197 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
199 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
201 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
202 skb->dst->dev->mtu : dst_mtu(skb->dst);
205 static int ip_finish_output(struct sk_buff *skb)
207 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
208 /* Policy lookup after SNAT yielded a new policy */
209 if (skb->dst->xfrm != NULL) {
210 IPCB(skb)->flags |= IPSKB_REROUTED;
211 return dst_output(skb);
214 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
215 return ip_fragment(skb, ip_finish_output2);
217 return ip_finish_output2(skb);
220 int ip_mc_output(struct sk_buff *skb)
222 struct sock *sk = skb->sk;
223 struct rtable *rt = (struct rtable*)skb->dst;
224 struct net_device *dev = rt->u.dst.dev;
227 * If the indicated interface is up and running, send the packet.
229 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
232 skb->protocol = htons(ETH_P_IP);
235 * Multicasts are looped back for other local users
238 if (rt->rt_flags&RTCF_MULTICAST) {
239 if ((!sk || inet_sk(sk)->mc_loop)
240 #ifdef CONFIG_IP_MROUTE
241 /* Small optimization: do not loopback not local frames,
242 which returned after forwarding; they will be dropped
243 by ip_mr_input in any case.
244 Note, that local frames are looped back to be delivered
247 This check is duplicated in ip_mr_input at the moment.
249 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
252 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
254 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
256 ip_dev_loopback_xmit);
259 /* Multicasts with ttl 0 must not go beyond the host */
261 if (ip_hdr(skb)->ttl == 0) {
267 if (rt->rt_flags&RTCF_BROADCAST) {
268 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
270 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
271 newskb->dev, ip_dev_loopback_xmit);
274 return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
276 !(IPCB(skb)->flags & IPSKB_REROUTED));
279 int ip_output(struct sk_buff *skb)
281 struct net_device *dev = skb->dst->dev;
283 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
286 skb->protocol = htons(ETH_P_IP);
288 return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
290 !(IPCB(skb)->flags & IPSKB_REROUTED));
293 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
295 struct sock *sk = skb->sk;
296 struct inet_sock *inet = inet_sk(sk);
297 struct ip_options *opt = inet->opt;
301 /* Skip all of this if the packet is already routed,
302 * f.e. by something like SCTP.
304 rt = (struct rtable *) skb->dst;
308 /* Make sure we can route this packet. */
309 rt = (struct rtable *)__sk_dst_check(sk, 0);
313 /* Use correct destination address if we have options. */
319 struct flowi fl = { .oif = sk->sk_bound_dev_if,
322 .saddr = inet->saddr,
323 .tos = RT_CONN_FLAGS(sk) } },
324 .proto = sk->sk_protocol,
326 { .sport = inet->sport,
327 .dport = inet->dport } } };
329 /* If this fails, retransmit mechanism of transport layer will
330 * keep trying until route appears or the connection times
333 security_sk_classify_flow(sk, &fl);
334 if (ip_route_output_flow(&rt, &fl, sk, 0))
337 sk_setup_caps(sk, &rt->u.dst);
339 skb->dst = dst_clone(&rt->u.dst);
342 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
345 /* OK, we know where to send it, allocate and build IP header. */
346 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
347 skb_reset_network_header(skb);
349 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
350 iph->tot_len = htons(skb->len);
351 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
352 iph->frag_off = htons(IP_DF);
355 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
356 iph->protocol = sk->sk_protocol;
357 iph->saddr = rt->rt_src;
358 iph->daddr = rt->rt_dst;
359 /* Transport layer set skb->h.foo itself. */
361 if (opt && opt->optlen) {
362 iph->ihl += opt->optlen >> 2;
363 ip_options_build(skb, opt, inet->daddr, rt, 0);
366 ip_select_ident_more(iph, &rt->u.dst, sk,
367 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
369 /* Add an IP checksum. */
372 skb->priority = sk->sk_priority;
374 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
378 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
380 return -EHOSTUNREACH;
384 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
386 to->pkt_type = from->pkt_type;
387 to->priority = from->priority;
388 to->protocol = from->protocol;
389 dst_release(to->dst);
390 to->dst = dst_clone(from->dst);
392 to->mark = from->mark;
394 /* Copy the flags to each fragment. */
395 IPCB(to)->flags = IPCB(from)->flags;
397 #ifdef CONFIG_NET_SCHED
398 to->tc_index = from->tc_index;
401 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
402 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
403 to->nf_trace = from->nf_trace;
405 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
406 to->ipvs_property = from->ipvs_property;
408 skb_copy_secmark(to, from);
412 * This IP datagram is too large to be sent in one piece. Break it up into
413 * smaller pieces (each of size equal to IP header plus
414 * a block of the data of the original IP data part) that will yet fit in a
415 * single device frame, and queue such a frame for sending.
418 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
423 struct net_device *dev;
424 struct sk_buff *skb2;
425 unsigned int mtu, hlen, left, len, ll_rs, pad;
427 __be16 not_last_frag;
428 struct rtable *rt = (struct rtable*)skb->dst;
434 * Point into the IP datagram header.
439 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
440 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
441 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
442 htonl(ip_skb_dst_mtu(skb)));
448 * Setup starting values.
452 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
453 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
455 /* When frag_list is given, use it. First, check its validity:
456 * some transformers could create wrong frag_list or break existing
457 * one, it is not prohibited. In this case fall back to copying.
459 * LATER: this step can be merged to real generation of fragments,
460 * we can switch to copy when see the first bad fragment.
462 if (skb_shinfo(skb)->frag_list) {
463 struct sk_buff *frag;
464 int first_len = skb_pagelen(skb);
466 if (first_len - hlen > mtu ||
467 ((first_len - hlen) & 7) ||
468 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
472 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
473 /* Correct geometry. */
474 if (frag->len > mtu ||
475 ((frag->len & 7) && frag->next) ||
476 skb_headroom(frag) < hlen)
479 /* Partially cloned skb? */
480 if (skb_shared(frag))
487 frag->destructor = sock_wfree;
488 skb->truesize -= frag->truesize;
492 /* Everything is OK. Generate! */
496 frag = skb_shinfo(skb)->frag_list;
497 skb_shinfo(skb)->frag_list = NULL;
498 skb->data_len = first_len - skb_headlen(skb);
499 skb->len = first_len;
500 iph->tot_len = htons(first_len);
501 iph->frag_off = htons(IP_MF);
505 /* Prepare header of the next frame,
506 * before previous one went down. */
508 frag->ip_summed = CHECKSUM_NONE;
509 skb_reset_transport_header(frag);
510 __skb_push(frag, hlen);
511 skb_reset_network_header(frag);
512 memcpy(skb_network_header(frag), iph, hlen);
514 iph->tot_len = htons(frag->len);
515 ip_copy_metadata(frag, skb);
517 ip_options_fragment(frag);
518 offset += skb->len - hlen;
519 iph->frag_off = htons(offset>>3);
520 if (frag->next != NULL)
521 iph->frag_off |= htons(IP_MF);
522 /* Ready, complete checksum */
529 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
539 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
548 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
553 left = skb->len - hlen; /* Space per frame */
554 ptr = raw + hlen; /* Where to start from */
556 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
557 * we need to make room for the encapsulating header
559 pad = nf_bridge_pad(skb);
560 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
564 * Fragment the datagram.
567 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
568 not_last_frag = iph->frag_off & htons(IP_MF);
571 * Keep copying data until we run out.
576 /* IF: it doesn't fit, use 'mtu' - the data space left */
579 /* IF: we are not sending upto and including the packet end
580 then align the next start on an eight byte boundary */
588 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
589 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
595 * Set up data on packet
598 ip_copy_metadata(skb2, skb);
599 skb_reserve(skb2, ll_rs);
600 skb_put(skb2, len + hlen);
601 skb_reset_network_header(skb2);
602 skb2->transport_header = skb2->network_header + hlen;
605 * Charge the memory for the fragment to any owner
610 skb_set_owner_w(skb2, skb->sk);
613 * Copy the packet header into the new buffer.
616 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
619 * Copy a block of the IP datagram.
621 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
626 * Fill in the new header fields.
629 iph->frag_off = htons((offset >> 3));
631 /* ANK: dirty, but effective trick. Upgrade options only if
632 * the segment to be fragmented was THE FIRST (otherwise,
633 * options are already fixed) and make it ONCE
634 * on the initial skb, so that all the following fragments
635 * will inherit fixed options.
638 ip_options_fragment(skb);
641 * Added AC : If we are fragmenting a fragment that's not the
642 * last fragment then keep MF on each bit
644 if (left > 0 || not_last_frag)
645 iph->frag_off |= htons(IP_MF);
650 * Put this fragment into the sending queue.
652 iph->tot_len = htons(len + hlen);
660 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
663 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
668 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
672 EXPORT_SYMBOL(ip_fragment);
675 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
677 struct iovec *iov = from;
679 if (skb->ip_summed == CHECKSUM_PARTIAL) {
680 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
684 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
686 skb->csum = csum_block_add(skb->csum, csum, odd);
692 csum_page(struct page *page, int offset, int copy)
697 csum = csum_partial(kaddr + offset, copy, 0);
702 static inline int ip_ufo_append_data(struct sock *sk,
703 int getfrag(void *from, char *to, int offset, int len,
704 int odd, struct sk_buff *skb),
705 void *from, int length, int hh_len, int fragheaderlen,
706 int transhdrlen, int mtu,unsigned int flags)
711 /* There is support for UDP fragmentation offload by network
712 * device, so create one single skb packet containing complete
715 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
716 skb = sock_alloc_send_skb(sk,
717 hh_len + fragheaderlen + transhdrlen + 20,
718 (flags & MSG_DONTWAIT), &err);
723 /* reserve space for Hardware header */
724 skb_reserve(skb, hh_len);
726 /* create space for UDP/IP header */
727 skb_put(skb,fragheaderlen + transhdrlen);
729 /* initialize network header pointer */
730 skb_reset_network_header(skb);
732 /* initialize protocol header pointer */
733 skb->transport_header = skb->network_header + fragheaderlen;
735 skb->ip_summed = CHECKSUM_PARTIAL;
737 sk->sk_sndmsg_off = 0;
740 err = skb_append_datato_frags(sk,skb, getfrag, from,
741 (length - transhdrlen));
743 /* specify the length of each IP datagram fragment*/
744 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
745 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
746 __skb_queue_tail(&sk->sk_write_queue, skb);
750 /* There is not enough support do UFO ,
751 * so follow normal path
758 * ip_append_data() and ip_append_page() can make one large IP datagram
759 * from many pieces of data. Each pieces will be holded on the socket
760 * until ip_push_pending_frames() is called. Each piece can be a page
763 * Not only UDP, other transport protocols - e.g. raw sockets - can use
764 * this interface potentially.
766 * LATER: length must be adjusted by pad at tail, when it is required.
768 int ip_append_data(struct sock *sk,
769 int getfrag(void *from, char *to, int offset, int len,
770 int odd, struct sk_buff *skb),
771 void *from, int length, int transhdrlen,
772 struct ipcm_cookie *ipc, struct rtable *rt,
775 struct inet_sock *inet = inet_sk(sk);
778 struct ip_options *opt = NULL;
785 unsigned int maxfraglen, fragheaderlen;
786 int csummode = CHECKSUM_NONE;
791 if (skb_queue_empty(&sk->sk_write_queue)) {
797 if (inet->cork.opt == NULL) {
798 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
799 if (unlikely(inet->cork.opt == NULL))
802 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
803 inet->cork.flags |= IPCORK_OPT;
804 inet->cork.addr = ipc->addr;
806 dst_hold(&rt->u.dst);
807 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
809 dst_mtu(rt->u.dst.path);
811 inet->cork.length = 0;
812 sk->sk_sndmsg_page = NULL;
813 sk->sk_sndmsg_off = 0;
814 if ((exthdrlen = rt->u.dst.header_len) != 0) {
816 transhdrlen += exthdrlen;
820 if (inet->cork.flags & IPCORK_OPT)
821 opt = inet->cork.opt;
825 mtu = inet->cork.fragsize;
827 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
829 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
830 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
832 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
833 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
838 * transhdrlen > 0 means that this is the first fragment and we wish
839 * it won't be fragmented in the future.
842 length + fragheaderlen <= mtu &&
843 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
845 csummode = CHECKSUM_PARTIAL;
847 inet->cork.length += length;
848 if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
849 (rt->u.dst.dev->features & NETIF_F_UFO)) {
851 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
852 fragheaderlen, transhdrlen, mtu,
859 /* So, what's going on in the loop below?
861 * We use calculated fragment length to generate chained skb,
862 * each of segments is IP fragment ready for sending to network after
863 * adding appropriate IP header.
866 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
870 /* Check if the remaining data fits into current packet. */
871 copy = mtu - skb->len;
873 copy = maxfraglen - skb->len;
876 unsigned int datalen;
877 unsigned int fraglen;
878 unsigned int fraggap;
879 unsigned int alloclen;
880 struct sk_buff *skb_prev;
884 fraggap = skb_prev->len - maxfraglen;
889 * If remaining data exceeds the mtu,
890 * we know we need more fragment(s).
892 datalen = length + fraggap;
893 if (datalen > mtu - fragheaderlen)
894 datalen = maxfraglen - fragheaderlen;
895 fraglen = datalen + fragheaderlen;
897 if ((flags & MSG_MORE) &&
898 !(rt->u.dst.dev->features&NETIF_F_SG))
901 alloclen = datalen + fragheaderlen;
903 /* The last fragment gets additional space at tail.
904 * Note, with MSG_MORE we overallocate on fragments,
905 * because we have no idea what fragment will be
908 if (datalen == length + fraggap)
909 alloclen += rt->u.dst.trailer_len;
912 skb = sock_alloc_send_skb(sk,
913 alloclen + hh_len + 15,
914 (flags & MSG_DONTWAIT), &err);
917 if (atomic_read(&sk->sk_wmem_alloc) <=
919 skb = sock_wmalloc(sk,
920 alloclen + hh_len + 15, 1,
922 if (unlikely(skb == NULL))
929 * Fill in the control structures
931 skb->ip_summed = csummode;
933 skb_reserve(skb, hh_len);
936 * Find where to start putting bytes.
938 data = skb_put(skb, fraglen);
939 skb_set_network_header(skb, exthdrlen);
940 skb->transport_header = (skb->network_header +
942 data += fragheaderlen;
945 skb->csum = skb_copy_and_csum_bits(
946 skb_prev, maxfraglen,
947 data + transhdrlen, fraggap, 0);
948 skb_prev->csum = csum_sub(skb_prev->csum,
951 pskb_trim_unique(skb_prev, maxfraglen);
954 copy = datalen - transhdrlen - fraggap;
955 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
962 length -= datalen - fraggap;
965 csummode = CHECKSUM_NONE;
968 * Put the packet on the pending queue.
970 __skb_queue_tail(&sk->sk_write_queue, skb);
977 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
981 if (getfrag(from, skb_put(skb, copy),
982 offset, copy, off, skb) < 0) {
983 __skb_trim(skb, off);
988 int i = skb_shinfo(skb)->nr_frags;
989 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
990 struct page *page = sk->sk_sndmsg_page;
991 int off = sk->sk_sndmsg_off;
994 if (page && (left = PAGE_SIZE - off) > 0) {
997 if (page != frag->page) {
998 if (i == MAX_SKB_FRAGS) {
1003 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1004 frag = &skb_shinfo(skb)->frags[i];
1006 } else if (i < MAX_SKB_FRAGS) {
1007 if (copy > PAGE_SIZE)
1009 page = alloc_pages(sk->sk_allocation, 0);
1014 sk->sk_sndmsg_page = page;
1015 sk->sk_sndmsg_off = 0;
1017 skb_fill_page_desc(skb, i, page, 0, 0);
1018 frag = &skb_shinfo(skb)->frags[i];
1023 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1027 sk->sk_sndmsg_off += copy;
1030 skb->data_len += copy;
1031 skb->truesize += copy;
1032 atomic_add(copy, &sk->sk_wmem_alloc);
1041 inet->cork.length -= length;
1042 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1046 ssize_t ip_append_page(struct sock *sk, struct page *page,
1047 int offset, size_t size, int flags)
1049 struct inet_sock *inet = inet_sk(sk);
1050 struct sk_buff *skb;
1052 struct ip_options *opt = NULL;
1057 unsigned int maxfraglen, fragheaderlen, fraggap;
1062 if (flags&MSG_PROBE)
1065 if (skb_queue_empty(&sk->sk_write_queue))
1069 if (inet->cork.flags & IPCORK_OPT)
1070 opt = inet->cork.opt;
1072 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1075 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1076 mtu = inet->cork.fragsize;
1078 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1079 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1081 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1082 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1086 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1089 inet->cork.length += size;
1090 if ((sk->sk_protocol == IPPROTO_UDP) &&
1091 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1092 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1093 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1100 if (skb_is_gso(skb))
1104 /* Check if the remaining data fits into current packet. */
1105 len = mtu - skb->len;
1107 len = maxfraglen - skb->len;
1110 struct sk_buff *skb_prev;
1114 fraggap = skb_prev->len - maxfraglen;
1116 alloclen = fragheaderlen + hh_len + fraggap + 15;
1117 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1118 if (unlikely(!skb)) {
1124 * Fill in the control structures
1126 skb->ip_summed = CHECKSUM_NONE;
1128 skb_reserve(skb, hh_len);
1131 * Find where to start putting bytes.
1133 skb_put(skb, fragheaderlen + fraggap);
1134 skb_reset_network_header(skb);
1135 skb->transport_header = (skb->network_header +
1138 skb->csum = skb_copy_and_csum_bits(skb_prev,
1140 skb_transport_header(skb),
1142 skb_prev->csum = csum_sub(skb_prev->csum,
1144 pskb_trim_unique(skb_prev, maxfraglen);
1148 * Put the packet on the pending queue.
1150 __skb_queue_tail(&sk->sk_write_queue, skb);
1154 i = skb_shinfo(skb)->nr_frags;
1157 if (skb_can_coalesce(skb, i, page, offset)) {
1158 skb_shinfo(skb)->frags[i-1].size += len;
1159 } else if (i < MAX_SKB_FRAGS) {
1161 skb_fill_page_desc(skb, i, page, offset, len);
1167 if (skb->ip_summed == CHECKSUM_NONE) {
1169 csum = csum_page(page, offset, len);
1170 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1174 skb->data_len += len;
1175 skb->truesize += len;
1176 atomic_add(len, &sk->sk_wmem_alloc);
1183 inet->cork.length -= size;
1184 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1188 static void ip_cork_release(struct inet_sock *inet)
1190 inet->cork.flags &= ~IPCORK_OPT;
1191 kfree(inet->cork.opt);
1192 inet->cork.opt = NULL;
1193 if (inet->cork.rt) {
1194 ip_rt_put(inet->cork.rt);
1195 inet->cork.rt = NULL;
1200 * Combined all pending IP fragments on the socket as one IP datagram
1201 * and push them out.
1203 int ip_push_pending_frames(struct sock *sk)
1205 struct sk_buff *skb, *tmp_skb;
1206 struct sk_buff **tail_skb;
1207 struct inet_sock *inet = inet_sk(sk);
1208 struct ip_options *opt = NULL;
1209 struct rtable *rt = inet->cork.rt;
1215 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1217 tail_skb = &(skb_shinfo(skb)->frag_list);
1219 /* move skb->data to ip header from ext header */
1220 if (skb->data < skb_network_header(skb))
1221 __skb_pull(skb, skb_network_offset(skb));
1222 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1223 __skb_pull(tmp_skb, skb_network_header_len(skb));
1224 *tail_skb = tmp_skb;
1225 tail_skb = &(tmp_skb->next);
1226 skb->len += tmp_skb->len;
1227 skb->data_len += tmp_skb->len;
1228 skb->truesize += tmp_skb->truesize;
1229 __sock_put(tmp_skb->sk);
1230 tmp_skb->destructor = NULL;
1234 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1235 * to fragment the frame generated here. No matter, what transforms
1236 * how transforms change size of the packet, it will come out.
1238 if (inet->pmtudisc < IP_PMTUDISC_DO)
1241 /* DF bit is set when we want to see DF on outgoing frames.
1242 * If local_df is set too, we still allow to fragment this frame
1244 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1245 (skb->len <= dst_mtu(&rt->u.dst) &&
1246 ip_dont_fragment(sk, &rt->u.dst)))
1249 if (inet->cork.flags & IPCORK_OPT)
1250 opt = inet->cork.opt;
1252 if (rt->rt_type == RTN_MULTICAST)
1255 ttl = ip_select_ttl(inet, &rt->u.dst);
1257 iph = (struct iphdr *)skb->data;
1261 iph->ihl += opt->optlen>>2;
1262 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1264 iph->tos = inet->tos;
1265 iph->tot_len = htons(skb->len);
1267 ip_select_ident(iph, &rt->u.dst, sk);
1269 iph->protocol = sk->sk_protocol;
1270 iph->saddr = rt->rt_src;
1271 iph->daddr = rt->rt_dst;
1274 skb->priority = sk->sk_priority;
1275 skb->dst = dst_clone(&rt->u.dst);
1277 if (iph->protocol == IPPROTO_ICMP)
1278 icmp_out_count(((struct icmphdr *)
1279 skb_transport_header(skb))->type);
1281 /* Netfilter gets whole the not fragmented skb. */
1282 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1283 skb->dst->dev, dst_output);
1286 err = inet->recverr ? net_xmit_errno(err) : 0;
1292 ip_cork_release(inet);
1296 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1301 * Throw away all pending data on the socket.
1303 void ip_flush_pending_frames(struct sock *sk)
1305 struct sk_buff *skb;
1307 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1310 ip_cork_release(inet_sk(sk));
1315 * Fetch data from kernel space and fill in checksum if needed.
1317 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1318 int len, int odd, struct sk_buff *skb)
1322 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1323 skb->csum = csum_block_add(skb->csum, csum, odd);
1328 * Generic function to send a packet as reply to another packet.
1329 * Used to send TCP resets so far. ICMP should use this function too.
1331 * Should run single threaded per socket because it uses the sock
1332 * structure to pass arguments.
1334 * LATER: switch from ip_build_xmit to ip_append_*
1336 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1339 struct inet_sock *inet = inet_sk(sk);
1341 struct ip_options opt;
1344 struct ipcm_cookie ipc;
1346 struct rtable *rt = (struct rtable*)skb->dst;
1348 if (ip_options_echo(&replyopts.opt, skb))
1351 daddr = ipc.addr = rt->rt_src;
1354 if (replyopts.opt.optlen) {
1355 ipc.opt = &replyopts.opt;
1358 daddr = replyopts.opt.faddr;
1362 struct flowi fl = { .oif = arg->bound_dev_if,
1365 .saddr = rt->rt_spec_dst,
1366 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1367 /* Not quite clean, but right. */
1369 { .sport = tcp_hdr(skb)->dest,
1370 .dport = tcp_hdr(skb)->source } },
1371 .proto = sk->sk_protocol };
1372 security_skb_classify_flow(skb, &fl);
1373 if (ip_route_output_key(&rt, &fl))
1377 /* And let IP do all the hard work.
1379 This chunk is not reenterable, hence spinlock.
1380 Note that it uses the fact, that this function is called
1381 with locally disabled BH and that sk cannot be already spinlocked.
1384 inet->tos = ip_hdr(skb)->tos;
1385 sk->sk_priority = skb->priority;
1386 sk->sk_protocol = ip_hdr(skb)->protocol;
1387 sk->sk_bound_dev_if = arg->bound_dev_if;
1388 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1389 &ipc, rt, MSG_DONTWAIT);
1390 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1391 if (arg->csumoffset >= 0)
1392 *((__sum16 *)skb_transport_header(skb) +
1393 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1395 skb->ip_summed = CHECKSUM_NONE;
1396 ip_push_pending_frames(sk);
1404 void __init ip_init(void)
1409 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1410 igmp_mc_proc_init();
1414 EXPORT_SYMBOL(ip_generic_getfrag);
1415 EXPORT_SYMBOL(ip_queue_xmit);
1416 EXPORT_SYMBOL(ip_send_check);