2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
72 #include <linux/skbuff.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/mroute.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
85 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 int __ip_local_out(struct sk_buff *skb)
96 struct iphdr *iph = ip_hdr(skb);
98 iph->tot_len = htons(skb->len);
100 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
104 int ip_local_out(struct sk_buff *skb)
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
114 EXPORT_SYMBOL_GPL(ip_local_out);
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 skb_reset_mac_header(newskb);
120 __skb_pull(newskb, skb_network_offset(newskb));
121 newskb->pkt_type = PACKET_LOOPBACK;
122 newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 BUG_TRAP(newskb->dst);
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 int ttl = inet->uc_ttl;
133 ttl = dst_metric(dst, RTAX_HOPLIMIT);
138 * Add an ip header to a skbuff and send it out.
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 __be32 saddr, __be32 daddr, struct ip_options *opt)
144 struct inet_sock *inet = inet_sk(sk);
145 struct rtable *rt = skb->rtable;
148 /* Build the IP header. */
149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 skb_reset_network_header(skb);
154 iph->tos = inet->tos;
155 if (ip_dont_fragment(sk, &rt->u.dst))
156 iph->frag_off = htons(IP_DF);
159 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
160 iph->daddr = rt->rt_dst;
161 iph->saddr = rt->rt_src;
162 iph->protocol = sk->sk_protocol;
163 ip_select_ident(iph, &rt->u.dst, sk);
165 if (opt && opt->optlen) {
166 iph->ihl += opt->optlen>>2;
167 ip_options_build(skb, opt, daddr, rt, 0);
170 skb->priority = sk->sk_priority;
171 skb->mark = sk->sk_mark;
174 return ip_local_out(skb);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 static inline int ip_finish_output2(struct sk_buff *skb)
181 struct dst_entry *dst = skb->dst;
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 if (rt->rt_type == RTN_MULTICAST)
187 IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
188 else if (rt->rt_type == RTN_BROADCAST)
189 IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
201 skb_set_owner_w(skb2, skb->sk);
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb->dst->dev->mtu : dst_mtu(skb->dst);
225 static int ip_finish_output(struct sk_buff *skb)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb->dst->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
237 return ip_finish_output2(skb);
240 int ip_mc_output(struct sk_buff *skb)
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb->rtable;
244 struct net_device *dev = rt->u.dst.dev;
247 * If the indicated interface is up and running, send the packet.
249 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
252 skb->protocol = htons(ETH_P_IP);
255 * Multicasts are looped back for other local users
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if ((!sk || inet_sk(sk)->mc_loop)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
267 This check is duplicated in ip_mr_input at the moment.
269 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
272 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
276 ip_dev_loopback_xmit);
279 /* Multicasts with ttl 0 must not go beyond the host */
281 if (ip_hdr(skb)->ttl == 0) {
287 if (rt->rt_flags&RTCF_BROADCAST) {
288 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
291 newskb->dev, ip_dev_loopback_xmit);
294 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
296 !(IPCB(skb)->flags & IPSKB_REROUTED));
299 int ip_output(struct sk_buff *skb)
301 struct net_device *dev = skb->dst->dev;
303 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
306 skb->protocol = htons(ETH_P_IP);
308 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
310 !(IPCB(skb)->flags & IPSKB_REROUTED));
313 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
315 struct sock *sk = skb->sk;
316 struct inet_sock *inet = inet_sk(sk);
317 struct ip_options *opt = inet->opt;
321 /* Skip all of this if the packet is already routed,
322 * f.e. by something like SCTP.
328 /* Make sure we can route this packet. */
329 rt = (struct rtable *)__sk_dst_check(sk, 0);
333 /* Use correct destination address if we have options. */
339 struct flowi fl = { .oif = sk->sk_bound_dev_if,
342 .saddr = inet->saddr,
343 .tos = RT_CONN_FLAGS(sk) } },
344 .proto = sk->sk_protocol,
346 { .sport = inet->sport,
347 .dport = inet->dport } } };
349 /* If this fails, retransmit mechanism of transport layer will
350 * keep trying until route appears or the connection times
353 security_sk_classify_flow(sk, &fl);
354 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
357 sk_setup_caps(sk, &rt->u.dst);
359 skb->dst = dst_clone(&rt->u.dst);
362 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
365 /* OK, we know where to send it, allocate and build IP header. */
366 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
367 skb_reset_network_header(skb);
369 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
370 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
371 iph->frag_off = htons(IP_DF);
374 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
375 iph->protocol = sk->sk_protocol;
376 iph->saddr = rt->rt_src;
377 iph->daddr = rt->rt_dst;
378 /* Transport layer set skb->h.foo itself. */
380 if (opt && opt->optlen) {
381 iph->ihl += opt->optlen >> 2;
382 ip_options_build(skb, opt, inet->daddr, rt, 0);
385 ip_select_ident_more(iph, &rt->u.dst, sk,
386 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388 skb->priority = sk->sk_priority;
389 skb->mark = sk->sk_mark;
391 return ip_local_out(skb);
394 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
396 return -EHOSTUNREACH;
400 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
402 to->pkt_type = from->pkt_type;
403 to->priority = from->priority;
404 to->protocol = from->protocol;
405 dst_release(to->dst);
406 to->dst = dst_clone(from->dst);
408 to->mark = from->mark;
410 /* Copy the flags to each fragment. */
411 IPCB(to)->flags = IPCB(from)->flags;
413 #ifdef CONFIG_NET_SCHED
414 to->tc_index = from->tc_index;
417 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
418 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
419 to->nf_trace = from->nf_trace;
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
422 to->ipvs_property = from->ipvs_property;
424 skb_copy_secmark(to, from);
428 * This IP datagram is too large to be sent in one piece. Break it up into
429 * smaller pieces (each of size equal to IP header plus
430 * a block of the data of the original IP data part) that will yet fit in a
431 * single device frame, and queue such a frame for sending.
434 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
439 struct net_device *dev;
440 struct sk_buff *skb2;
441 unsigned int mtu, hlen, left, len, ll_rs, pad;
443 __be16 not_last_frag;
444 struct rtable *rt = skb->rtable;
450 * Point into the IP datagram header.
455 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
456 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
457 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
458 htonl(ip_skb_dst_mtu(skb)));
464 * Setup starting values.
468 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
469 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
471 /* When frag_list is given, use it. First, check its validity:
472 * some transformers could create wrong frag_list or break existing
473 * one, it is not prohibited. In this case fall back to copying.
475 * LATER: this step can be merged to real generation of fragments,
476 * we can switch to copy when see the first bad fragment.
478 if (skb_shinfo(skb)->frag_list) {
479 struct sk_buff *frag;
480 int first_len = skb_pagelen(skb);
483 if (first_len - hlen > mtu ||
484 ((first_len - hlen) & 7) ||
485 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
489 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
490 /* Correct geometry. */
491 if (frag->len > mtu ||
492 ((frag->len & 7) && frag->next) ||
493 skb_headroom(frag) < hlen)
496 /* Partially cloned skb? */
497 if (skb_shared(frag))
504 frag->destructor = sock_wfree;
505 truesizes += frag->truesize;
509 /* Everything is OK. Generate! */
513 frag = skb_shinfo(skb)->frag_list;
514 skb_shinfo(skb)->frag_list = NULL;
515 skb->data_len = first_len - skb_headlen(skb);
516 skb->truesize -= truesizes;
517 skb->len = first_len;
518 iph->tot_len = htons(first_len);
519 iph->frag_off = htons(IP_MF);
523 /* Prepare header of the next frame,
524 * before previous one went down. */
526 frag->ip_summed = CHECKSUM_NONE;
527 skb_reset_transport_header(frag);
528 __skb_push(frag, hlen);
529 skb_reset_network_header(frag);
530 memcpy(skb_network_header(frag), iph, hlen);
532 iph->tot_len = htons(frag->len);
533 ip_copy_metadata(frag, skb);
535 ip_options_fragment(frag);
536 offset += skb->len - hlen;
537 iph->frag_off = htons(offset>>3);
538 if (frag->next != NULL)
539 iph->frag_off |= htons(IP_MF);
540 /* Ready, complete checksum */
547 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
557 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
566 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
571 left = skb->len - hlen; /* Space per frame */
572 ptr = raw + hlen; /* Where to start from */
574 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
575 * we need to make room for the encapsulating header
577 pad = nf_bridge_pad(skb);
578 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
582 * Fragment the datagram.
585 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
586 not_last_frag = iph->frag_off & htons(IP_MF);
589 * Keep copying data until we run out.
594 /* IF: it doesn't fit, use 'mtu' - the data space left */
597 /* IF: we are not sending upto and including the packet end
598 then align the next start on an eight byte boundary */
606 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
607 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
613 * Set up data on packet
616 ip_copy_metadata(skb2, skb);
617 skb_reserve(skb2, ll_rs);
618 skb_put(skb2, len + hlen);
619 skb_reset_network_header(skb2);
620 skb2->transport_header = skb2->network_header + hlen;
623 * Charge the memory for the fragment to any owner
628 skb_set_owner_w(skb2, skb->sk);
631 * Copy the packet header into the new buffer.
634 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
637 * Copy a block of the IP datagram.
639 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
644 * Fill in the new header fields.
647 iph->frag_off = htons((offset >> 3));
649 /* ANK: dirty, but effective trick. Upgrade options only if
650 * the segment to be fragmented was THE FIRST (otherwise,
651 * options are already fixed) and make it ONCE
652 * on the initial skb, so that all the following fragments
653 * will inherit fixed options.
656 ip_options_fragment(skb);
659 * Added AC : If we are fragmenting a fragment that's not the
660 * last fragment then keep MF on each bit
662 if (left > 0 || not_last_frag)
663 iph->frag_off |= htons(IP_MF);
668 * Put this fragment into the sending queue.
670 iph->tot_len = htons(len + hlen);
678 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
681 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
686 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
690 EXPORT_SYMBOL(ip_fragment);
693 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
695 struct iovec *iov = from;
697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
698 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
702 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
704 skb->csum = csum_block_add(skb->csum, csum, odd);
710 csum_page(struct page *page, int offset, int copy)
715 csum = csum_partial(kaddr + offset, copy, 0);
720 static inline int ip_ufo_append_data(struct sock *sk,
721 int getfrag(void *from, char *to, int offset, int len,
722 int odd, struct sk_buff *skb),
723 void *from, int length, int hh_len, int fragheaderlen,
724 int transhdrlen, int mtu,unsigned int flags)
729 /* There is support for UDP fragmentation offload by network
730 * device, so create one single skb packet containing complete
733 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
734 skb = sock_alloc_send_skb(sk,
735 hh_len + fragheaderlen + transhdrlen + 20,
736 (flags & MSG_DONTWAIT), &err);
741 /* reserve space for Hardware header */
742 skb_reserve(skb, hh_len);
744 /* create space for UDP/IP header */
745 skb_put(skb,fragheaderlen + transhdrlen);
747 /* initialize network header pointer */
748 skb_reset_network_header(skb);
750 /* initialize protocol header pointer */
751 skb->transport_header = skb->network_header + fragheaderlen;
753 skb->ip_summed = CHECKSUM_PARTIAL;
755 sk->sk_sndmsg_off = 0;
757 /* specify the length of each IP datagram fragment */
758 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
759 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
760 __skb_queue_tail(&sk->sk_write_queue, skb);
763 return skb_append_datato_frags(sk, skb, getfrag, from,
764 (length - transhdrlen));
768 * ip_append_data() and ip_append_page() can make one large IP datagram
769 * from many pieces of data. Each pieces will be holded on the socket
770 * until ip_push_pending_frames() is called. Each piece can be a page
773 * Not only UDP, other transport protocols - e.g. raw sockets - can use
774 * this interface potentially.
776 * LATER: length must be adjusted by pad at tail, when it is required.
778 int ip_append_data(struct sock *sk,
779 int getfrag(void *from, char *to, int offset, int len,
780 int odd, struct sk_buff *skb),
781 void *from, int length, int transhdrlen,
782 struct ipcm_cookie *ipc, struct rtable *rt,
785 struct inet_sock *inet = inet_sk(sk);
788 struct ip_options *opt = NULL;
795 unsigned int maxfraglen, fragheaderlen;
796 int csummode = CHECKSUM_NONE;
801 if (skb_queue_empty(&sk->sk_write_queue)) {
807 if (inet->cork.opt == NULL) {
808 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 if (unlikely(inet->cork.opt == NULL))
812 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 inet->cork.flags |= IPCORK_OPT;
814 inet->cork.addr = ipc->addr;
816 dst_hold(&rt->u.dst);
817 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
819 dst_mtu(rt->u.dst.path);
820 inet->cork.dst = &rt->u.dst;
821 inet->cork.length = 0;
822 sk->sk_sndmsg_page = NULL;
823 sk->sk_sndmsg_off = 0;
824 if ((exthdrlen = rt->u.dst.header_len) != 0) {
826 transhdrlen += exthdrlen;
829 rt = (struct rtable *)inet->cork.dst;
830 if (inet->cork.flags & IPCORK_OPT)
831 opt = inet->cork.opt;
835 mtu = inet->cork.fragsize;
837 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
839 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
840 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
842 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
843 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
848 * transhdrlen > 0 means that this is the first fragment and we wish
849 * it won't be fragmented in the future.
852 length + fragheaderlen <= mtu &&
853 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
855 csummode = CHECKSUM_PARTIAL;
857 inet->cork.length += length;
858 if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
859 (sk->sk_protocol == IPPROTO_UDP) &&
860 (rt->u.dst.dev->features & NETIF_F_UFO)) {
861 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
862 fragheaderlen, transhdrlen, mtu,
869 /* So, what's going on in the loop below?
871 * We use calculated fragment length to generate chained skb,
872 * each of segments is IP fragment ready for sending to network after
873 * adding appropriate IP header.
876 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
880 /* Check if the remaining data fits into current packet. */
881 copy = mtu - skb->len;
883 copy = maxfraglen - skb->len;
886 unsigned int datalen;
887 unsigned int fraglen;
888 unsigned int fraggap;
889 unsigned int alloclen;
890 struct sk_buff *skb_prev;
894 fraggap = skb_prev->len - maxfraglen;
899 * If remaining data exceeds the mtu,
900 * we know we need more fragment(s).
902 datalen = length + fraggap;
903 if (datalen > mtu - fragheaderlen)
904 datalen = maxfraglen - fragheaderlen;
905 fraglen = datalen + fragheaderlen;
907 if ((flags & MSG_MORE) &&
908 !(rt->u.dst.dev->features&NETIF_F_SG))
911 alloclen = datalen + fragheaderlen;
913 /* The last fragment gets additional space at tail.
914 * Note, with MSG_MORE we overallocate on fragments,
915 * because we have no idea what fragment will be
918 if (datalen == length + fraggap)
919 alloclen += rt->u.dst.trailer_len;
922 skb = sock_alloc_send_skb(sk,
923 alloclen + hh_len + 15,
924 (flags & MSG_DONTWAIT), &err);
927 if (atomic_read(&sk->sk_wmem_alloc) <=
929 skb = sock_wmalloc(sk,
930 alloclen + hh_len + 15, 1,
932 if (unlikely(skb == NULL))
939 * Fill in the control structures
941 skb->ip_summed = csummode;
943 skb_reserve(skb, hh_len);
946 * Find where to start putting bytes.
948 data = skb_put(skb, fraglen);
949 skb_set_network_header(skb, exthdrlen);
950 skb->transport_header = (skb->network_header +
952 data += fragheaderlen;
955 skb->csum = skb_copy_and_csum_bits(
956 skb_prev, maxfraglen,
957 data + transhdrlen, fraggap, 0);
958 skb_prev->csum = csum_sub(skb_prev->csum,
961 pskb_trim_unique(skb_prev, maxfraglen);
964 copy = datalen - transhdrlen - fraggap;
965 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
972 length -= datalen - fraggap;
975 csummode = CHECKSUM_NONE;
978 * Put the packet on the pending queue.
980 __skb_queue_tail(&sk->sk_write_queue, skb);
987 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
991 if (getfrag(from, skb_put(skb, copy),
992 offset, copy, off, skb) < 0) {
993 __skb_trim(skb, off);
998 int i = skb_shinfo(skb)->nr_frags;
999 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1000 struct page *page = sk->sk_sndmsg_page;
1001 int off = sk->sk_sndmsg_off;
1004 if (page && (left = PAGE_SIZE - off) > 0) {
1007 if (page != frag->page) {
1008 if (i == MAX_SKB_FRAGS) {
1013 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1014 frag = &skb_shinfo(skb)->frags[i];
1016 } else if (i < MAX_SKB_FRAGS) {
1017 if (copy > PAGE_SIZE)
1019 page = alloc_pages(sk->sk_allocation, 0);
1024 sk->sk_sndmsg_page = page;
1025 sk->sk_sndmsg_off = 0;
1027 skb_fill_page_desc(skb, i, page, 0, 0);
1028 frag = &skb_shinfo(skb)->frags[i];
1033 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1037 sk->sk_sndmsg_off += copy;
1040 skb->data_len += copy;
1041 skb->truesize += copy;
1042 atomic_add(copy, &sk->sk_wmem_alloc);
1051 inet->cork.length -= length;
1052 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1056 ssize_t ip_append_page(struct sock *sk, struct page *page,
1057 int offset, size_t size, int flags)
1059 struct inet_sock *inet = inet_sk(sk);
1060 struct sk_buff *skb;
1062 struct ip_options *opt = NULL;
1067 unsigned int maxfraglen, fragheaderlen, fraggap;
1072 if (flags&MSG_PROBE)
1075 if (skb_queue_empty(&sk->sk_write_queue))
1078 rt = (struct rtable *)inet->cork.dst;
1079 if (inet->cork.flags & IPCORK_OPT)
1080 opt = inet->cork.opt;
1082 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1085 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1086 mtu = inet->cork.fragsize;
1088 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1089 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1091 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1092 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1096 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1099 inet->cork.length += size;
1100 if ((sk->sk_protocol == IPPROTO_UDP) &&
1101 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1102 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1103 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1110 if (skb_is_gso(skb))
1114 /* Check if the remaining data fits into current packet. */
1115 len = mtu - skb->len;
1117 len = maxfraglen - skb->len;
1120 struct sk_buff *skb_prev;
1124 fraggap = skb_prev->len - maxfraglen;
1126 alloclen = fragheaderlen + hh_len + fraggap + 15;
1127 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1128 if (unlikely(!skb)) {
1134 * Fill in the control structures
1136 skb->ip_summed = CHECKSUM_NONE;
1138 skb_reserve(skb, hh_len);
1141 * Find where to start putting bytes.
1143 skb_put(skb, fragheaderlen + fraggap);
1144 skb_reset_network_header(skb);
1145 skb->transport_header = (skb->network_header +
1148 skb->csum = skb_copy_and_csum_bits(skb_prev,
1150 skb_transport_header(skb),
1152 skb_prev->csum = csum_sub(skb_prev->csum,
1154 pskb_trim_unique(skb_prev, maxfraglen);
1158 * Put the packet on the pending queue.
1160 __skb_queue_tail(&sk->sk_write_queue, skb);
1164 i = skb_shinfo(skb)->nr_frags;
1167 if (skb_can_coalesce(skb, i, page, offset)) {
1168 skb_shinfo(skb)->frags[i-1].size += len;
1169 } else if (i < MAX_SKB_FRAGS) {
1171 skb_fill_page_desc(skb, i, page, offset, len);
1177 if (skb->ip_summed == CHECKSUM_NONE) {
1179 csum = csum_page(page, offset, len);
1180 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1184 skb->data_len += len;
1185 skb->truesize += len;
1186 atomic_add(len, &sk->sk_wmem_alloc);
1193 inet->cork.length -= size;
1194 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1198 static void ip_cork_release(struct inet_sock *inet)
1200 inet->cork.flags &= ~IPCORK_OPT;
1201 kfree(inet->cork.opt);
1202 inet->cork.opt = NULL;
1203 dst_release(inet->cork.dst);
1204 inet->cork.dst = NULL;
1208 * Combined all pending IP fragments on the socket as one IP datagram
1209 * and push them out.
1211 int ip_push_pending_frames(struct sock *sk)
1213 struct sk_buff *skb, *tmp_skb;
1214 struct sk_buff **tail_skb;
1215 struct inet_sock *inet = inet_sk(sk);
1216 struct ip_options *opt = NULL;
1217 struct rtable *rt = (struct rtable *)inet->cork.dst;
1223 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1225 tail_skb = &(skb_shinfo(skb)->frag_list);
1227 /* move skb->data to ip header from ext header */
1228 if (skb->data < skb_network_header(skb))
1229 __skb_pull(skb, skb_network_offset(skb));
1230 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1231 __skb_pull(tmp_skb, skb_network_header_len(skb));
1232 *tail_skb = tmp_skb;
1233 tail_skb = &(tmp_skb->next);
1234 skb->len += tmp_skb->len;
1235 skb->data_len += tmp_skb->len;
1236 skb->truesize += tmp_skb->truesize;
1237 __sock_put(tmp_skb->sk);
1238 tmp_skb->destructor = NULL;
1242 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1243 * to fragment the frame generated here. No matter, what transforms
1244 * how transforms change size of the packet, it will come out.
1246 if (inet->pmtudisc < IP_PMTUDISC_DO)
1249 /* DF bit is set when we want to see DF on outgoing frames.
1250 * If local_df is set too, we still allow to fragment this frame
1252 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1253 (skb->len <= dst_mtu(&rt->u.dst) &&
1254 ip_dont_fragment(sk, &rt->u.dst)))
1257 if (inet->cork.flags & IPCORK_OPT)
1258 opt = inet->cork.opt;
1260 if (rt->rt_type == RTN_MULTICAST)
1263 ttl = ip_select_ttl(inet, &rt->u.dst);
1265 iph = (struct iphdr *)skb->data;
1269 iph->ihl += opt->optlen>>2;
1270 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1272 iph->tos = inet->tos;
1274 ip_select_ident(iph, &rt->u.dst, sk);
1276 iph->protocol = sk->sk_protocol;
1277 iph->saddr = rt->rt_src;
1278 iph->daddr = rt->rt_dst;
1280 skb->priority = sk->sk_priority;
1281 skb->mark = sk->sk_mark;
1282 skb->dst = dst_clone(&rt->u.dst);
1284 if (iph->protocol == IPPROTO_ICMP)
1285 icmp_out_count(((struct icmphdr *)
1286 skb_transport_header(skb))->type);
1288 /* Netfilter gets whole the not fragmented skb. */
1289 err = ip_local_out(skb);
1292 err = inet->recverr ? net_xmit_errno(err) : 0;
1298 ip_cork_release(inet);
1302 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1307 * Throw away all pending data on the socket.
1309 void ip_flush_pending_frames(struct sock *sk)
1311 struct sk_buff *skb;
1313 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1316 ip_cork_release(inet_sk(sk));
1321 * Fetch data from kernel space and fill in checksum if needed.
1323 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1324 int len, int odd, struct sk_buff *skb)
1328 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1329 skb->csum = csum_block_add(skb->csum, csum, odd);
1334 * Generic function to send a packet as reply to another packet.
1335 * Used to send TCP resets so far. ICMP should use this function too.
1337 * Should run single threaded per socket because it uses the sock
1338 * structure to pass arguments.
1340 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1343 struct inet_sock *inet = inet_sk(sk);
1345 struct ip_options opt;
1348 struct ipcm_cookie ipc;
1350 struct rtable *rt = skb->rtable;
1352 if (ip_options_echo(&replyopts.opt, skb))
1355 daddr = ipc.addr = rt->rt_src;
1358 if (replyopts.opt.optlen) {
1359 ipc.opt = &replyopts.opt;
1362 daddr = replyopts.opt.faddr;
1366 struct flowi fl = { .oif = arg->bound_dev_if,
1369 .saddr = rt->rt_spec_dst,
1370 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1371 /* Not quite clean, but right. */
1373 { .sport = tcp_hdr(skb)->dest,
1374 .dport = tcp_hdr(skb)->source } },
1375 .proto = sk->sk_protocol };
1376 security_skb_classify_flow(skb, &fl);
1377 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1381 /* And let IP do all the hard work.
1383 This chunk is not reenterable, hence spinlock.
1384 Note that it uses the fact, that this function is called
1385 with locally disabled BH and that sk cannot be already spinlocked.
1388 inet->tos = ip_hdr(skb)->tos;
1389 sk->sk_priority = skb->priority;
1390 sk->sk_protocol = ip_hdr(skb)->protocol;
1391 sk->sk_bound_dev_if = arg->bound_dev_if;
1392 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1393 &ipc, rt, MSG_DONTWAIT);
1394 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1395 if (arg->csumoffset >= 0)
1396 *((__sum16 *)skb_transport_header(skb) +
1397 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1399 skb->ip_summed = CHECKSUM_NONE;
1400 ip_push_pending_frames(sk);
1408 void __init ip_init(void)
1413 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1414 igmp_mc_proc_init();
1418 EXPORT_SYMBOL(ip_generic_getfrag);
1419 EXPORT_SYMBOL(ip_queue_xmit);
1420 EXPORT_SYMBOL(ip_send_check);