]> err.no Git - linux-2.6/blob - net/core/sock.c
[NET]: Make netlink_kernel_release publically available as sk_release_kernel.
[linux-2.6] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         if (!sk_rmem_schedule(sk, skb->truesize)) {
286                 err = -ENOBUFS;
287                 goto out;
288         }
289
290         skb->dev = NULL;
291         skb_set_owner_r(skb, sk);
292
293         /* Cache the SKB length before we tack it onto the receive
294          * queue.  Once it is added it no longer belongs to us and
295          * may be freed by other threads of control pulling packets
296          * from the queue.
297          */
298         skb_len = skb->len;
299
300         skb_queue_tail(&sk->sk_receive_queue, skb);
301
302         if (!sock_flag(sk, SOCK_DEAD))
303                 sk->sk_data_ready(sk, skb_len);
304 out:
305         return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311         int rc = NET_RX_SUCCESS;
312
313         if (sk_filter(sk, skb))
314                 goto discard_and_relse;
315
316         skb->dev = NULL;
317
318         if (nested)
319                 bh_lock_sock_nested(sk);
320         else
321                 bh_lock_sock(sk);
322         if (!sock_owned_by_user(sk)) {
323                 /*
324                  * trylock + unlock semantics:
325                  */
326                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328                 rc = sk->sk_backlog_rcv(sk, skb);
329
330                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331         } else
332                 sk_add_backlog(sk, skb);
333         bh_unlock_sock(sk);
334 out:
335         sock_put(sk);
336         return rc;
337 discard_and_relse:
338         kfree_skb(skb);
339         goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345         struct dst_entry *dst = sk->sk_dst_cache;
346
347         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348                 sk->sk_dst_cache = NULL;
349                 dst_release(dst);
350                 return NULL;
351         }
352
353         return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359         struct dst_entry *dst = sk_dst_get(sk);
360
361         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362                 sk_dst_reset(sk);
363                 dst_release(dst);
364                 return NULL;
365         }
366
367         return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373         int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375         struct net *net = sk->sk_net;
376         char devname[IFNAMSIZ];
377         int index;
378
379         /* Sorry... */
380         ret = -EPERM;
381         if (!capable(CAP_NET_RAW))
382                 goto out;
383
384         ret = -EINVAL;
385         if (optlen < 0)
386                 goto out;
387
388         /* Bind this socket to a particular device like "eth0",
389          * as specified in the passed interface name. If the
390          * name is "" or the option length is zero the socket
391          * is not bound.
392          */
393         if (optlen > IFNAMSIZ - 1)
394                 optlen = IFNAMSIZ - 1;
395         memset(devname, 0, sizeof(devname));
396
397         ret = -EFAULT;
398         if (copy_from_user(devname, optval, optlen))
399                 goto out;
400
401         if (devname[0] == '\0') {
402                 index = 0;
403         } else {
404                 struct net_device *dev = dev_get_by_name(net, devname);
405
406                 ret = -ENODEV;
407                 if (!dev)
408                         goto out;
409
410                 index = dev->ifindex;
411                 dev_put(dev);
412         }
413
414         lock_sock(sk);
415         sk->sk_bound_dev_if = index;
416         sk_dst_reset(sk);
417         release_sock(sk);
418
419         ret = 0;
420
421 out:
422 #endif
423
424         return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429         if (valbool)
430                 sock_set_flag(sk, bit);
431         else
432                 sock_reset_flag(sk, bit);
433 }
434
435 /*
436  *      This is meant for all protocols to use and covers goings on
437  *      at the socket level. Everything here is generic.
438  */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441                     char __user *optval, int optlen)
442 {
443         struct sock *sk=sock->sk;
444         int val;
445         int valbool;
446         struct linger ling;
447         int ret = 0;
448
449         /*
450          *      Options without arguments
451          */
452
453 #ifdef SO_DONTLINGER            /* Compatibility item... */
454         if (optname == SO_DONTLINGER) {
455                 lock_sock(sk);
456                 sock_reset_flag(sk, SOCK_LINGER);
457                 release_sock(sk);
458                 return 0;
459         }
460 #endif
461
462         if (optname == SO_BINDTODEVICE)
463                 return sock_bindtodevice(sk, optval, optlen);
464
465         if (optlen < sizeof(int))
466                 return -EINVAL;
467
468         if (get_user(val, (int __user *)optval))
469                 return -EFAULT;
470
471         valbool = val?1:0;
472
473         lock_sock(sk);
474
475         switch(optname) {
476         case SO_DEBUG:
477                 if (val && !capable(CAP_NET_ADMIN)) {
478                         ret = -EACCES;
479                 } else
480                         sock_valbool_flag(sk, SOCK_DBG, valbool);
481                 break;
482         case SO_REUSEADDR:
483                 sk->sk_reuse = valbool;
484                 break;
485         case SO_TYPE:
486         case SO_ERROR:
487                 ret = -ENOPROTOOPT;
488                 break;
489         case SO_DONTROUTE:
490                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491                 break;
492         case SO_BROADCAST:
493                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494                 break;
495         case SO_SNDBUF:
496                 /* Don't error on this BSD doesn't and if you think
497                    about it this is right. Otherwise apps have to
498                    play 'guess the biggest size' games. RCVBUF/SNDBUF
499                    are treated in BSD as hints */
500
501                 if (val > sysctl_wmem_max)
502                         val = sysctl_wmem_max;
503 set_sndbuf:
504                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505                 if ((val * 2) < SOCK_MIN_SNDBUF)
506                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507                 else
508                         sk->sk_sndbuf = val * 2;
509
510                 /*
511                  *      Wake up sending tasks if we
512                  *      upped the value.
513                  */
514                 sk->sk_write_space(sk);
515                 break;
516
517         case SO_SNDBUFFORCE:
518                 if (!capable(CAP_NET_ADMIN)) {
519                         ret = -EPERM;
520                         break;
521                 }
522                 goto set_sndbuf;
523
524         case SO_RCVBUF:
525                 /* Don't error on this BSD doesn't and if you think
526                    about it this is right. Otherwise apps have to
527                    play 'guess the biggest size' games. RCVBUF/SNDBUF
528                    are treated in BSD as hints */
529
530                 if (val > sysctl_rmem_max)
531                         val = sysctl_rmem_max;
532 set_rcvbuf:
533                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534                 /*
535                  * We double it on the way in to account for
536                  * "struct sk_buff" etc. overhead.   Applications
537                  * assume that the SO_RCVBUF setting they make will
538                  * allow that much actual data to be received on that
539                  * socket.
540                  *
541                  * Applications are unaware that "struct sk_buff" and
542                  * other overheads allocate from the receive buffer
543                  * during socket buffer allocation.
544                  *
545                  * And after considering the possible alternatives,
546                  * returning the value we actually used in getsockopt
547                  * is the most desirable behavior.
548                  */
549                 if ((val * 2) < SOCK_MIN_RCVBUF)
550                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551                 else
552                         sk->sk_rcvbuf = val * 2;
553                 break;
554
555         case SO_RCVBUFFORCE:
556                 if (!capable(CAP_NET_ADMIN)) {
557                         ret = -EPERM;
558                         break;
559                 }
560                 goto set_rcvbuf;
561
562         case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564                 if (sk->sk_protocol == IPPROTO_TCP)
565                         tcp_set_keepalive(sk, valbool);
566 #endif
567                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568                 break;
569
570         case SO_OOBINLINE:
571                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572                 break;
573
574         case SO_NO_CHECK:
575                 sk->sk_no_check = valbool;
576                 break;
577
578         case SO_PRIORITY:
579                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580                         sk->sk_priority = val;
581                 else
582                         ret = -EPERM;
583                 break;
584
585         case SO_LINGER:
586                 if (optlen < sizeof(ling)) {
587                         ret = -EINVAL;  /* 1003.1g */
588                         break;
589                 }
590                 if (copy_from_user(&ling,optval,sizeof(ling))) {
591                         ret = -EFAULT;
592                         break;
593                 }
594                 if (!ling.l_onoff)
595                         sock_reset_flag(sk, SOCK_LINGER);
596                 else {
597 #if (BITS_PER_LONG == 32)
598                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600                         else
601 #endif
602                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603                         sock_set_flag(sk, SOCK_LINGER);
604                 }
605                 break;
606
607         case SO_BSDCOMPAT:
608                 sock_warn_obsolete_bsdism("setsockopt");
609                 break;
610
611         case SO_PASSCRED:
612                 if (valbool)
613                         set_bit(SOCK_PASSCRED, &sock->flags);
614                 else
615                         clear_bit(SOCK_PASSCRED, &sock->flags);
616                 break;
617
618         case SO_TIMESTAMP:
619         case SO_TIMESTAMPNS:
620                 if (valbool)  {
621                         if (optname == SO_TIMESTAMP)
622                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                         else
624                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625                         sock_set_flag(sk, SOCK_RCVTSTAMP);
626                         sock_enable_timestamp(sk);
627                 } else {
628                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
629                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630                 }
631                 break;
632
633         case SO_RCVLOWAT:
634                 if (val < 0)
635                         val = INT_MAX;
636                 sk->sk_rcvlowat = val ? : 1;
637                 break;
638
639         case SO_RCVTIMEO:
640                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641                 break;
642
643         case SO_SNDTIMEO:
644                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645                 break;
646
647         case SO_ATTACH_FILTER:
648                 ret = -EINVAL;
649                 if (optlen == sizeof(struct sock_fprog)) {
650                         struct sock_fprog fprog;
651
652                         ret = -EFAULT;
653                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
654                                 break;
655
656                         ret = sk_attach_filter(&fprog, sk);
657                 }
658                 break;
659
660         case SO_DETACH_FILTER:
661                 ret = sk_detach_filter(sk);
662                 break;
663
664         case SO_PASSSEC:
665                 if (valbool)
666                         set_bit(SOCK_PASSSEC, &sock->flags);
667                 else
668                         clear_bit(SOCK_PASSSEC, &sock->flags);
669                 break;
670         case SO_MARK:
671                 if (!capable(CAP_NET_ADMIN))
672                         ret = -EPERM;
673                 else {
674                         sk->sk_mark = val;
675                 }
676                 break;
677
678                 /* We implement the SO_SNDLOWAT etc to
679                    not be settable (1003.1g 5.3) */
680         default:
681                 ret = -ENOPROTOOPT;
682                 break;
683         }
684         release_sock(sk);
685         return ret;
686 }
687
688
689 int sock_getsockopt(struct socket *sock, int level, int optname,
690                     char __user *optval, int __user *optlen)
691 {
692         struct sock *sk = sock->sk;
693
694         union {
695                 int val;
696                 struct linger ling;
697                 struct timeval tm;
698         } v;
699
700         unsigned int lv = sizeof(int);
701         int len;
702
703         if (get_user(len, optlen))
704                 return -EFAULT;
705         if (len < 0)
706                 return -EINVAL;
707
708         switch(optname) {
709         case SO_DEBUG:
710                 v.val = sock_flag(sk, SOCK_DBG);
711                 break;
712
713         case SO_DONTROUTE:
714                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
715                 break;
716
717         case SO_BROADCAST:
718                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
719                 break;
720
721         case SO_SNDBUF:
722                 v.val = sk->sk_sndbuf;
723                 break;
724
725         case SO_RCVBUF:
726                 v.val = sk->sk_rcvbuf;
727                 break;
728
729         case SO_REUSEADDR:
730                 v.val = sk->sk_reuse;
731                 break;
732
733         case SO_KEEPALIVE:
734                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735                 break;
736
737         case SO_TYPE:
738                 v.val = sk->sk_type;
739                 break;
740
741         case SO_ERROR:
742                 v.val = -sock_error(sk);
743                 if (v.val==0)
744                         v.val = xchg(&sk->sk_err_soft, 0);
745                 break;
746
747         case SO_OOBINLINE:
748                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
749                 break;
750
751         case SO_NO_CHECK:
752                 v.val = sk->sk_no_check;
753                 break;
754
755         case SO_PRIORITY:
756                 v.val = sk->sk_priority;
757                 break;
758
759         case SO_LINGER:
760                 lv              = sizeof(v.ling);
761                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
762                 v.ling.l_linger = sk->sk_lingertime / HZ;
763                 break;
764
765         case SO_BSDCOMPAT:
766                 sock_warn_obsolete_bsdism("getsockopt");
767                 break;
768
769         case SO_TIMESTAMP:
770                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
772                 break;
773
774         case SO_TIMESTAMPNS:
775                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776                 break;
777
778         case SO_RCVTIMEO:
779                 lv=sizeof(struct timeval);
780                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781                         v.tm.tv_sec = 0;
782                         v.tm.tv_usec = 0;
783                 } else {
784                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786                 }
787                 break;
788
789         case SO_SNDTIMEO:
790                 lv=sizeof(struct timeval);
791                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792                         v.tm.tv_sec = 0;
793                         v.tm.tv_usec = 0;
794                 } else {
795                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797                 }
798                 break;
799
800         case SO_RCVLOWAT:
801                 v.val = sk->sk_rcvlowat;
802                 break;
803
804         case SO_SNDLOWAT:
805                 v.val=1;
806                 break;
807
808         case SO_PASSCRED:
809                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810                 break;
811
812         case SO_PEERCRED:
813                 if (len > sizeof(sk->sk_peercred))
814                         len = sizeof(sk->sk_peercred);
815                 if (copy_to_user(optval, &sk->sk_peercred, len))
816                         return -EFAULT;
817                 goto lenout;
818
819         case SO_PEERNAME:
820         {
821                 char address[128];
822
823                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824                         return -ENOTCONN;
825                 if (lv < len)
826                         return -EINVAL;
827                 if (copy_to_user(optval, address, len))
828                         return -EFAULT;
829                 goto lenout;
830         }
831
832         /* Dubious BSD thing... Probably nobody even uses it, but
833          * the UNIX standard wants it for whatever reason... -DaveM
834          */
835         case SO_ACCEPTCONN:
836                 v.val = sk->sk_state == TCP_LISTEN;
837                 break;
838
839         case SO_PASSSEC:
840                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841                 break;
842
843         case SO_PEERSEC:
844                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846         case SO_MARK:
847                 v.val = sk->sk_mark;
848                 break;
849
850         default:
851                 return -ENOPROTOOPT;
852         }
853
854         if (len > lv)
855                 len = lv;
856         if (copy_to_user(optval, &v, len))
857                 return -EFAULT;
858 lenout:
859         if (put_user(len, optlen))
860                 return -EFAULT;
861         return 0;
862 }
863
864 /*
865  * Initialize an sk_lock.
866  *
867  * (We also register the sk_lock with the lock validator.)
868  */
869 static inline void sock_lock_init(struct sock *sk)
870 {
871         sock_lock_init_class_and_name(sk,
872                         af_family_slock_key_strings[sk->sk_family],
873                         af_family_slock_keys + sk->sk_family,
874                         af_family_key_strings[sk->sk_family],
875                         af_family_keys + sk->sk_family);
876 }
877
878 static void sock_copy(struct sock *nsk, const struct sock *osk)
879 {
880 #ifdef CONFIG_SECURITY_NETWORK
881         void *sptr = nsk->sk_security;
882 #endif
883
884         memcpy(nsk, osk, osk->sk_prot->obj_size);
885 #ifdef CONFIG_SECURITY_NETWORK
886         nsk->sk_security = sptr;
887         security_sk_clone(osk, nsk);
888 #endif
889 }
890
891 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892                 int family)
893 {
894         struct sock *sk;
895         struct kmem_cache *slab;
896
897         slab = prot->slab;
898         if (slab != NULL)
899                 sk = kmem_cache_alloc(slab, priority);
900         else
901                 sk = kmalloc(prot->obj_size, priority);
902
903         if (sk != NULL) {
904                 if (security_sk_alloc(sk, family, priority))
905                         goto out_free;
906
907                 if (!try_module_get(prot->owner))
908                         goto out_free_sec;
909         }
910
911         return sk;
912
913 out_free_sec:
914         security_sk_free(sk);
915 out_free:
916         if (slab != NULL)
917                 kmem_cache_free(slab, sk);
918         else
919                 kfree(sk);
920         return NULL;
921 }
922
923 static void sk_prot_free(struct proto *prot, struct sock *sk)
924 {
925         struct kmem_cache *slab;
926         struct module *owner;
927
928         owner = prot->owner;
929         slab = prot->slab;
930
931         security_sk_free(sk);
932         if (slab != NULL)
933                 kmem_cache_free(slab, sk);
934         else
935                 kfree(sk);
936         module_put(owner);
937 }
938
939 /**
940  *      sk_alloc - All socket objects are allocated here
941  *      @net: the applicable net namespace
942  *      @family: protocol family
943  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944  *      @prot: struct proto associated with this new sock instance
945  *      @zero_it: if we should zero the newly allocated sock
946  */
947 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948                       struct proto *prot)
949 {
950         struct sock *sk;
951
952         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953         if (sk) {
954                 sk->sk_family = family;
955                 /*
956                  * See comment in struct sock definition to understand
957                  * why we need sk_prot_creator -acme
958                  */
959                 sk->sk_prot = sk->sk_prot_creator = prot;
960                 sock_lock_init(sk);
961                 sk->sk_net = get_net(net);
962         }
963
964         return sk;
965 }
966
967 void sk_free(struct sock *sk)
968 {
969         struct sk_filter *filter;
970
971         if (sk->sk_destruct)
972                 sk->sk_destruct(sk);
973
974         filter = rcu_dereference(sk->sk_filter);
975         if (filter) {
976                 sk_filter_uncharge(sk, filter);
977                 rcu_assign_pointer(sk->sk_filter, NULL);
978         }
979
980         sock_disable_timestamp(sk);
981
982         if (atomic_read(&sk->sk_omem_alloc))
983                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
985
986         put_net(sk->sk_net);
987         sk_prot_free(sk->sk_prot_creator, sk);
988 }
989
990 /*
991  * Last sock_put should drop referrence to sk->sk_net. It has already
992  * been dropped in sk_change_net. Taking referrence to stopping namespace
993  * is not an option.
994  * Take referrence to a socket to remove it from hash _alive_ and after that
995  * destroy it in the context of init_net.
996  */
997 void sk_release_kernel(struct sock *sk)
998 {
999         if (sk == NULL || sk->sk_socket == NULL)
1000                 return;
1001
1002         sock_hold(sk);
1003         sock_release(sk->sk_socket);
1004         sk->sk_net = get_net(&init_net);
1005         sock_put(sk);
1006 }
1007
1008 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1009 {
1010         struct sock *newsk;
1011
1012         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1013         if (newsk != NULL) {
1014                 struct sk_filter *filter;
1015
1016                 sock_copy(newsk, sk);
1017
1018                 /* SANITY */
1019                 get_net(newsk->sk_net);
1020                 sk_node_init(&newsk->sk_node);
1021                 sock_lock_init(newsk);
1022                 bh_lock_sock(newsk);
1023                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1024
1025                 atomic_set(&newsk->sk_rmem_alloc, 0);
1026                 atomic_set(&newsk->sk_wmem_alloc, 0);
1027                 atomic_set(&newsk->sk_omem_alloc, 0);
1028                 skb_queue_head_init(&newsk->sk_receive_queue);
1029                 skb_queue_head_init(&newsk->sk_write_queue);
1030 #ifdef CONFIG_NET_DMA
1031                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1032 #endif
1033
1034                 rwlock_init(&newsk->sk_dst_lock);
1035                 rwlock_init(&newsk->sk_callback_lock);
1036                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1037                                 af_callback_keys + newsk->sk_family,
1038                                 af_family_clock_key_strings[newsk->sk_family]);
1039
1040                 newsk->sk_dst_cache     = NULL;
1041                 newsk->sk_wmem_queued   = 0;
1042                 newsk->sk_forward_alloc = 0;
1043                 newsk->sk_send_head     = NULL;
1044                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1045
1046                 sock_reset_flag(newsk, SOCK_DONE);
1047                 skb_queue_head_init(&newsk->sk_error_queue);
1048
1049                 filter = newsk->sk_filter;
1050                 if (filter != NULL)
1051                         sk_filter_charge(newsk, filter);
1052
1053                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1054                         /* It is still raw copy of parent, so invalidate
1055                          * destructor and make plain sk_free() */
1056                         newsk->sk_destruct = NULL;
1057                         sk_free(newsk);
1058                         newsk = NULL;
1059                         goto out;
1060                 }
1061
1062                 newsk->sk_err      = 0;
1063                 newsk->sk_priority = 0;
1064                 atomic_set(&newsk->sk_refcnt, 2);
1065
1066                 /*
1067                  * Increment the counter in the same struct proto as the master
1068                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1069                  * is the same as sk->sk_prot->socks, as this field was copied
1070                  * with memcpy).
1071                  *
1072                  * This _changes_ the previous behaviour, where
1073                  * tcp_create_openreq_child always was incrementing the
1074                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1075                  * to be taken into account in all callers. -acme
1076                  */
1077                 sk_refcnt_debug_inc(newsk);
1078                 newsk->sk_socket = NULL;
1079                 newsk->sk_sleep  = NULL;
1080
1081                 if (newsk->sk_prot->sockets_allocated)
1082                         atomic_inc(newsk->sk_prot->sockets_allocated);
1083         }
1084 out:
1085         return newsk;
1086 }
1087
1088 EXPORT_SYMBOL_GPL(sk_clone);
1089
1090 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1091 {
1092         __sk_dst_set(sk, dst);
1093         sk->sk_route_caps = dst->dev->features;
1094         if (sk->sk_route_caps & NETIF_F_GSO)
1095                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1096         if (sk_can_gso(sk)) {
1097                 if (dst->header_len)
1098                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1099                 else
1100                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1101         }
1102 }
1103 EXPORT_SYMBOL_GPL(sk_setup_caps);
1104
1105 void __init sk_init(void)
1106 {
1107         if (num_physpages <= 4096) {
1108                 sysctl_wmem_max = 32767;
1109                 sysctl_rmem_max = 32767;
1110                 sysctl_wmem_default = 32767;
1111                 sysctl_rmem_default = 32767;
1112         } else if (num_physpages >= 131072) {
1113                 sysctl_wmem_max = 131071;
1114                 sysctl_rmem_max = 131071;
1115         }
1116 }
1117
1118 /*
1119  *      Simple resource managers for sockets.
1120  */
1121
1122
1123 /*
1124  * Write buffer destructor automatically called from kfree_skb.
1125  */
1126 void sock_wfree(struct sk_buff *skb)
1127 {
1128         struct sock *sk = skb->sk;
1129
1130         /* In case it might be waiting for more memory. */
1131         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1132         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1133                 sk->sk_write_space(sk);
1134         sock_put(sk);
1135 }
1136
1137 /*
1138  * Read buffer destructor automatically called from kfree_skb.
1139  */
1140 void sock_rfree(struct sk_buff *skb)
1141 {
1142         struct sock *sk = skb->sk;
1143
1144         skb_truesize_check(skb);
1145         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1146         sk_mem_uncharge(skb->sk, skb->truesize);
1147 }
1148
1149
1150 int sock_i_uid(struct sock *sk)
1151 {
1152         int uid;
1153
1154         read_lock(&sk->sk_callback_lock);
1155         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1156         read_unlock(&sk->sk_callback_lock);
1157         return uid;
1158 }
1159
1160 unsigned long sock_i_ino(struct sock *sk)
1161 {
1162         unsigned long ino;
1163
1164         read_lock(&sk->sk_callback_lock);
1165         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1166         read_unlock(&sk->sk_callback_lock);
1167         return ino;
1168 }
1169
1170 /*
1171  * Allocate a skb from the socket's send buffer.
1172  */
1173 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1174                              gfp_t priority)
1175 {
1176         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1177                 struct sk_buff * skb = alloc_skb(size, priority);
1178                 if (skb) {
1179                         skb_set_owner_w(skb, sk);
1180                         return skb;
1181                 }
1182         }
1183         return NULL;
1184 }
1185
1186 /*
1187  * Allocate a skb from the socket's receive buffer.
1188  */
1189 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1190                              gfp_t priority)
1191 {
1192         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1193                 struct sk_buff *skb = alloc_skb(size, priority);
1194                 if (skb) {
1195                         skb_set_owner_r(skb, sk);
1196                         return skb;
1197                 }
1198         }
1199         return NULL;
1200 }
1201
1202 /*
1203  * Allocate a memory block from the socket's option memory buffer.
1204  */
1205 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1206 {
1207         if ((unsigned)size <= sysctl_optmem_max &&
1208             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1209                 void *mem;
1210                 /* First do the add, to avoid the race if kmalloc
1211                  * might sleep.
1212                  */
1213                 atomic_add(size, &sk->sk_omem_alloc);
1214                 mem = kmalloc(size, priority);
1215                 if (mem)
1216                         return mem;
1217                 atomic_sub(size, &sk->sk_omem_alloc);
1218         }
1219         return NULL;
1220 }
1221
1222 /*
1223  * Free an option memory block.
1224  */
1225 void sock_kfree_s(struct sock *sk, void *mem, int size)
1226 {
1227         kfree(mem);
1228         atomic_sub(size, &sk->sk_omem_alloc);
1229 }
1230
1231 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1232    I think, these locks should be removed for datagram sockets.
1233  */
1234 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1235 {
1236         DEFINE_WAIT(wait);
1237
1238         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1239         for (;;) {
1240                 if (!timeo)
1241                         break;
1242                 if (signal_pending(current))
1243                         break;
1244                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1245                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1246                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1247                         break;
1248                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1249                         break;
1250                 if (sk->sk_err)
1251                         break;
1252                 timeo = schedule_timeout(timeo);
1253         }
1254         finish_wait(sk->sk_sleep, &wait);
1255         return timeo;
1256 }
1257
1258
1259 /*
1260  *      Generic send/receive buffer handlers
1261  */
1262
1263 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1264                                             unsigned long header_len,
1265                                             unsigned long data_len,
1266                                             int noblock, int *errcode)
1267 {
1268         struct sk_buff *skb;
1269         gfp_t gfp_mask;
1270         long timeo;
1271         int err;
1272
1273         gfp_mask = sk->sk_allocation;
1274         if (gfp_mask & __GFP_WAIT)
1275                 gfp_mask |= __GFP_REPEAT;
1276
1277         timeo = sock_sndtimeo(sk, noblock);
1278         while (1) {
1279                 err = sock_error(sk);
1280                 if (err != 0)
1281                         goto failure;
1282
1283                 err = -EPIPE;
1284                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1285                         goto failure;
1286
1287                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1288                         skb = alloc_skb(header_len, gfp_mask);
1289                         if (skb) {
1290                                 int npages;
1291                                 int i;
1292
1293                                 /* No pages, we're done... */
1294                                 if (!data_len)
1295                                         break;
1296
1297                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1298                                 skb->truesize += data_len;
1299                                 skb_shinfo(skb)->nr_frags = npages;
1300                                 for (i = 0; i < npages; i++) {
1301                                         struct page *page;
1302                                         skb_frag_t *frag;
1303
1304                                         page = alloc_pages(sk->sk_allocation, 0);
1305                                         if (!page) {
1306                                                 err = -ENOBUFS;
1307                                                 skb_shinfo(skb)->nr_frags = i;
1308                                                 kfree_skb(skb);
1309                                                 goto failure;
1310                                         }
1311
1312                                         frag = &skb_shinfo(skb)->frags[i];
1313                                         frag->page = page;
1314                                         frag->page_offset = 0;
1315                                         frag->size = (data_len >= PAGE_SIZE ?
1316                                                       PAGE_SIZE :
1317                                                       data_len);
1318                                         data_len -= PAGE_SIZE;
1319                                 }
1320
1321                                 /* Full success... */
1322                                 break;
1323                         }
1324                         err = -ENOBUFS;
1325                         goto failure;
1326                 }
1327                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1328                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1329                 err = -EAGAIN;
1330                 if (!timeo)
1331                         goto failure;
1332                 if (signal_pending(current))
1333                         goto interrupted;
1334                 timeo = sock_wait_for_wmem(sk, timeo);
1335         }
1336
1337         skb_set_owner_w(skb, sk);
1338         return skb;
1339
1340 interrupted:
1341         err = sock_intr_errno(timeo);
1342 failure:
1343         *errcode = err;
1344         return NULL;
1345 }
1346
1347 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1348                                     int noblock, int *errcode)
1349 {
1350         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1351 }
1352
1353 static void __lock_sock(struct sock *sk)
1354 {
1355         DEFINE_WAIT(wait);
1356
1357         for (;;) {
1358                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1359                                         TASK_UNINTERRUPTIBLE);
1360                 spin_unlock_bh(&sk->sk_lock.slock);
1361                 schedule();
1362                 spin_lock_bh(&sk->sk_lock.slock);
1363                 if (!sock_owned_by_user(sk))
1364                         break;
1365         }
1366         finish_wait(&sk->sk_lock.wq, &wait);
1367 }
1368
1369 static void __release_sock(struct sock *sk)
1370 {
1371         struct sk_buff *skb = sk->sk_backlog.head;
1372
1373         do {
1374                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1375                 bh_unlock_sock(sk);
1376
1377                 do {
1378                         struct sk_buff *next = skb->next;
1379
1380                         skb->next = NULL;
1381                         sk->sk_backlog_rcv(sk, skb);
1382
1383                         /*
1384                          * We are in process context here with softirqs
1385                          * disabled, use cond_resched_softirq() to preempt.
1386                          * This is safe to do because we've taken the backlog
1387                          * queue private:
1388                          */
1389                         cond_resched_softirq();
1390
1391                         skb = next;
1392                 } while (skb != NULL);
1393
1394                 bh_lock_sock(sk);
1395         } while ((skb = sk->sk_backlog.head) != NULL);
1396 }
1397
1398 /**
1399  * sk_wait_data - wait for data to arrive at sk_receive_queue
1400  * @sk:    sock to wait on
1401  * @timeo: for how long
1402  *
1403  * Now socket state including sk->sk_err is changed only under lock,
1404  * hence we may omit checks after joining wait queue.
1405  * We check receive queue before schedule() only as optimization;
1406  * it is very likely that release_sock() added new data.
1407  */
1408 int sk_wait_data(struct sock *sk, long *timeo)
1409 {
1410         int rc;
1411         DEFINE_WAIT(wait);
1412
1413         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1414         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1415         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1416         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1417         finish_wait(sk->sk_sleep, &wait);
1418         return rc;
1419 }
1420
1421 EXPORT_SYMBOL(sk_wait_data);
1422
1423 /**
1424  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1425  *      @sk: socket
1426  *      @size: memory size to allocate
1427  *      @kind: allocation type
1428  *
1429  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1430  *      rmem allocation. This function assumes that protocols which have
1431  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1432  */
1433 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1434 {
1435         struct proto *prot = sk->sk_prot;
1436         int amt = sk_mem_pages(size);
1437         int allocated;
1438
1439         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1440         allocated = atomic_add_return(amt, prot->memory_allocated);
1441
1442         /* Under limit. */
1443         if (allocated <= prot->sysctl_mem[0]) {
1444                 if (prot->memory_pressure && *prot->memory_pressure)
1445                         *prot->memory_pressure = 0;
1446                 return 1;
1447         }
1448
1449         /* Under pressure. */
1450         if (allocated > prot->sysctl_mem[1])
1451                 if (prot->enter_memory_pressure)
1452                         prot->enter_memory_pressure();
1453
1454         /* Over hard limit. */
1455         if (allocated > prot->sysctl_mem[2])
1456                 goto suppress_allocation;
1457
1458         /* guarantee minimum buffer size under pressure */
1459         if (kind == SK_MEM_RECV) {
1460                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1461                         return 1;
1462         } else { /* SK_MEM_SEND */
1463                 if (sk->sk_type == SOCK_STREAM) {
1464                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1465                                 return 1;
1466                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1467                            prot->sysctl_wmem[0])
1468                                 return 1;
1469         }
1470
1471         if (prot->memory_pressure) {
1472                 if (!*prot->memory_pressure ||
1473                     prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1474                     sk_mem_pages(sk->sk_wmem_queued +
1475                                  atomic_read(&sk->sk_rmem_alloc) +
1476                                  sk->sk_forward_alloc))
1477                         return 1;
1478         }
1479
1480 suppress_allocation:
1481
1482         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1483                 sk_stream_moderate_sndbuf(sk);
1484
1485                 /* Fail only if socket is _under_ its sndbuf.
1486                  * In this case we cannot block, so that we have to fail.
1487                  */
1488                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1489                         return 1;
1490         }
1491
1492         /* Alas. Undo changes. */
1493         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1494         atomic_sub(amt, prot->memory_allocated);
1495         return 0;
1496 }
1497
1498 EXPORT_SYMBOL(__sk_mem_schedule);
1499
1500 /**
1501  *      __sk_reclaim - reclaim memory_allocated
1502  *      @sk: socket
1503  */
1504 void __sk_mem_reclaim(struct sock *sk)
1505 {
1506         struct proto *prot = sk->sk_prot;
1507
1508         atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1509                    prot->memory_allocated);
1510         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1511
1512         if (prot->memory_pressure && *prot->memory_pressure &&
1513             (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1514                 *prot->memory_pressure = 0;
1515 }
1516
1517 EXPORT_SYMBOL(__sk_mem_reclaim);
1518
1519
1520 /*
1521  * Set of default routines for initialising struct proto_ops when
1522  * the protocol does not support a particular function. In certain
1523  * cases where it makes no sense for a protocol to have a "do nothing"
1524  * function, some default processing is provided.
1525  */
1526
1527 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1528 {
1529         return -EOPNOTSUPP;
1530 }
1531
1532 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1533                     int len, int flags)
1534 {
1535         return -EOPNOTSUPP;
1536 }
1537
1538 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1539 {
1540         return -EOPNOTSUPP;
1541 }
1542
1543 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1544 {
1545         return -EOPNOTSUPP;
1546 }
1547
1548 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1549                     int *len, int peer)
1550 {
1551         return -EOPNOTSUPP;
1552 }
1553
1554 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1555 {
1556         return 0;
1557 }
1558
1559 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1560 {
1561         return -EOPNOTSUPP;
1562 }
1563
1564 int sock_no_listen(struct socket *sock, int backlog)
1565 {
1566         return -EOPNOTSUPP;
1567 }
1568
1569 int sock_no_shutdown(struct socket *sock, int how)
1570 {
1571         return -EOPNOTSUPP;
1572 }
1573
1574 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1575                     char __user *optval, int optlen)
1576 {
1577         return -EOPNOTSUPP;
1578 }
1579
1580 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1581                     char __user *optval, int __user *optlen)
1582 {
1583         return -EOPNOTSUPP;
1584 }
1585
1586 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1587                     size_t len)
1588 {
1589         return -EOPNOTSUPP;
1590 }
1591
1592 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1593                     size_t len, int flags)
1594 {
1595         return -EOPNOTSUPP;
1596 }
1597
1598 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1599 {
1600         /* Mirror missing mmap method error code */
1601         return -ENODEV;
1602 }
1603
1604 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1605 {
1606         ssize_t res;
1607         struct msghdr msg = {.msg_flags = flags};
1608         struct kvec iov;
1609         char *kaddr = kmap(page);
1610         iov.iov_base = kaddr + offset;
1611         iov.iov_len = size;
1612         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1613         kunmap(page);
1614         return res;
1615 }
1616
1617 /*
1618  *      Default Socket Callbacks
1619  */
1620
1621 static void sock_def_wakeup(struct sock *sk)
1622 {
1623         read_lock(&sk->sk_callback_lock);
1624         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1625                 wake_up_interruptible_all(sk->sk_sleep);
1626         read_unlock(&sk->sk_callback_lock);
1627 }
1628
1629 static void sock_def_error_report(struct sock *sk)
1630 {
1631         read_lock(&sk->sk_callback_lock);
1632         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1633                 wake_up_interruptible(sk->sk_sleep);
1634         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1635         read_unlock(&sk->sk_callback_lock);
1636 }
1637
1638 static void sock_def_readable(struct sock *sk, int len)
1639 {
1640         read_lock(&sk->sk_callback_lock);
1641         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1642                 wake_up_interruptible(sk->sk_sleep);
1643         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1644         read_unlock(&sk->sk_callback_lock);
1645 }
1646
1647 static void sock_def_write_space(struct sock *sk)
1648 {
1649         read_lock(&sk->sk_callback_lock);
1650
1651         /* Do not wake up a writer until he can make "significant"
1652          * progress.  --DaveM
1653          */
1654         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1655                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1656                         wake_up_interruptible(sk->sk_sleep);
1657
1658                 /* Should agree with poll, otherwise some programs break */
1659                 if (sock_writeable(sk))
1660                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1661         }
1662
1663         read_unlock(&sk->sk_callback_lock);
1664 }
1665
1666 static void sock_def_destruct(struct sock *sk)
1667 {
1668         kfree(sk->sk_protinfo);
1669 }
1670
1671 void sk_send_sigurg(struct sock *sk)
1672 {
1673         if (sk->sk_socket && sk->sk_socket->file)
1674                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1675                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1676 }
1677
1678 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1679                     unsigned long expires)
1680 {
1681         if (!mod_timer(timer, expires))
1682                 sock_hold(sk);
1683 }
1684
1685 EXPORT_SYMBOL(sk_reset_timer);
1686
1687 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1688 {
1689         if (timer_pending(timer) && del_timer(timer))
1690                 __sock_put(sk);
1691 }
1692
1693 EXPORT_SYMBOL(sk_stop_timer);
1694
1695 void sock_init_data(struct socket *sock, struct sock *sk)
1696 {
1697         skb_queue_head_init(&sk->sk_receive_queue);
1698         skb_queue_head_init(&sk->sk_write_queue);
1699         skb_queue_head_init(&sk->sk_error_queue);
1700 #ifdef CONFIG_NET_DMA
1701         skb_queue_head_init(&sk->sk_async_wait_queue);
1702 #endif
1703
1704         sk->sk_send_head        =       NULL;
1705
1706         init_timer(&sk->sk_timer);
1707
1708         sk->sk_allocation       =       GFP_KERNEL;
1709         sk->sk_rcvbuf           =       sysctl_rmem_default;
1710         sk->sk_sndbuf           =       sysctl_wmem_default;
1711         sk->sk_state            =       TCP_CLOSE;
1712         sk->sk_socket           =       sock;
1713
1714         sock_set_flag(sk, SOCK_ZAPPED);
1715
1716         if (sock) {
1717                 sk->sk_type     =       sock->type;
1718                 sk->sk_sleep    =       &sock->wait;
1719                 sock->sk        =       sk;
1720         } else
1721                 sk->sk_sleep    =       NULL;
1722
1723         rwlock_init(&sk->sk_dst_lock);
1724         rwlock_init(&sk->sk_callback_lock);
1725         lockdep_set_class_and_name(&sk->sk_callback_lock,
1726                         af_callback_keys + sk->sk_family,
1727                         af_family_clock_key_strings[sk->sk_family]);
1728
1729         sk->sk_state_change     =       sock_def_wakeup;
1730         sk->sk_data_ready       =       sock_def_readable;
1731         sk->sk_write_space      =       sock_def_write_space;
1732         sk->sk_error_report     =       sock_def_error_report;
1733         sk->sk_destruct         =       sock_def_destruct;
1734
1735         sk->sk_sndmsg_page      =       NULL;
1736         sk->sk_sndmsg_off       =       0;
1737
1738         sk->sk_peercred.pid     =       0;
1739         sk->sk_peercred.uid     =       -1;
1740         sk->sk_peercred.gid     =       -1;
1741         sk->sk_write_pending    =       0;
1742         sk->sk_rcvlowat         =       1;
1743         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1744         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1745
1746         sk->sk_stamp = ktime_set(-1L, -1L);
1747
1748         atomic_set(&sk->sk_refcnt, 1);
1749         atomic_set(&sk->sk_drops, 0);
1750 }
1751
1752 void lock_sock_nested(struct sock *sk, int subclass)
1753 {
1754         might_sleep();
1755         spin_lock_bh(&sk->sk_lock.slock);
1756         if (sk->sk_lock.owned)
1757                 __lock_sock(sk);
1758         sk->sk_lock.owned = 1;
1759         spin_unlock(&sk->sk_lock.slock);
1760         /*
1761          * The sk_lock has mutex_lock() semantics here:
1762          */
1763         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1764         local_bh_enable();
1765 }
1766
1767 EXPORT_SYMBOL(lock_sock_nested);
1768
1769 void release_sock(struct sock *sk)
1770 {
1771         /*
1772          * The sk_lock has mutex_unlock() semantics:
1773          */
1774         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1775
1776         spin_lock_bh(&sk->sk_lock.slock);
1777         if (sk->sk_backlog.tail)
1778                 __release_sock(sk);
1779         sk->sk_lock.owned = 0;
1780         if (waitqueue_active(&sk->sk_lock.wq))
1781                 wake_up(&sk->sk_lock.wq);
1782         spin_unlock_bh(&sk->sk_lock.slock);
1783 }
1784 EXPORT_SYMBOL(release_sock);
1785
1786 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1787 {
1788         struct timeval tv;
1789         if (!sock_flag(sk, SOCK_TIMESTAMP))
1790                 sock_enable_timestamp(sk);
1791         tv = ktime_to_timeval(sk->sk_stamp);
1792         if (tv.tv_sec == -1)
1793                 return -ENOENT;
1794         if (tv.tv_sec == 0) {
1795                 sk->sk_stamp = ktime_get_real();
1796                 tv = ktime_to_timeval(sk->sk_stamp);
1797         }
1798         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1799 }
1800 EXPORT_SYMBOL(sock_get_timestamp);
1801
1802 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1803 {
1804         struct timespec ts;
1805         if (!sock_flag(sk, SOCK_TIMESTAMP))
1806                 sock_enable_timestamp(sk);
1807         ts = ktime_to_timespec(sk->sk_stamp);
1808         if (ts.tv_sec == -1)
1809                 return -ENOENT;
1810         if (ts.tv_sec == 0) {
1811                 sk->sk_stamp = ktime_get_real();
1812                 ts = ktime_to_timespec(sk->sk_stamp);
1813         }
1814         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1815 }
1816 EXPORT_SYMBOL(sock_get_timestampns);
1817
1818 void sock_enable_timestamp(struct sock *sk)
1819 {
1820         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1821                 sock_set_flag(sk, SOCK_TIMESTAMP);
1822                 net_enable_timestamp();
1823         }
1824 }
1825
1826 /*
1827  *      Get a socket option on an socket.
1828  *
1829  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1830  *      asynchronous errors should be reported by getsockopt. We assume
1831  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1832  */
1833 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834                            char __user *optval, int __user *optlen)
1835 {
1836         struct sock *sk = sock->sk;
1837
1838         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1839 }
1840
1841 EXPORT_SYMBOL(sock_common_getsockopt);
1842
1843 #ifdef CONFIG_COMPAT
1844 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1845                                   char __user *optval, int __user *optlen)
1846 {
1847         struct sock *sk = sock->sk;
1848
1849         if (sk->sk_prot->compat_getsockopt != NULL)
1850                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1851                                                       optval, optlen);
1852         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1853 }
1854 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1855 #endif
1856
1857 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1858                         struct msghdr *msg, size_t size, int flags)
1859 {
1860         struct sock *sk = sock->sk;
1861         int addr_len = 0;
1862         int err;
1863
1864         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1865                                    flags & ~MSG_DONTWAIT, &addr_len);
1866         if (err >= 0)
1867                 msg->msg_namelen = addr_len;
1868         return err;
1869 }
1870
1871 EXPORT_SYMBOL(sock_common_recvmsg);
1872
1873 /*
1874  *      Set socket options on an inet socket.
1875  */
1876 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1877                            char __user *optval, int optlen)
1878 {
1879         struct sock *sk = sock->sk;
1880
1881         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1882 }
1883
1884 EXPORT_SYMBOL(sock_common_setsockopt);
1885
1886 #ifdef CONFIG_COMPAT
1887 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1888                                   char __user *optval, int optlen)
1889 {
1890         struct sock *sk = sock->sk;
1891
1892         if (sk->sk_prot->compat_setsockopt != NULL)
1893                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1894                                                       optval, optlen);
1895         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1896 }
1897 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1898 #endif
1899
1900 void sk_common_release(struct sock *sk)
1901 {
1902         if (sk->sk_prot->destroy)
1903                 sk->sk_prot->destroy(sk);
1904
1905         /*
1906          * Observation: when sock_common_release is called, processes have
1907          * no access to socket. But net still has.
1908          * Step one, detach it from networking:
1909          *
1910          * A. Remove from hash tables.
1911          */
1912
1913         sk->sk_prot->unhash(sk);
1914
1915         /*
1916          * In this point socket cannot receive new packets, but it is possible
1917          * that some packets are in flight because some CPU runs receiver and
1918          * did hash table lookup before we unhashed socket. They will achieve
1919          * receive queue and will be purged by socket destructor.
1920          *
1921          * Also we still have packets pending on receive queue and probably,
1922          * our own packets waiting in device queues. sock_destroy will drain
1923          * receive queue, but transmitted packets will delay socket destruction
1924          * until the last reference will be released.
1925          */
1926
1927         sock_orphan(sk);
1928
1929         xfrm_sk_free_policy(sk);
1930
1931         sk_refcnt_debug_release(sk);
1932         sock_put(sk);
1933 }
1934
1935 EXPORT_SYMBOL(sk_common_release);
1936
1937 static DEFINE_RWLOCK(proto_list_lock);
1938 static LIST_HEAD(proto_list);
1939
1940 int proto_register(struct proto *prot, int alloc_slab)
1941 {
1942         char *request_sock_slab_name = NULL;
1943         char *timewait_sock_slab_name;
1944
1945         if (sock_prot_inuse_init(prot) != 0) {
1946                 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1947                 goto out;
1948         }
1949
1950         if (alloc_slab) {
1951                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1952                                                SLAB_HWCACHE_ALIGN, NULL);
1953
1954                 if (prot->slab == NULL) {
1955                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1956                                prot->name);
1957                         goto out_free_inuse;
1958                 }
1959
1960                 if (prot->rsk_prot != NULL) {
1961                         static const char mask[] = "request_sock_%s";
1962
1963                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1964                         if (request_sock_slab_name == NULL)
1965                                 goto out_free_sock_slab;
1966
1967                         sprintf(request_sock_slab_name, mask, prot->name);
1968                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1969                                                                  prot->rsk_prot->obj_size, 0,
1970                                                                  SLAB_HWCACHE_ALIGN, NULL);
1971
1972                         if (prot->rsk_prot->slab == NULL) {
1973                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1974                                        prot->name);
1975                                 goto out_free_request_sock_slab_name;
1976                         }
1977                 }
1978
1979                 if (prot->twsk_prot != NULL) {
1980                         static const char mask[] = "tw_sock_%s";
1981
1982                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1983
1984                         if (timewait_sock_slab_name == NULL)
1985                                 goto out_free_request_sock_slab;
1986
1987                         sprintf(timewait_sock_slab_name, mask, prot->name);
1988                         prot->twsk_prot->twsk_slab =
1989                                 kmem_cache_create(timewait_sock_slab_name,
1990                                                   prot->twsk_prot->twsk_obj_size,
1991                                                   0, SLAB_HWCACHE_ALIGN,
1992                                                   NULL);
1993                         if (prot->twsk_prot->twsk_slab == NULL)
1994                                 goto out_free_timewait_sock_slab_name;
1995                 }
1996         }
1997
1998         write_lock(&proto_list_lock);
1999         list_add(&prot->node, &proto_list);
2000         write_unlock(&proto_list_lock);
2001         return 0;
2002
2003 out_free_timewait_sock_slab_name:
2004         kfree(timewait_sock_slab_name);
2005 out_free_request_sock_slab:
2006         if (prot->rsk_prot && prot->rsk_prot->slab) {
2007                 kmem_cache_destroy(prot->rsk_prot->slab);
2008                 prot->rsk_prot->slab = NULL;
2009         }
2010 out_free_request_sock_slab_name:
2011         kfree(request_sock_slab_name);
2012 out_free_sock_slab:
2013         kmem_cache_destroy(prot->slab);
2014         prot->slab = NULL;
2015 out_free_inuse:
2016         sock_prot_inuse_free(prot);
2017 out:
2018         return -ENOBUFS;
2019 }
2020
2021 EXPORT_SYMBOL(proto_register);
2022
2023 void proto_unregister(struct proto *prot)
2024 {
2025         write_lock(&proto_list_lock);
2026         list_del(&prot->node);
2027         write_unlock(&proto_list_lock);
2028
2029         sock_prot_inuse_free(prot);
2030
2031         if (prot->slab != NULL) {
2032                 kmem_cache_destroy(prot->slab);
2033                 prot->slab = NULL;
2034         }
2035
2036         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2037                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2038
2039                 kmem_cache_destroy(prot->rsk_prot->slab);
2040                 kfree(name);
2041                 prot->rsk_prot->slab = NULL;
2042         }
2043
2044         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2045                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2046
2047                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2048                 kfree(name);
2049                 prot->twsk_prot->twsk_slab = NULL;
2050         }
2051 }
2052
2053 EXPORT_SYMBOL(proto_unregister);
2054
2055 #ifdef CONFIG_PROC_FS
2056 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2057         __acquires(proto_list_lock)
2058 {
2059         read_lock(&proto_list_lock);
2060         return seq_list_start_head(&proto_list, *pos);
2061 }
2062
2063 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2064 {
2065         return seq_list_next(v, &proto_list, pos);
2066 }
2067
2068 static void proto_seq_stop(struct seq_file *seq, void *v)
2069         __releases(proto_list_lock)
2070 {
2071         read_unlock(&proto_list_lock);
2072 }
2073
2074 static char proto_method_implemented(const void *method)
2075 {
2076         return method == NULL ? 'n' : 'y';
2077 }
2078
2079 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2080 {
2081         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2082                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2083                    proto->name,
2084                    proto->obj_size,
2085                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2086                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2087                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2088                    proto->max_header,
2089                    proto->slab == NULL ? "no" : "yes",
2090                    module_name(proto->owner),
2091                    proto_method_implemented(proto->close),
2092                    proto_method_implemented(proto->connect),
2093                    proto_method_implemented(proto->disconnect),
2094                    proto_method_implemented(proto->accept),
2095                    proto_method_implemented(proto->ioctl),
2096                    proto_method_implemented(proto->init),
2097                    proto_method_implemented(proto->destroy),
2098                    proto_method_implemented(proto->shutdown),
2099                    proto_method_implemented(proto->setsockopt),
2100                    proto_method_implemented(proto->getsockopt),
2101                    proto_method_implemented(proto->sendmsg),
2102                    proto_method_implemented(proto->recvmsg),
2103                    proto_method_implemented(proto->sendpage),
2104                    proto_method_implemented(proto->bind),
2105                    proto_method_implemented(proto->backlog_rcv),
2106                    proto_method_implemented(proto->hash),
2107                    proto_method_implemented(proto->unhash),
2108                    proto_method_implemented(proto->get_port),
2109                    proto_method_implemented(proto->enter_memory_pressure));
2110 }
2111
2112 static int proto_seq_show(struct seq_file *seq, void *v)
2113 {
2114         if (v == &proto_list)
2115                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2116                            "protocol",
2117                            "size",
2118                            "sockets",
2119                            "memory",
2120                            "press",
2121                            "maxhdr",
2122                            "slab",
2123                            "module",
2124                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2125         else
2126                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2127         return 0;
2128 }
2129
2130 static const struct seq_operations proto_seq_ops = {
2131         .start  = proto_seq_start,
2132         .next   = proto_seq_next,
2133         .stop   = proto_seq_stop,
2134         .show   = proto_seq_show,
2135 };
2136
2137 static int proto_seq_open(struct inode *inode, struct file *file)
2138 {
2139         return seq_open(file, &proto_seq_ops);
2140 }
2141
2142 static const struct file_operations proto_seq_fops = {
2143         .owner          = THIS_MODULE,
2144         .open           = proto_seq_open,
2145         .read           = seq_read,
2146         .llseek         = seq_lseek,
2147         .release        = seq_release,
2148 };
2149
2150 static int __init proto_init(void)
2151 {
2152         /* register /proc/net/protocols */
2153         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2154 }
2155
2156 subsys_initcall(proto_init);
2157
2158 #endif /* PROC_FS */
2159
2160 EXPORT_SYMBOL(sk_alloc);
2161 EXPORT_SYMBOL(sk_free);
2162 EXPORT_SYMBOL(sk_send_sigurg);
2163 EXPORT_SYMBOL(sock_alloc_send_skb);
2164 EXPORT_SYMBOL(sock_init_data);
2165 EXPORT_SYMBOL(sock_kfree_s);
2166 EXPORT_SYMBOL(sock_kmalloc);
2167 EXPORT_SYMBOL(sock_no_accept);
2168 EXPORT_SYMBOL(sock_no_bind);
2169 EXPORT_SYMBOL(sock_no_connect);
2170 EXPORT_SYMBOL(sock_no_getname);
2171 EXPORT_SYMBOL(sock_no_getsockopt);
2172 EXPORT_SYMBOL(sock_no_ioctl);
2173 EXPORT_SYMBOL(sock_no_listen);
2174 EXPORT_SYMBOL(sock_no_mmap);
2175 EXPORT_SYMBOL(sock_no_poll);
2176 EXPORT_SYMBOL(sock_no_recvmsg);
2177 EXPORT_SYMBOL(sock_no_sendmsg);
2178 EXPORT_SYMBOL(sock_no_sendpage);
2179 EXPORT_SYMBOL(sock_no_setsockopt);
2180 EXPORT_SYMBOL(sock_no_shutdown);
2181 EXPORT_SYMBOL(sock_no_socketpair);
2182 EXPORT_SYMBOL(sock_rfree);
2183 EXPORT_SYMBOL(sock_setsockopt);
2184 EXPORT_SYMBOL(sock_wfree);
2185 EXPORT_SYMBOL(sock_wmalloc);
2186 EXPORT_SYMBOL(sock_i_uid);
2187 EXPORT_SYMBOL(sock_i_ino);
2188 EXPORT_SYMBOL(sysctl_optmem_max);