]> err.no Git - linux-2.6/blob - net/core/sock.c
[NET]: Make /proc/net per network namespace
[linux-2.6] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, current->pid);
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         skb->dev = NULL;
286         skb_set_owner_r(skb, sk);
287
288         /* Cache the SKB length before we tack it onto the receive
289          * queue.  Once it is added it no longer belongs to us and
290          * may be freed by other threads of control pulling packets
291          * from the queue.
292          */
293         skb_len = skb->len;
294
295         skb_queue_tail(&sk->sk_receive_queue, skb);
296
297         if (!sock_flag(sk, SOCK_DEAD))
298                 sk->sk_data_ready(sk, skb_len);
299 out:
300         return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306         int rc = NET_RX_SUCCESS;
307
308         if (sk_filter(sk, skb))
309                 goto discard_and_relse;
310
311         skb->dev = NULL;
312
313         if (nested)
314                 bh_lock_sock_nested(sk);
315         else
316                 bh_lock_sock(sk);
317         if (!sock_owned_by_user(sk)) {
318                 /*
319                  * trylock + unlock semantics:
320                  */
321                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323                 rc = sk->sk_backlog_rcv(sk, skb);
324
325                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326         } else
327                 sk_add_backlog(sk, skb);
328         bh_unlock_sock(sk);
329 out:
330         sock_put(sk);
331         return rc;
332 discard_and_relse:
333         kfree_skb(skb);
334         goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340         struct dst_entry *dst = sk->sk_dst_cache;
341
342         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343                 sk->sk_dst_cache = NULL;
344                 dst_release(dst);
345                 return NULL;
346         }
347
348         return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354         struct dst_entry *dst = sk_dst_get(sk);
355
356         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357                 sk_dst_reset(sk);
358                 dst_release(dst);
359                 return NULL;
360         }
361
362         return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368         int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370         char devname[IFNAMSIZ];
371         int index;
372
373         /* Sorry... */
374         ret = -EPERM;
375         if (!capable(CAP_NET_RAW))
376                 goto out;
377
378         ret = -EINVAL;
379         if (optlen < 0)
380                 goto out;
381
382         /* Bind this socket to a particular device like "eth0",
383          * as specified in the passed interface name. If the
384          * name is "" or the option length is zero the socket
385          * is not bound.
386          */
387         if (optlen > IFNAMSIZ - 1)
388                 optlen = IFNAMSIZ - 1;
389         memset(devname, 0, sizeof(devname));
390
391         ret = -EFAULT;
392         if (copy_from_user(devname, optval, optlen))
393                 goto out;
394
395         if (devname[0] == '\0') {
396                 index = 0;
397         } else {
398                 struct net_device *dev = dev_get_by_name(devname);
399
400                 ret = -ENODEV;
401                 if (!dev)
402                         goto out;
403
404                 index = dev->ifindex;
405                 dev_put(dev);
406         }
407
408         lock_sock(sk);
409         sk->sk_bound_dev_if = index;
410         sk_dst_reset(sk);
411         release_sock(sk);
412
413         ret = 0;
414
415 out:
416 #endif
417
418         return ret;
419 }
420
421 /*
422  *      This is meant for all protocols to use and covers goings on
423  *      at the socket level. Everything here is generic.
424  */
425
426 int sock_setsockopt(struct socket *sock, int level, int optname,
427                     char __user *optval, int optlen)
428 {
429         struct sock *sk=sock->sk;
430         struct sk_filter *filter;
431         int val;
432         int valbool;
433         struct linger ling;
434         int ret = 0;
435
436         /*
437          *      Options without arguments
438          */
439
440 #ifdef SO_DONTLINGER            /* Compatibility item... */
441         if (optname == SO_DONTLINGER) {
442                 lock_sock(sk);
443                 sock_reset_flag(sk, SOCK_LINGER);
444                 release_sock(sk);
445                 return 0;
446         }
447 #endif
448
449         if (optname == SO_BINDTODEVICE)
450                 return sock_bindtodevice(sk, optval, optlen);
451
452         if (optlen < sizeof(int))
453                 return -EINVAL;
454
455         if (get_user(val, (int __user *)optval))
456                 return -EFAULT;
457
458         valbool = val?1:0;
459
460         lock_sock(sk);
461
462         switch(optname) {
463         case SO_DEBUG:
464                 if (val && !capable(CAP_NET_ADMIN)) {
465                         ret = -EACCES;
466                 }
467                 else if (valbool)
468                         sock_set_flag(sk, SOCK_DBG);
469                 else
470                         sock_reset_flag(sk, SOCK_DBG);
471                 break;
472         case SO_REUSEADDR:
473                 sk->sk_reuse = valbool;
474                 break;
475         case SO_TYPE:
476         case SO_ERROR:
477                 ret = -ENOPROTOOPT;
478                 break;
479         case SO_DONTROUTE:
480                 if (valbool)
481                         sock_set_flag(sk, SOCK_LOCALROUTE);
482                 else
483                         sock_reset_flag(sk, SOCK_LOCALROUTE);
484                 break;
485         case SO_BROADCAST:
486                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487                 break;
488         case SO_SNDBUF:
489                 /* Don't error on this BSD doesn't and if you think
490                    about it this is right. Otherwise apps have to
491                    play 'guess the biggest size' games. RCVBUF/SNDBUF
492                    are treated in BSD as hints */
493
494                 if (val > sysctl_wmem_max)
495                         val = sysctl_wmem_max;
496 set_sndbuf:
497                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498                 if ((val * 2) < SOCK_MIN_SNDBUF)
499                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500                 else
501                         sk->sk_sndbuf = val * 2;
502
503                 /*
504                  *      Wake up sending tasks if we
505                  *      upped the value.
506                  */
507                 sk->sk_write_space(sk);
508                 break;
509
510         case SO_SNDBUFFORCE:
511                 if (!capable(CAP_NET_ADMIN)) {
512                         ret = -EPERM;
513                         break;
514                 }
515                 goto set_sndbuf;
516
517         case SO_RCVBUF:
518                 /* Don't error on this BSD doesn't and if you think
519                    about it this is right. Otherwise apps have to
520                    play 'guess the biggest size' games. RCVBUF/SNDBUF
521                    are treated in BSD as hints */
522
523                 if (val > sysctl_rmem_max)
524                         val = sysctl_rmem_max;
525 set_rcvbuf:
526                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527                 /*
528                  * We double it on the way in to account for
529                  * "struct sk_buff" etc. overhead.   Applications
530                  * assume that the SO_RCVBUF setting they make will
531                  * allow that much actual data to be received on that
532                  * socket.
533                  *
534                  * Applications are unaware that "struct sk_buff" and
535                  * other overheads allocate from the receive buffer
536                  * during socket buffer allocation.
537                  *
538                  * And after considering the possible alternatives,
539                  * returning the value we actually used in getsockopt
540                  * is the most desirable behavior.
541                  */
542                 if ((val * 2) < SOCK_MIN_RCVBUF)
543                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544                 else
545                         sk->sk_rcvbuf = val * 2;
546                 break;
547
548         case SO_RCVBUFFORCE:
549                 if (!capable(CAP_NET_ADMIN)) {
550                         ret = -EPERM;
551                         break;
552                 }
553                 goto set_rcvbuf;
554
555         case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557                 if (sk->sk_protocol == IPPROTO_TCP)
558                         tcp_set_keepalive(sk, valbool);
559 #endif
560                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561                 break;
562
563         case SO_OOBINLINE:
564                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565                 break;
566
567         case SO_NO_CHECK:
568                 sk->sk_no_check = valbool;
569                 break;
570
571         case SO_PRIORITY:
572                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573                         sk->sk_priority = val;
574                 else
575                         ret = -EPERM;
576                 break;
577
578         case SO_LINGER:
579                 if (optlen < sizeof(ling)) {
580                         ret = -EINVAL;  /* 1003.1g */
581                         break;
582                 }
583                 if (copy_from_user(&ling,optval,sizeof(ling))) {
584                         ret = -EFAULT;
585                         break;
586                 }
587                 if (!ling.l_onoff)
588                         sock_reset_flag(sk, SOCK_LINGER);
589                 else {
590 #if (BITS_PER_LONG == 32)
591                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593                         else
594 #endif
595                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596                         sock_set_flag(sk, SOCK_LINGER);
597                 }
598                 break;
599
600         case SO_BSDCOMPAT:
601                 sock_warn_obsolete_bsdism("setsockopt");
602                 break;
603
604         case SO_PASSCRED:
605                 if (valbool)
606                         set_bit(SOCK_PASSCRED, &sock->flags);
607                 else
608                         clear_bit(SOCK_PASSCRED, &sock->flags);
609                 break;
610
611         case SO_TIMESTAMP:
612         case SO_TIMESTAMPNS:
613                 if (valbool)  {
614                         if (optname == SO_TIMESTAMP)
615                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616                         else
617                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618                         sock_set_flag(sk, SOCK_RCVTSTAMP);
619                         sock_enable_timestamp(sk);
620                 } else {
621                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
622                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                 }
624                 break;
625
626         case SO_RCVLOWAT:
627                 if (val < 0)
628                         val = INT_MAX;
629                 sk->sk_rcvlowat = val ? : 1;
630                 break;
631
632         case SO_RCVTIMEO:
633                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634                 break;
635
636         case SO_SNDTIMEO:
637                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638                 break;
639
640         case SO_ATTACH_FILTER:
641                 ret = -EINVAL;
642                 if (optlen == sizeof(struct sock_fprog)) {
643                         struct sock_fprog fprog;
644
645                         ret = -EFAULT;
646                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
647                                 break;
648
649                         ret = sk_attach_filter(&fprog, sk);
650                 }
651                 break;
652
653         case SO_DETACH_FILTER:
654                 rcu_read_lock_bh();
655                 filter = rcu_dereference(sk->sk_filter);
656                 if (filter) {
657                         rcu_assign_pointer(sk->sk_filter, NULL);
658                         sk_filter_release(sk, filter);
659                         rcu_read_unlock_bh();
660                         break;
661                 }
662                 rcu_read_unlock_bh();
663                 ret = -ENONET;
664                 break;
665
666         case SO_PASSSEC:
667                 if (valbool)
668                         set_bit(SOCK_PASSSEC, &sock->flags);
669                 else
670                         clear_bit(SOCK_PASSSEC, &sock->flags);
671                 break;
672
673                 /* We implement the SO_SNDLOWAT etc to
674                    not be settable (1003.1g 5.3) */
675         default:
676                 ret = -ENOPROTOOPT;
677                 break;
678         }
679         release_sock(sk);
680         return ret;
681 }
682
683
684 int sock_getsockopt(struct socket *sock, int level, int optname,
685                     char __user *optval, int __user *optlen)
686 {
687         struct sock *sk = sock->sk;
688
689         union {
690                 int val;
691                 struct linger ling;
692                 struct timeval tm;
693         } v;
694
695         unsigned int lv = sizeof(int);
696         int len;
697
698         if (get_user(len, optlen))
699                 return -EFAULT;
700         if (len < 0)
701                 return -EINVAL;
702
703         switch(optname) {
704         case SO_DEBUG:
705                 v.val = sock_flag(sk, SOCK_DBG);
706                 break;
707
708         case SO_DONTROUTE:
709                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
710                 break;
711
712         case SO_BROADCAST:
713                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
714                 break;
715
716         case SO_SNDBUF:
717                 v.val = sk->sk_sndbuf;
718                 break;
719
720         case SO_RCVBUF:
721                 v.val = sk->sk_rcvbuf;
722                 break;
723
724         case SO_REUSEADDR:
725                 v.val = sk->sk_reuse;
726                 break;
727
728         case SO_KEEPALIVE:
729                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
730                 break;
731
732         case SO_TYPE:
733                 v.val = sk->sk_type;
734                 break;
735
736         case SO_ERROR:
737                 v.val = -sock_error(sk);
738                 if (v.val==0)
739                         v.val = xchg(&sk->sk_err_soft, 0);
740                 break;
741
742         case SO_OOBINLINE:
743                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
744                 break;
745
746         case SO_NO_CHECK:
747                 v.val = sk->sk_no_check;
748                 break;
749
750         case SO_PRIORITY:
751                 v.val = sk->sk_priority;
752                 break;
753
754         case SO_LINGER:
755                 lv              = sizeof(v.ling);
756                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
757                 v.ling.l_linger = sk->sk_lingertime / HZ;
758                 break;
759
760         case SO_BSDCOMPAT:
761                 sock_warn_obsolete_bsdism("getsockopt");
762                 break;
763
764         case SO_TIMESTAMP:
765                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
766                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
767                 break;
768
769         case SO_TIMESTAMPNS:
770                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
771                 break;
772
773         case SO_RCVTIMEO:
774                 lv=sizeof(struct timeval);
775                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
776                         v.tm.tv_sec = 0;
777                         v.tm.tv_usec = 0;
778                 } else {
779                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
780                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
781                 }
782                 break;
783
784         case SO_SNDTIMEO:
785                 lv=sizeof(struct timeval);
786                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
787                         v.tm.tv_sec = 0;
788                         v.tm.tv_usec = 0;
789                 } else {
790                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
791                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
792                 }
793                 break;
794
795         case SO_RCVLOWAT:
796                 v.val = sk->sk_rcvlowat;
797                 break;
798
799         case SO_SNDLOWAT:
800                 v.val=1;
801                 break;
802
803         case SO_PASSCRED:
804                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
805                 break;
806
807         case SO_PEERCRED:
808                 if (len > sizeof(sk->sk_peercred))
809                         len = sizeof(sk->sk_peercred);
810                 if (copy_to_user(optval, &sk->sk_peercred, len))
811                         return -EFAULT;
812                 goto lenout;
813
814         case SO_PEERNAME:
815         {
816                 char address[128];
817
818                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
819                         return -ENOTCONN;
820                 if (lv < len)
821                         return -EINVAL;
822                 if (copy_to_user(optval, address, len))
823                         return -EFAULT;
824                 goto lenout;
825         }
826
827         /* Dubious BSD thing... Probably nobody even uses it, but
828          * the UNIX standard wants it for whatever reason... -DaveM
829          */
830         case SO_ACCEPTCONN:
831                 v.val = sk->sk_state == TCP_LISTEN;
832                 break;
833
834         case SO_PASSSEC:
835                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
836                 break;
837
838         case SO_PEERSEC:
839                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
840
841         default:
842                 return -ENOPROTOOPT;
843         }
844
845         if (len > lv)
846                 len = lv;
847         if (copy_to_user(optval, &v, len))
848                 return -EFAULT;
849 lenout:
850         if (put_user(len, optlen))
851                 return -EFAULT;
852         return 0;
853 }
854
855 /*
856  * Initialize an sk_lock.
857  *
858  * (We also register the sk_lock with the lock validator.)
859  */
860 static inline void sock_lock_init(struct sock *sk)
861 {
862         sock_lock_init_class_and_name(sk,
863                         af_family_slock_key_strings[sk->sk_family],
864                         af_family_slock_keys + sk->sk_family,
865                         af_family_key_strings[sk->sk_family],
866                         af_family_keys + sk->sk_family);
867 }
868
869 /**
870  *      sk_alloc - All socket objects are allocated here
871  *      @family: protocol family
872  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
873  *      @prot: struct proto associated with this new sock instance
874  *      @zero_it: if we should zero the newly allocated sock
875  */
876 struct sock *sk_alloc(int family, gfp_t priority,
877                       struct proto *prot, int zero_it)
878 {
879         struct sock *sk = NULL;
880         struct kmem_cache *slab = prot->slab;
881
882         if (slab != NULL)
883                 sk = kmem_cache_alloc(slab, priority);
884         else
885                 sk = kmalloc(prot->obj_size, priority);
886
887         if (sk) {
888                 if (zero_it) {
889                         memset(sk, 0, prot->obj_size);
890                         sk->sk_family = family;
891                         /*
892                          * See comment in struct sock definition to understand
893                          * why we need sk_prot_creator -acme
894                          */
895                         sk->sk_prot = sk->sk_prot_creator = prot;
896                         sock_lock_init(sk);
897                 }
898
899                 if (security_sk_alloc(sk, family, priority))
900                         goto out_free;
901
902                 if (!try_module_get(prot->owner))
903                         goto out_free;
904         }
905         return sk;
906
907 out_free:
908         if (slab != NULL)
909                 kmem_cache_free(slab, sk);
910         else
911                 kfree(sk);
912         return NULL;
913 }
914
915 void sk_free(struct sock *sk)
916 {
917         struct sk_filter *filter;
918         struct module *owner = sk->sk_prot_creator->owner;
919
920         if (sk->sk_destruct)
921                 sk->sk_destruct(sk);
922
923         filter = rcu_dereference(sk->sk_filter);
924         if (filter) {
925                 sk_filter_release(sk, filter);
926                 rcu_assign_pointer(sk->sk_filter, NULL);
927         }
928
929         sock_disable_timestamp(sk);
930
931         if (atomic_read(&sk->sk_omem_alloc))
932                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
933                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
934
935         security_sk_free(sk);
936         if (sk->sk_prot_creator->slab != NULL)
937                 kmem_cache_free(sk->sk_prot_creator->slab, sk);
938         else
939                 kfree(sk);
940         module_put(owner);
941 }
942
943 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
944 {
945         struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
946
947         if (newsk != NULL) {
948                 struct sk_filter *filter;
949
950                 sock_copy(newsk, sk);
951
952                 /* SANITY */
953                 sk_node_init(&newsk->sk_node);
954                 sock_lock_init(newsk);
955                 bh_lock_sock(newsk);
956                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
957
958                 atomic_set(&newsk->sk_rmem_alloc, 0);
959                 atomic_set(&newsk->sk_wmem_alloc, 0);
960                 atomic_set(&newsk->sk_omem_alloc, 0);
961                 skb_queue_head_init(&newsk->sk_receive_queue);
962                 skb_queue_head_init(&newsk->sk_write_queue);
963 #ifdef CONFIG_NET_DMA
964                 skb_queue_head_init(&newsk->sk_async_wait_queue);
965 #endif
966
967                 rwlock_init(&newsk->sk_dst_lock);
968                 rwlock_init(&newsk->sk_callback_lock);
969                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
970                                 af_callback_keys + newsk->sk_family,
971                                 af_family_clock_key_strings[newsk->sk_family]);
972
973                 newsk->sk_dst_cache     = NULL;
974                 newsk->sk_wmem_queued   = 0;
975                 newsk->sk_forward_alloc = 0;
976                 newsk->sk_send_head     = NULL;
977                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
978
979                 sock_reset_flag(newsk, SOCK_DONE);
980                 skb_queue_head_init(&newsk->sk_error_queue);
981
982                 filter = newsk->sk_filter;
983                 if (filter != NULL)
984                         sk_filter_charge(newsk, filter);
985
986                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
987                         /* It is still raw copy of parent, so invalidate
988                          * destructor and make plain sk_free() */
989                         newsk->sk_destruct = NULL;
990                         sk_free(newsk);
991                         newsk = NULL;
992                         goto out;
993                 }
994
995                 newsk->sk_err      = 0;
996                 newsk->sk_priority = 0;
997                 atomic_set(&newsk->sk_refcnt, 2);
998
999                 /*
1000                  * Increment the counter in the same struct proto as the master
1001                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1002                  * is the same as sk->sk_prot->socks, as this field was copied
1003                  * with memcpy).
1004                  *
1005                  * This _changes_ the previous behaviour, where
1006                  * tcp_create_openreq_child always was incrementing the
1007                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1008                  * to be taken into account in all callers. -acme
1009                  */
1010                 sk_refcnt_debug_inc(newsk);
1011                 newsk->sk_socket = NULL;
1012                 newsk->sk_sleep  = NULL;
1013
1014                 if (newsk->sk_prot->sockets_allocated)
1015                         atomic_inc(newsk->sk_prot->sockets_allocated);
1016         }
1017 out:
1018         return newsk;
1019 }
1020
1021 EXPORT_SYMBOL_GPL(sk_clone);
1022
1023 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1024 {
1025         __sk_dst_set(sk, dst);
1026         sk->sk_route_caps = dst->dev->features;
1027         if (sk->sk_route_caps & NETIF_F_GSO)
1028                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1029         if (sk_can_gso(sk)) {
1030                 if (dst->header_len)
1031                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1032                 else
1033                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1034         }
1035 }
1036 EXPORT_SYMBOL_GPL(sk_setup_caps);
1037
1038 void __init sk_init(void)
1039 {
1040         if (num_physpages <= 4096) {
1041                 sysctl_wmem_max = 32767;
1042                 sysctl_rmem_max = 32767;
1043                 sysctl_wmem_default = 32767;
1044                 sysctl_rmem_default = 32767;
1045         } else if (num_physpages >= 131072) {
1046                 sysctl_wmem_max = 131071;
1047                 sysctl_rmem_max = 131071;
1048         }
1049 }
1050
1051 /*
1052  *      Simple resource managers for sockets.
1053  */
1054
1055
1056 /*
1057  * Write buffer destructor automatically called from kfree_skb.
1058  */
1059 void sock_wfree(struct sk_buff *skb)
1060 {
1061         struct sock *sk = skb->sk;
1062
1063         /* In case it might be waiting for more memory. */
1064         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1065         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1066                 sk->sk_write_space(sk);
1067         sock_put(sk);
1068 }
1069
1070 /*
1071  * Read buffer destructor automatically called from kfree_skb.
1072  */
1073 void sock_rfree(struct sk_buff *skb)
1074 {
1075         struct sock *sk = skb->sk;
1076
1077         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1078 }
1079
1080
1081 int sock_i_uid(struct sock *sk)
1082 {
1083         int uid;
1084
1085         read_lock(&sk->sk_callback_lock);
1086         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1087         read_unlock(&sk->sk_callback_lock);
1088         return uid;
1089 }
1090
1091 unsigned long sock_i_ino(struct sock *sk)
1092 {
1093         unsigned long ino;
1094
1095         read_lock(&sk->sk_callback_lock);
1096         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1097         read_unlock(&sk->sk_callback_lock);
1098         return ino;
1099 }
1100
1101 /*
1102  * Allocate a skb from the socket's send buffer.
1103  */
1104 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1105                              gfp_t priority)
1106 {
1107         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1108                 struct sk_buff * skb = alloc_skb(size, priority);
1109                 if (skb) {
1110                         skb_set_owner_w(skb, sk);
1111                         return skb;
1112                 }
1113         }
1114         return NULL;
1115 }
1116
1117 /*
1118  * Allocate a skb from the socket's receive buffer.
1119  */
1120 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1121                              gfp_t priority)
1122 {
1123         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1124                 struct sk_buff *skb = alloc_skb(size, priority);
1125                 if (skb) {
1126                         skb_set_owner_r(skb, sk);
1127                         return skb;
1128                 }
1129         }
1130         return NULL;
1131 }
1132
1133 /*
1134  * Allocate a memory block from the socket's option memory buffer.
1135  */
1136 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1137 {
1138         if ((unsigned)size <= sysctl_optmem_max &&
1139             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1140                 void *mem;
1141                 /* First do the add, to avoid the race if kmalloc
1142                  * might sleep.
1143                  */
1144                 atomic_add(size, &sk->sk_omem_alloc);
1145                 mem = kmalloc(size, priority);
1146                 if (mem)
1147                         return mem;
1148                 atomic_sub(size, &sk->sk_omem_alloc);
1149         }
1150         return NULL;
1151 }
1152
1153 /*
1154  * Free an option memory block.
1155  */
1156 void sock_kfree_s(struct sock *sk, void *mem, int size)
1157 {
1158         kfree(mem);
1159         atomic_sub(size, &sk->sk_omem_alloc);
1160 }
1161
1162 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1163    I think, these locks should be removed for datagram sockets.
1164  */
1165 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1166 {
1167         DEFINE_WAIT(wait);
1168
1169         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1170         for (;;) {
1171                 if (!timeo)
1172                         break;
1173                 if (signal_pending(current))
1174                         break;
1175                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1176                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1177                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1178                         break;
1179                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1180                         break;
1181                 if (sk->sk_err)
1182                         break;
1183                 timeo = schedule_timeout(timeo);
1184         }
1185         finish_wait(sk->sk_sleep, &wait);
1186         return timeo;
1187 }
1188
1189
1190 /*
1191  *      Generic send/receive buffer handlers
1192  */
1193
1194 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1195                                             unsigned long header_len,
1196                                             unsigned long data_len,
1197                                             int noblock, int *errcode)
1198 {
1199         struct sk_buff *skb;
1200         gfp_t gfp_mask;
1201         long timeo;
1202         int err;
1203
1204         gfp_mask = sk->sk_allocation;
1205         if (gfp_mask & __GFP_WAIT)
1206                 gfp_mask |= __GFP_REPEAT;
1207
1208         timeo = sock_sndtimeo(sk, noblock);
1209         while (1) {
1210                 err = sock_error(sk);
1211                 if (err != 0)
1212                         goto failure;
1213
1214                 err = -EPIPE;
1215                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1216                         goto failure;
1217
1218                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1219                         skb = alloc_skb(header_len, gfp_mask);
1220                         if (skb) {
1221                                 int npages;
1222                                 int i;
1223
1224                                 /* No pages, we're done... */
1225                                 if (!data_len)
1226                                         break;
1227
1228                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1229                                 skb->truesize += data_len;
1230                                 skb_shinfo(skb)->nr_frags = npages;
1231                                 for (i = 0; i < npages; i++) {
1232                                         struct page *page;
1233                                         skb_frag_t *frag;
1234
1235                                         page = alloc_pages(sk->sk_allocation, 0);
1236                                         if (!page) {
1237                                                 err = -ENOBUFS;
1238                                                 skb_shinfo(skb)->nr_frags = i;
1239                                                 kfree_skb(skb);
1240                                                 goto failure;
1241                                         }
1242
1243                                         frag = &skb_shinfo(skb)->frags[i];
1244                                         frag->page = page;
1245                                         frag->page_offset = 0;
1246                                         frag->size = (data_len >= PAGE_SIZE ?
1247                                                       PAGE_SIZE :
1248                                                       data_len);
1249                                         data_len -= PAGE_SIZE;
1250                                 }
1251
1252                                 /* Full success... */
1253                                 break;
1254                         }
1255                         err = -ENOBUFS;
1256                         goto failure;
1257                 }
1258                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1259                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1260                 err = -EAGAIN;
1261                 if (!timeo)
1262                         goto failure;
1263                 if (signal_pending(current))
1264                         goto interrupted;
1265                 timeo = sock_wait_for_wmem(sk, timeo);
1266         }
1267
1268         skb_set_owner_w(skb, sk);
1269         return skb;
1270
1271 interrupted:
1272         err = sock_intr_errno(timeo);
1273 failure:
1274         *errcode = err;
1275         return NULL;
1276 }
1277
1278 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1279                                     int noblock, int *errcode)
1280 {
1281         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1282 }
1283
1284 static void __lock_sock(struct sock *sk)
1285 {
1286         DEFINE_WAIT(wait);
1287
1288         for (;;) {
1289                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1290                                         TASK_UNINTERRUPTIBLE);
1291                 spin_unlock_bh(&sk->sk_lock.slock);
1292                 schedule();
1293                 spin_lock_bh(&sk->sk_lock.slock);
1294                 if (!sock_owned_by_user(sk))
1295                         break;
1296         }
1297         finish_wait(&sk->sk_lock.wq, &wait);
1298 }
1299
1300 static void __release_sock(struct sock *sk)
1301 {
1302         struct sk_buff *skb = sk->sk_backlog.head;
1303
1304         do {
1305                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1306                 bh_unlock_sock(sk);
1307
1308                 do {
1309                         struct sk_buff *next = skb->next;
1310
1311                         skb->next = NULL;
1312                         sk->sk_backlog_rcv(sk, skb);
1313
1314                         /*
1315                          * We are in process context here with softirqs
1316                          * disabled, use cond_resched_softirq() to preempt.
1317                          * This is safe to do because we've taken the backlog
1318                          * queue private:
1319                          */
1320                         cond_resched_softirq();
1321
1322                         skb = next;
1323                 } while (skb != NULL);
1324
1325                 bh_lock_sock(sk);
1326         } while ((skb = sk->sk_backlog.head) != NULL);
1327 }
1328
1329 /**
1330  * sk_wait_data - wait for data to arrive at sk_receive_queue
1331  * @sk:    sock to wait on
1332  * @timeo: for how long
1333  *
1334  * Now socket state including sk->sk_err is changed only under lock,
1335  * hence we may omit checks after joining wait queue.
1336  * We check receive queue before schedule() only as optimization;
1337  * it is very likely that release_sock() added new data.
1338  */
1339 int sk_wait_data(struct sock *sk, long *timeo)
1340 {
1341         int rc;
1342         DEFINE_WAIT(wait);
1343
1344         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1345         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1346         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1347         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1348         finish_wait(sk->sk_sleep, &wait);
1349         return rc;
1350 }
1351
1352 EXPORT_SYMBOL(sk_wait_data);
1353
1354 /*
1355  * Set of default routines for initialising struct proto_ops when
1356  * the protocol does not support a particular function. In certain
1357  * cases where it makes no sense for a protocol to have a "do nothing"
1358  * function, some default processing is provided.
1359  */
1360
1361 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1362 {
1363         return -EOPNOTSUPP;
1364 }
1365
1366 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1367                     int len, int flags)
1368 {
1369         return -EOPNOTSUPP;
1370 }
1371
1372 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1373 {
1374         return -EOPNOTSUPP;
1375 }
1376
1377 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1378 {
1379         return -EOPNOTSUPP;
1380 }
1381
1382 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1383                     int *len, int peer)
1384 {
1385         return -EOPNOTSUPP;
1386 }
1387
1388 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1389 {
1390         return 0;
1391 }
1392
1393 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1394 {
1395         return -EOPNOTSUPP;
1396 }
1397
1398 int sock_no_listen(struct socket *sock, int backlog)
1399 {
1400         return -EOPNOTSUPP;
1401 }
1402
1403 int sock_no_shutdown(struct socket *sock, int how)
1404 {
1405         return -EOPNOTSUPP;
1406 }
1407
1408 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1409                     char __user *optval, int optlen)
1410 {
1411         return -EOPNOTSUPP;
1412 }
1413
1414 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1415                     char __user *optval, int __user *optlen)
1416 {
1417         return -EOPNOTSUPP;
1418 }
1419
1420 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1421                     size_t len)
1422 {
1423         return -EOPNOTSUPP;
1424 }
1425
1426 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1427                     size_t len, int flags)
1428 {
1429         return -EOPNOTSUPP;
1430 }
1431
1432 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1433 {
1434         /* Mirror missing mmap method error code */
1435         return -ENODEV;
1436 }
1437
1438 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1439 {
1440         ssize_t res;
1441         struct msghdr msg = {.msg_flags = flags};
1442         struct kvec iov;
1443         char *kaddr = kmap(page);
1444         iov.iov_base = kaddr + offset;
1445         iov.iov_len = size;
1446         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1447         kunmap(page);
1448         return res;
1449 }
1450
1451 /*
1452  *      Default Socket Callbacks
1453  */
1454
1455 static void sock_def_wakeup(struct sock *sk)
1456 {
1457         read_lock(&sk->sk_callback_lock);
1458         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1459                 wake_up_interruptible_all(sk->sk_sleep);
1460         read_unlock(&sk->sk_callback_lock);
1461 }
1462
1463 static void sock_def_error_report(struct sock *sk)
1464 {
1465         read_lock(&sk->sk_callback_lock);
1466         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1467                 wake_up_interruptible(sk->sk_sleep);
1468         sk_wake_async(sk,0,POLL_ERR);
1469         read_unlock(&sk->sk_callback_lock);
1470 }
1471
1472 static void sock_def_readable(struct sock *sk, int len)
1473 {
1474         read_lock(&sk->sk_callback_lock);
1475         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1476                 wake_up_interruptible(sk->sk_sleep);
1477         sk_wake_async(sk,1,POLL_IN);
1478         read_unlock(&sk->sk_callback_lock);
1479 }
1480
1481 static void sock_def_write_space(struct sock *sk)
1482 {
1483         read_lock(&sk->sk_callback_lock);
1484
1485         /* Do not wake up a writer until he can make "significant"
1486          * progress.  --DaveM
1487          */
1488         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1489                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1490                         wake_up_interruptible(sk->sk_sleep);
1491
1492                 /* Should agree with poll, otherwise some programs break */
1493                 if (sock_writeable(sk))
1494                         sk_wake_async(sk, 2, POLL_OUT);
1495         }
1496
1497         read_unlock(&sk->sk_callback_lock);
1498 }
1499
1500 static void sock_def_destruct(struct sock *sk)
1501 {
1502         kfree(sk->sk_protinfo);
1503 }
1504
1505 void sk_send_sigurg(struct sock *sk)
1506 {
1507         if (sk->sk_socket && sk->sk_socket->file)
1508                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1509                         sk_wake_async(sk, 3, POLL_PRI);
1510 }
1511
1512 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1513                     unsigned long expires)
1514 {
1515         if (!mod_timer(timer, expires))
1516                 sock_hold(sk);
1517 }
1518
1519 EXPORT_SYMBOL(sk_reset_timer);
1520
1521 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1522 {
1523         if (timer_pending(timer) && del_timer(timer))
1524                 __sock_put(sk);
1525 }
1526
1527 EXPORT_SYMBOL(sk_stop_timer);
1528
1529 void sock_init_data(struct socket *sock, struct sock *sk)
1530 {
1531         skb_queue_head_init(&sk->sk_receive_queue);
1532         skb_queue_head_init(&sk->sk_write_queue);
1533         skb_queue_head_init(&sk->sk_error_queue);
1534 #ifdef CONFIG_NET_DMA
1535         skb_queue_head_init(&sk->sk_async_wait_queue);
1536 #endif
1537
1538         sk->sk_send_head        =       NULL;
1539
1540         init_timer(&sk->sk_timer);
1541
1542         sk->sk_allocation       =       GFP_KERNEL;
1543         sk->sk_rcvbuf           =       sysctl_rmem_default;
1544         sk->sk_sndbuf           =       sysctl_wmem_default;
1545         sk->sk_state            =       TCP_CLOSE;
1546         sk->sk_socket           =       sock;
1547
1548         sock_set_flag(sk, SOCK_ZAPPED);
1549
1550         if (sock) {
1551                 sk->sk_type     =       sock->type;
1552                 sk->sk_sleep    =       &sock->wait;
1553                 sock->sk        =       sk;
1554         } else
1555                 sk->sk_sleep    =       NULL;
1556
1557         rwlock_init(&sk->sk_dst_lock);
1558         rwlock_init(&sk->sk_callback_lock);
1559         lockdep_set_class_and_name(&sk->sk_callback_lock,
1560                         af_callback_keys + sk->sk_family,
1561                         af_family_clock_key_strings[sk->sk_family]);
1562
1563         sk->sk_state_change     =       sock_def_wakeup;
1564         sk->sk_data_ready       =       sock_def_readable;
1565         sk->sk_write_space      =       sock_def_write_space;
1566         sk->sk_error_report     =       sock_def_error_report;
1567         sk->sk_destruct         =       sock_def_destruct;
1568
1569         sk->sk_sndmsg_page      =       NULL;
1570         sk->sk_sndmsg_off       =       0;
1571
1572         sk->sk_peercred.pid     =       0;
1573         sk->sk_peercred.uid     =       -1;
1574         sk->sk_peercred.gid     =       -1;
1575         sk->sk_write_pending    =       0;
1576         sk->sk_rcvlowat         =       1;
1577         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1578         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1579
1580         sk->sk_stamp = ktime_set(-1L, -1L);
1581
1582         atomic_set(&sk->sk_refcnt, 1);
1583 }
1584
1585 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1586 {
1587         might_sleep();
1588         spin_lock_bh(&sk->sk_lock.slock);
1589         if (sk->sk_lock.owned)
1590                 __lock_sock(sk);
1591         sk->sk_lock.owned = 1;
1592         spin_unlock(&sk->sk_lock.slock);
1593         /*
1594          * The sk_lock has mutex_lock() semantics here:
1595          */
1596         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1597         local_bh_enable();
1598 }
1599
1600 EXPORT_SYMBOL(lock_sock_nested);
1601
1602 void fastcall release_sock(struct sock *sk)
1603 {
1604         /*
1605          * The sk_lock has mutex_unlock() semantics:
1606          */
1607         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1608
1609         spin_lock_bh(&sk->sk_lock.slock);
1610         if (sk->sk_backlog.tail)
1611                 __release_sock(sk);
1612         sk->sk_lock.owned = 0;
1613         if (waitqueue_active(&sk->sk_lock.wq))
1614                 wake_up(&sk->sk_lock.wq);
1615         spin_unlock_bh(&sk->sk_lock.slock);
1616 }
1617 EXPORT_SYMBOL(release_sock);
1618
1619 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1620 {
1621         struct timeval tv;
1622         if (!sock_flag(sk, SOCK_TIMESTAMP))
1623                 sock_enable_timestamp(sk);
1624         tv = ktime_to_timeval(sk->sk_stamp);
1625         if (tv.tv_sec == -1)
1626                 return -ENOENT;
1627         if (tv.tv_sec == 0) {
1628                 sk->sk_stamp = ktime_get_real();
1629                 tv = ktime_to_timeval(sk->sk_stamp);
1630         }
1631         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1632 }
1633 EXPORT_SYMBOL(sock_get_timestamp);
1634
1635 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1636 {
1637         struct timespec ts;
1638         if (!sock_flag(sk, SOCK_TIMESTAMP))
1639                 sock_enable_timestamp(sk);
1640         ts = ktime_to_timespec(sk->sk_stamp);
1641         if (ts.tv_sec == -1)
1642                 return -ENOENT;
1643         if (ts.tv_sec == 0) {
1644                 sk->sk_stamp = ktime_get_real();
1645                 ts = ktime_to_timespec(sk->sk_stamp);
1646         }
1647         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1648 }
1649 EXPORT_SYMBOL(sock_get_timestampns);
1650
1651 void sock_enable_timestamp(struct sock *sk)
1652 {
1653         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1654                 sock_set_flag(sk, SOCK_TIMESTAMP);
1655                 net_enable_timestamp();
1656         }
1657 }
1658 EXPORT_SYMBOL(sock_enable_timestamp);
1659
1660 /*
1661  *      Get a socket option on an socket.
1662  *
1663  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1664  *      asynchronous errors should be reported by getsockopt. We assume
1665  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1666  */
1667 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1668                            char __user *optval, int __user *optlen)
1669 {
1670         struct sock *sk = sock->sk;
1671
1672         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1673 }
1674
1675 EXPORT_SYMBOL(sock_common_getsockopt);
1676
1677 #ifdef CONFIG_COMPAT
1678 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1679                                   char __user *optval, int __user *optlen)
1680 {
1681         struct sock *sk = sock->sk;
1682
1683         if (sk->sk_prot->compat_getsockopt != NULL)
1684                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1685                                                       optval, optlen);
1686         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1687 }
1688 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1689 #endif
1690
1691 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1692                         struct msghdr *msg, size_t size, int flags)
1693 {
1694         struct sock *sk = sock->sk;
1695         int addr_len = 0;
1696         int err;
1697
1698         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1699                                    flags & ~MSG_DONTWAIT, &addr_len);
1700         if (err >= 0)
1701                 msg->msg_namelen = addr_len;
1702         return err;
1703 }
1704
1705 EXPORT_SYMBOL(sock_common_recvmsg);
1706
1707 /*
1708  *      Set socket options on an inet socket.
1709  */
1710 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1711                            char __user *optval, int optlen)
1712 {
1713         struct sock *sk = sock->sk;
1714
1715         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1716 }
1717
1718 EXPORT_SYMBOL(sock_common_setsockopt);
1719
1720 #ifdef CONFIG_COMPAT
1721 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1722                                   char __user *optval, int optlen)
1723 {
1724         struct sock *sk = sock->sk;
1725
1726         if (sk->sk_prot->compat_setsockopt != NULL)
1727                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1728                                                       optval, optlen);
1729         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1730 }
1731 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1732 #endif
1733
1734 void sk_common_release(struct sock *sk)
1735 {
1736         if (sk->sk_prot->destroy)
1737                 sk->sk_prot->destroy(sk);
1738
1739         /*
1740          * Observation: when sock_common_release is called, processes have
1741          * no access to socket. But net still has.
1742          * Step one, detach it from networking:
1743          *
1744          * A. Remove from hash tables.
1745          */
1746
1747         sk->sk_prot->unhash(sk);
1748
1749         /*
1750          * In this point socket cannot receive new packets, but it is possible
1751          * that some packets are in flight because some CPU runs receiver and
1752          * did hash table lookup before we unhashed socket. They will achieve
1753          * receive queue and will be purged by socket destructor.
1754          *
1755          * Also we still have packets pending on receive queue and probably,
1756          * our own packets waiting in device queues. sock_destroy will drain
1757          * receive queue, but transmitted packets will delay socket destruction
1758          * until the last reference will be released.
1759          */
1760
1761         sock_orphan(sk);
1762
1763         xfrm_sk_free_policy(sk);
1764
1765         sk_refcnt_debug_release(sk);
1766         sock_put(sk);
1767 }
1768
1769 EXPORT_SYMBOL(sk_common_release);
1770
1771 static DEFINE_RWLOCK(proto_list_lock);
1772 static LIST_HEAD(proto_list);
1773
1774 int proto_register(struct proto *prot, int alloc_slab)
1775 {
1776         char *request_sock_slab_name = NULL;
1777         char *timewait_sock_slab_name;
1778         int rc = -ENOBUFS;
1779
1780         if (alloc_slab) {
1781                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1782                                                SLAB_HWCACHE_ALIGN, NULL);
1783
1784                 if (prot->slab == NULL) {
1785                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1786                                prot->name);
1787                         goto out;
1788                 }
1789
1790                 if (prot->rsk_prot != NULL) {
1791                         static const char mask[] = "request_sock_%s";
1792
1793                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1794                         if (request_sock_slab_name == NULL)
1795                                 goto out_free_sock_slab;
1796
1797                         sprintf(request_sock_slab_name, mask, prot->name);
1798                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1799                                                                  prot->rsk_prot->obj_size, 0,
1800                                                                  SLAB_HWCACHE_ALIGN, NULL);
1801
1802                         if (prot->rsk_prot->slab == NULL) {
1803                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1804                                        prot->name);
1805                                 goto out_free_request_sock_slab_name;
1806                         }
1807                 }
1808
1809                 if (prot->twsk_prot != NULL) {
1810                         static const char mask[] = "tw_sock_%s";
1811
1812                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1813
1814                         if (timewait_sock_slab_name == NULL)
1815                                 goto out_free_request_sock_slab;
1816
1817                         sprintf(timewait_sock_slab_name, mask, prot->name);
1818                         prot->twsk_prot->twsk_slab =
1819                                 kmem_cache_create(timewait_sock_slab_name,
1820                                                   prot->twsk_prot->twsk_obj_size,
1821                                                   0, SLAB_HWCACHE_ALIGN,
1822                                                   NULL);
1823                         if (prot->twsk_prot->twsk_slab == NULL)
1824                                 goto out_free_timewait_sock_slab_name;
1825                 }
1826         }
1827
1828         write_lock(&proto_list_lock);
1829         list_add(&prot->node, &proto_list);
1830         write_unlock(&proto_list_lock);
1831         rc = 0;
1832 out:
1833         return rc;
1834 out_free_timewait_sock_slab_name:
1835         kfree(timewait_sock_slab_name);
1836 out_free_request_sock_slab:
1837         if (prot->rsk_prot && prot->rsk_prot->slab) {
1838                 kmem_cache_destroy(prot->rsk_prot->slab);
1839                 prot->rsk_prot->slab = NULL;
1840         }
1841 out_free_request_sock_slab_name:
1842         kfree(request_sock_slab_name);
1843 out_free_sock_slab:
1844         kmem_cache_destroy(prot->slab);
1845         prot->slab = NULL;
1846         goto out;
1847 }
1848
1849 EXPORT_SYMBOL(proto_register);
1850
1851 void proto_unregister(struct proto *prot)
1852 {
1853         write_lock(&proto_list_lock);
1854         list_del(&prot->node);
1855         write_unlock(&proto_list_lock);
1856
1857         if (prot->slab != NULL) {
1858                 kmem_cache_destroy(prot->slab);
1859                 prot->slab = NULL;
1860         }
1861
1862         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1863                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1864
1865                 kmem_cache_destroy(prot->rsk_prot->slab);
1866                 kfree(name);
1867                 prot->rsk_prot->slab = NULL;
1868         }
1869
1870         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1871                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1872
1873                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1874                 kfree(name);
1875                 prot->twsk_prot->twsk_slab = NULL;
1876         }
1877 }
1878
1879 EXPORT_SYMBOL(proto_unregister);
1880
1881 #ifdef CONFIG_PROC_FS
1882 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1883 {
1884         read_lock(&proto_list_lock);
1885         return seq_list_start_head(&proto_list, *pos);
1886 }
1887
1888 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1889 {
1890         return seq_list_next(v, &proto_list, pos);
1891 }
1892
1893 static void proto_seq_stop(struct seq_file *seq, void *v)
1894 {
1895         read_unlock(&proto_list_lock);
1896 }
1897
1898 static char proto_method_implemented(const void *method)
1899 {
1900         return method == NULL ? 'n' : 'y';
1901 }
1902
1903 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1904 {
1905         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1906                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1907                    proto->name,
1908                    proto->obj_size,
1909                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1910                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1911                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1912                    proto->max_header,
1913                    proto->slab == NULL ? "no" : "yes",
1914                    module_name(proto->owner),
1915                    proto_method_implemented(proto->close),
1916                    proto_method_implemented(proto->connect),
1917                    proto_method_implemented(proto->disconnect),
1918                    proto_method_implemented(proto->accept),
1919                    proto_method_implemented(proto->ioctl),
1920                    proto_method_implemented(proto->init),
1921                    proto_method_implemented(proto->destroy),
1922                    proto_method_implemented(proto->shutdown),
1923                    proto_method_implemented(proto->setsockopt),
1924                    proto_method_implemented(proto->getsockopt),
1925                    proto_method_implemented(proto->sendmsg),
1926                    proto_method_implemented(proto->recvmsg),
1927                    proto_method_implemented(proto->sendpage),
1928                    proto_method_implemented(proto->bind),
1929                    proto_method_implemented(proto->backlog_rcv),
1930                    proto_method_implemented(proto->hash),
1931                    proto_method_implemented(proto->unhash),
1932                    proto_method_implemented(proto->get_port),
1933                    proto_method_implemented(proto->enter_memory_pressure));
1934 }
1935
1936 static int proto_seq_show(struct seq_file *seq, void *v)
1937 {
1938         if (v == &proto_list)
1939                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1940                            "protocol",
1941                            "size",
1942                            "sockets",
1943                            "memory",
1944                            "press",
1945                            "maxhdr",
1946                            "slab",
1947                            "module",
1948                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1949         else
1950                 proto_seq_printf(seq, list_entry(v, struct proto, node));
1951         return 0;
1952 }
1953
1954 static const struct seq_operations proto_seq_ops = {
1955         .start  = proto_seq_start,
1956         .next   = proto_seq_next,
1957         .stop   = proto_seq_stop,
1958         .show   = proto_seq_show,
1959 };
1960
1961 static int proto_seq_open(struct inode *inode, struct file *file)
1962 {
1963         return seq_open(file, &proto_seq_ops);
1964 }
1965
1966 static const struct file_operations proto_seq_fops = {
1967         .owner          = THIS_MODULE,
1968         .open           = proto_seq_open,
1969         .read           = seq_read,
1970         .llseek         = seq_lseek,
1971         .release        = seq_release,
1972 };
1973
1974 static int __init proto_init(void)
1975 {
1976         /* register /proc/net/protocols */
1977         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1978 }
1979
1980 subsys_initcall(proto_init);
1981
1982 #endif /* PROC_FS */
1983
1984 EXPORT_SYMBOL(sk_alloc);
1985 EXPORT_SYMBOL(sk_free);
1986 EXPORT_SYMBOL(sk_send_sigurg);
1987 EXPORT_SYMBOL(sock_alloc_send_skb);
1988 EXPORT_SYMBOL(sock_init_data);
1989 EXPORT_SYMBOL(sock_kfree_s);
1990 EXPORT_SYMBOL(sock_kmalloc);
1991 EXPORT_SYMBOL(sock_no_accept);
1992 EXPORT_SYMBOL(sock_no_bind);
1993 EXPORT_SYMBOL(sock_no_connect);
1994 EXPORT_SYMBOL(sock_no_getname);
1995 EXPORT_SYMBOL(sock_no_getsockopt);
1996 EXPORT_SYMBOL(sock_no_ioctl);
1997 EXPORT_SYMBOL(sock_no_listen);
1998 EXPORT_SYMBOL(sock_no_mmap);
1999 EXPORT_SYMBOL(sock_no_poll);
2000 EXPORT_SYMBOL(sock_no_recvmsg);
2001 EXPORT_SYMBOL(sock_no_sendmsg);
2002 EXPORT_SYMBOL(sock_no_sendpage);
2003 EXPORT_SYMBOL(sock_no_setsockopt);
2004 EXPORT_SYMBOL(sock_no_shutdown);
2005 EXPORT_SYMBOL(sock_no_socketpair);
2006 EXPORT_SYMBOL(sock_rfree);
2007 EXPORT_SYMBOL(sock_setsockopt);
2008 EXPORT_SYMBOL(sock_wfree);
2009 EXPORT_SYMBOL(sock_wmalloc);
2010 EXPORT_SYMBOL(sock_i_uid);
2011 EXPORT_SYMBOL(sock_i_ino);
2012 EXPORT_SYMBOL(sysctl_optmem_max);
2013 #ifdef CONFIG_SYSCTL
2014 EXPORT_SYMBOL(sysctl_rmem_max);
2015 EXPORT_SYMBOL(sysctl_wmem_max);
2016 #endif