4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
8 #include <linux/config.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
34 DEFINE_SPINLOCK(swaplock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
39 EXPORT_SYMBOL(total_swap_pages);
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
46 struct swap_list_t swap_list = {-1, -1};
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
50 static DECLARE_MUTEX(swapon_sem);
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55 * cannot be turned into a semaphore.
57 static DECLARE_RWSEM(swap_unplug_sem);
59 #define SWAPFILE_CLUSTER 256
61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
65 down_read(&swap_unplug_sem);
66 entry.val = page->private;
67 if (PageSwapCache(page)) {
68 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 struct backing_dev_info *bdi;
72 * If the page is removed from swapcache from under us (with a
73 * racy try_to_unuse/swapoff) we need an additional reference
74 * count to avoid reading garbage from page->private above. If
75 * the WARN_ON triggers during a swapoff it maybe the race
76 * condition and it's harmless. However if it triggers without
77 * swapoff it signals a problem.
79 WARN_ON(page_count(page) <= 1);
81 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82 blk_run_backing_dev(bdi, page);
84 up_read(&swap_unplug_sem);
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 unsigned long offset, last_in_cluster;
92 * We try to cluster swap pages by allocating them sequentially
93 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
94 * way, however, we resort to first-free allocation, starting
95 * a new cluster. This prevents us from scattering swap pages
96 * all over the entire swap partition, so that we reduce
97 * overall disk seek times between swap pages. -- sct
98 * But we do now try to find an empty cluster. -Andrea
101 si->flags += SWP_SCANNING;
102 if (unlikely(!si->cluster_nr)) {
103 si->cluster_nr = SWAPFILE_CLUSTER - 1;
104 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 swap_device_unlock(si);
108 offset = si->lowest_bit;
109 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111 /* Locate the first empty (unaligned) cluster */
112 for (; last_in_cluster <= si->highest_bit; offset++) {
113 if (si->swap_map[offset])
114 last_in_cluster = offset + SWAPFILE_CLUSTER;
115 else if (offset == last_in_cluster) {
116 swap_device_lock(si);
117 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
121 swap_device_lock(si);
127 offset = si->cluster_next;
128 if (offset > si->highest_bit)
129 lowest: offset = si->lowest_bit;
130 checks: if (!(si->flags & SWP_WRITEOK))
132 if (!si->highest_bit)
134 if (!si->swap_map[offset]) {
135 if (offset == si->lowest_bit)
137 if (offset == si->highest_bit)
140 if (si->inuse_pages == si->pages) {
141 si->lowest_bit = si->max;
144 si->swap_map[offset] = 1;
145 si->cluster_next = offset + 1;
146 si->flags -= SWP_SCANNING;
150 swap_device_unlock(si);
151 while (++offset <= si->highest_bit) {
152 if (!si->swap_map[offset]) {
153 swap_device_lock(si);
157 swap_device_lock(si);
161 si->flags -= SWP_SCANNING;
165 swp_entry_t get_swap_page(void)
167 struct swap_info_struct *si;
173 if (nr_swap_pages <= 0)
177 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
178 si = swap_info + type;
181 (!wrapped && si->prio != swap_info[next].prio)) {
182 next = swap_list.head;
186 if (!si->highest_bit)
188 if (!(si->flags & SWP_WRITEOK))
191 swap_list.next = next;
192 swap_device_lock(si);
194 offset = scan_swap_map(si);
195 swap_device_unlock(si);
197 return swp_entry(type, offset);
199 next = swap_list.next;
205 return (swp_entry_t) {0};
208 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
210 struct swap_info_struct * p;
211 unsigned long offset, type;
215 type = swp_type(entry);
216 if (type >= nr_swapfiles)
218 p = & swap_info[type];
219 if (!(p->flags & SWP_USED))
221 offset = swp_offset(entry);
222 if (offset >= p->max)
224 if (!p->swap_map[offset])
231 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
234 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
237 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
240 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
245 static void swap_info_put(struct swap_info_struct * p)
247 swap_device_unlock(p);
251 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
253 int count = p->swap_map[offset];
255 if (count < SWAP_MAP_MAX) {
257 p->swap_map[offset] = count;
259 if (offset < p->lowest_bit)
260 p->lowest_bit = offset;
261 if (offset > p->highest_bit)
262 p->highest_bit = offset;
263 if (p->prio > swap_info[swap_list.next].prio)
264 swap_list.next = p - swap_info;
273 * Caller has made sure that the swapdevice corresponding to entry
274 * is still around or has not been recycled.
276 void swap_free(swp_entry_t entry)
278 struct swap_info_struct * p;
280 p = swap_info_get(entry);
282 swap_entry_free(p, swp_offset(entry));
288 * How many references to page are currently swapped out?
290 static inline int page_swapcount(struct page *page)
293 struct swap_info_struct *p;
296 entry.val = page->private;
297 p = swap_info_get(entry);
299 /* Subtract the 1 for the swap cache itself */
300 count = p->swap_map[swp_offset(entry)] - 1;
307 * We can use this swap cache entry directly
308 * if there are no other references to it.
310 int can_share_swap_page(struct page *page)
314 BUG_ON(!PageLocked(page));
315 count = page_mapcount(page);
316 if (count <= 1 && PageSwapCache(page))
317 count += page_swapcount(page);
322 * Work out if there are any other processes sharing this
323 * swap cache page. Free it if you can. Return success.
325 int remove_exclusive_swap_page(struct page *page)
328 struct swap_info_struct * p;
331 BUG_ON(PagePrivate(page));
332 BUG_ON(!PageLocked(page));
334 if (!PageSwapCache(page))
336 if (PageWriteback(page))
338 if (page_count(page) != 2) /* 2: us + cache */
341 entry.val = page->private;
342 p = swap_info_get(entry);
346 /* Is the only swap cache user the cache itself? */
348 if (p->swap_map[swp_offset(entry)] == 1) {
349 /* Recheck the page count with the swapcache lock held.. */
350 write_lock_irq(&swapper_space.tree_lock);
351 if ((page_count(page) == 2) && !PageWriteback(page)) {
352 __delete_from_swap_cache(page);
356 write_unlock_irq(&swapper_space.tree_lock);
362 page_cache_release(page);
369 * Free the swap entry like above, but also try to
370 * free the page cache entry if it is the last user.
372 void free_swap_and_cache(swp_entry_t entry)
374 struct swap_info_struct * p;
375 struct page *page = NULL;
377 p = swap_info_get(entry);
379 if (swap_entry_free(p, swp_offset(entry)) == 1)
380 page = find_trylock_page(&swapper_space, entry.val);
386 BUG_ON(PagePrivate(page));
387 page_cache_get(page);
388 one_user = (page_count(page) == 2);
389 /* Only cache user (+us), or swap space full? Free it! */
390 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
391 delete_from_swap_cache(page);
395 page_cache_release(page);
400 * Always set the resulting pte to be nowrite (the same as COW pages
401 * after one process has exited). We don't know just how many PTEs will
402 * share this swap entry, so be cautious and let do_wp_page work out
403 * what to do if a write is requested later.
405 * vma->vm_mm->page_table_lock is held.
407 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
408 unsigned long addr, swp_entry_t entry, struct page *page)
410 inc_mm_counter(vma->vm_mm, rss);
412 set_pte_at(vma->vm_mm, addr, pte,
413 pte_mkold(mk_pte(page, vma->vm_page_prot)));
414 page_add_anon_rmap(page, vma, addr);
417 * Move the page to the active list so it is not
418 * immediately swapped out again after swapon.
423 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
424 unsigned long addr, unsigned long end,
425 swp_entry_t entry, struct page *page)
428 pte_t swp_pte = swp_entry_to_pte(entry);
430 pte = pte_offset_map(pmd, addr);
433 * swapoff spends a _lot_ of time in this loop!
434 * Test inline before going to call unuse_pte.
436 if (unlikely(pte_same(*pte, swp_pte))) {
437 unuse_pte(vma, pte, addr, entry, page);
441 } while (pte++, addr += PAGE_SIZE, addr != end);
446 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
447 unsigned long addr, unsigned long end,
448 swp_entry_t entry, struct page *page)
453 pmd = pmd_offset(pud, addr);
455 next = pmd_addr_end(addr, end);
456 if (pmd_none_or_clear_bad(pmd))
458 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
460 } while (pmd++, addr = next, addr != end);
464 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 swp_entry_t entry, struct page *page)
471 pud = pud_offset(pgd, addr);
473 next = pud_addr_end(addr, end);
474 if (pud_none_or_clear_bad(pud))
476 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
478 } while (pud++, addr = next, addr != end);
482 static int unuse_vma(struct vm_area_struct *vma,
483 swp_entry_t entry, struct page *page)
486 unsigned long addr, end, next;
489 addr = page_address_in_vma(page, vma);
493 end = addr + PAGE_SIZE;
495 addr = vma->vm_start;
499 pgd = pgd_offset(vma->vm_mm, addr);
501 next = pgd_addr_end(addr, end);
502 if (pgd_none_or_clear_bad(pgd))
504 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
506 } while (pgd++, addr = next, addr != end);
510 static int unuse_mm(struct mm_struct *mm,
511 swp_entry_t entry, struct page *page)
513 struct vm_area_struct *vma;
515 if (!down_read_trylock(&mm->mmap_sem)) {
517 * Activate page so shrink_cache is unlikely to unmap its
518 * ptes while lock is dropped, so swapoff can make progress.
522 down_read(&mm->mmap_sem);
525 spin_lock(&mm->page_table_lock);
526 for (vma = mm->mmap; vma; vma = vma->vm_next) {
527 if (vma->anon_vma && unuse_vma(vma, entry, page))
530 spin_unlock(&mm->page_table_lock);
531 up_read(&mm->mmap_sem);
533 * Currently unuse_mm cannot fail, but leave error handling
534 * at call sites for now, since we change it from time to time.
540 * Scan swap_map from current position to next entry still in use.
541 * Recycle to start on reaching the end, returning 0 when empty.
543 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
546 unsigned int max = si->max;
547 unsigned int i = prev;
551 * No need for swap_device_lock(si) here: we're just looking
552 * for whether an entry is in use, not modifying it; false
553 * hits are okay, and sys_swapoff() has already prevented new
554 * allocations from this area (while holding swap_list_lock()).
563 * No entries in use at top of swap_map,
564 * loop back to start and recheck there.
570 count = si->swap_map[i];
571 if (count && count != SWAP_MAP_BAD)
578 * We completely avoid races by reading each swap page in advance,
579 * and then search for the process using it. All the necessary
580 * page table adjustments can then be made atomically.
582 static int try_to_unuse(unsigned int type)
584 struct swap_info_struct * si = &swap_info[type];
585 struct mm_struct *start_mm;
586 unsigned short *swap_map;
587 unsigned short swcount;
592 int reset_overflow = 0;
596 * When searching mms for an entry, a good strategy is to
597 * start at the first mm we freed the previous entry from
598 * (though actually we don't notice whether we or coincidence
599 * freed the entry). Initialize this start_mm with a hold.
601 * A simpler strategy would be to start at the last mm we
602 * freed the previous entry from; but that would take less
603 * advantage of mmlist ordering, which clusters forked mms
604 * together, child after parent. If we race with dup_mmap(), we
605 * prefer to resolve parent before child, lest we miss entries
606 * duplicated after we scanned child: using last mm would invert
607 * that. Though it's only a serious concern when an overflowed
608 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
611 atomic_inc(&init_mm.mm_users);
614 * Keep on scanning until all entries have gone. Usually,
615 * one pass through swap_map is enough, but not necessarily:
616 * there are races when an instance of an entry might be missed.
618 while ((i = find_next_to_unuse(si, i)) != 0) {
619 if (signal_pending(current)) {
625 * Get a page for the entry, using the existing swap
626 * cache page if there is one. Otherwise, get a clean
627 * page and read the swap into it.
629 swap_map = &si->swap_map[i];
630 entry = swp_entry(type, i);
631 page = read_swap_cache_async(entry, NULL, 0);
634 * Either swap_duplicate() failed because entry
635 * has been freed independently, and will not be
636 * reused since sys_swapoff() already disabled
637 * allocation from here, or alloc_page() failed.
646 * Don't hold on to start_mm if it looks like exiting.
648 if (atomic_read(&start_mm->mm_users) == 1) {
651 atomic_inc(&init_mm.mm_users);
655 * Wait for and lock page. When do_swap_page races with
656 * try_to_unuse, do_swap_page can handle the fault much
657 * faster than try_to_unuse can locate the entry. This
658 * apparently redundant "wait_on_page_locked" lets try_to_unuse
659 * defer to do_swap_page in such a case - in some tests,
660 * do_swap_page and try_to_unuse repeatedly compete.
662 wait_on_page_locked(page);
663 wait_on_page_writeback(page);
665 wait_on_page_writeback(page);
668 * Remove all references to entry.
669 * Whenever we reach init_mm, there's no address space
670 * to search, but use it as a reminder to search shmem.
675 if (start_mm == &init_mm)
676 shmem = shmem_unuse(entry, page);
678 retval = unuse_mm(start_mm, entry, page);
681 int set_start_mm = (*swap_map >= swcount);
682 struct list_head *p = &start_mm->mmlist;
683 struct mm_struct *new_start_mm = start_mm;
684 struct mm_struct *prev_mm = start_mm;
685 struct mm_struct *mm;
687 atomic_inc(&new_start_mm->mm_users);
688 atomic_inc(&prev_mm->mm_users);
689 spin_lock(&mmlist_lock);
690 while (*swap_map > 1 && !retval &&
691 (p = p->next) != &start_mm->mmlist) {
692 mm = list_entry(p, struct mm_struct, mmlist);
693 if (atomic_inc_return(&mm->mm_users) == 1) {
694 atomic_dec(&mm->mm_users);
697 spin_unlock(&mmlist_lock);
706 else if (mm == &init_mm) {
708 shmem = shmem_unuse(entry, page);
710 retval = unuse_mm(mm, entry, page);
711 if (set_start_mm && *swap_map < swcount) {
713 atomic_inc(&mm->mm_users);
717 spin_lock(&mmlist_lock);
719 spin_unlock(&mmlist_lock);
722 start_mm = new_start_mm;
726 page_cache_release(page);
731 * How could swap count reach 0x7fff when the maximum
732 * pid is 0x7fff, and there's no way to repeat a swap
733 * page within an mm (except in shmem, where it's the
734 * shared object which takes the reference count)?
735 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
737 * If that's wrong, then we should worry more about
738 * exit_mmap() and do_munmap() cases described above:
739 * we might be resetting SWAP_MAP_MAX too early here.
740 * We know "Undead"s can happen, they're okay, so don't
741 * report them; but do report if we reset SWAP_MAP_MAX.
743 if (*swap_map == SWAP_MAP_MAX) {
744 swap_device_lock(si);
746 swap_device_unlock(si);
751 * If a reference remains (rare), we would like to leave
752 * the page in the swap cache; but try_to_unmap could
753 * then re-duplicate the entry once we drop page lock,
754 * so we might loop indefinitely; also, that page could
755 * not be swapped out to other storage meanwhile. So:
756 * delete from cache even if there's another reference,
757 * after ensuring that the data has been saved to disk -
758 * since if the reference remains (rarer), it will be
759 * read from disk into another page. Splitting into two
760 * pages would be incorrect if swap supported "shared
761 * private" pages, but they are handled by tmpfs files.
763 * Note shmem_unuse already deleted a swappage from
764 * the swap cache, unless the move to filepage failed:
765 * in which case it left swappage in cache, lowered its
766 * swap count to pass quickly through the loops above,
767 * and now we must reincrement count to try again later.
769 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
770 struct writeback_control wbc = {
771 .sync_mode = WB_SYNC_NONE,
774 swap_writepage(page, &wbc);
776 wait_on_page_writeback(page);
778 if (PageSwapCache(page)) {
780 swap_duplicate(entry);
782 delete_from_swap_cache(page);
786 * So we could skip searching mms once swap count went
787 * to 1, we did not mark any present ptes as dirty: must
788 * mark page dirty so shrink_list will preserve it.
792 page_cache_release(page);
795 * Make sure that we aren't completely killing
796 * interactive performance.
802 if (reset_overflow) {
803 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
810 * After a successful try_to_unuse, if no swap is now in use, we know we
811 * can empty the mmlist. swap_list_lock must be held on entry and exit.
812 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
813 * added to the mmlist just after page_duplicate - before would be racy.
815 static void drain_mmlist(void)
817 struct list_head *p, *next;
820 for (i = 0; i < nr_swapfiles; i++)
821 if (swap_info[i].inuse_pages)
823 spin_lock(&mmlist_lock);
824 list_for_each_safe(p, next, &init_mm.mmlist)
826 spin_unlock(&mmlist_lock);
830 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
831 * corresponds to page offset `offset'.
833 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
835 struct swap_extent *se = sis->curr_swap_extent;
836 struct swap_extent *start_se = se;
839 struct list_head *lh;
841 if (se->start_page <= offset &&
842 offset < (se->start_page + se->nr_pages)) {
843 return se->start_block + (offset - se->start_page);
846 if (lh == &sis->extent_list)
848 se = list_entry(lh, struct swap_extent, list);
849 sis->curr_swap_extent = se;
850 BUG_ON(se == start_se); /* It *must* be present */
855 * Free all of a swapdev's extent information
857 static void destroy_swap_extents(struct swap_info_struct *sis)
859 while (!list_empty(&sis->extent_list)) {
860 struct swap_extent *se;
862 se = list_entry(sis->extent_list.next,
863 struct swap_extent, list);
870 * Add a block range (and the corresponding page range) into this swapdev's
871 * extent list. The extent list is kept sorted in page order.
873 * This function rather assumes that it is called in ascending page order.
876 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
877 unsigned long nr_pages, sector_t start_block)
879 struct swap_extent *se;
880 struct swap_extent *new_se;
881 struct list_head *lh;
883 lh = sis->extent_list.prev; /* The highest page extent */
884 if (lh != &sis->extent_list) {
885 se = list_entry(lh, struct swap_extent, list);
886 BUG_ON(se->start_page + se->nr_pages != start_page);
887 if (se->start_block + se->nr_pages == start_block) {
889 se->nr_pages += nr_pages;
895 * No merge. Insert a new extent, preserving ordering.
897 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
900 new_se->start_page = start_page;
901 new_se->nr_pages = nr_pages;
902 new_se->start_block = start_block;
904 list_add_tail(&new_se->list, &sis->extent_list);
909 * A `swap extent' is a simple thing which maps a contiguous range of pages
910 * onto a contiguous range of disk blocks. An ordered list of swap extents
911 * is built at swapon time and is then used at swap_writepage/swap_readpage
912 * time for locating where on disk a page belongs.
914 * If the swapfile is an S_ISBLK block device, a single extent is installed.
915 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
916 * swap files identically.
918 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
919 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
920 * swapfiles are handled *identically* after swapon time.
922 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
923 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
924 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
925 * requirements, they are simply tossed out - we will never use those blocks
928 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
929 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
930 * which will scribble on the fs.
932 * The amount of disk space which a single swap extent represents varies.
933 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
934 * extents in the list. To avoid much list walking, we cache the previous
935 * search location in `curr_swap_extent', and start new searches from there.
936 * This is extremely effective. The average number of iterations in
937 * map_swap_page() has been measured at about 0.3 per page. - akpm.
939 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
942 unsigned blocks_per_page;
943 unsigned long page_no;
945 sector_t probe_block;
947 sector_t lowest_block = -1;
948 sector_t highest_block = 0;
952 inode = sis->swap_file->f_mapping->host;
953 if (S_ISBLK(inode->i_mode)) {
954 ret = add_swap_extent(sis, 0, sis->max, 0);
959 blkbits = inode->i_blkbits;
960 blocks_per_page = PAGE_SIZE >> blkbits;
963 * Map all the blocks into the extent list. This code doesn't try
968 last_block = i_size_read(inode) >> blkbits;
969 while ((probe_block + blocks_per_page) <= last_block &&
970 page_no < sis->max) {
971 unsigned block_in_page;
972 sector_t first_block;
974 first_block = bmap(inode, probe_block);
975 if (first_block == 0)
979 * It must be PAGE_SIZE aligned on-disk
981 if (first_block & (blocks_per_page - 1)) {
986 for (block_in_page = 1; block_in_page < blocks_per_page;
990 block = bmap(inode, probe_block + block_in_page);
993 if (block != first_block + block_in_page) {
1000 first_block >>= (PAGE_SHIFT - blkbits);
1001 if (page_no) { /* exclude the header page */
1002 if (first_block < lowest_block)
1003 lowest_block = first_block;
1004 if (first_block > highest_block)
1005 highest_block = first_block;
1009 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1011 ret = add_swap_extent(sis, page_no, 1, first_block);
1016 probe_block += blocks_per_page;
1021 *span = 1 + highest_block - lowest_block;
1023 page_no = 1; /* force Empty message */
1025 sis->pages = page_no - 1;
1026 sis->highest_bit = page_no - 1;
1028 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1029 struct swap_extent, list);
1032 printk(KERN_ERR "swapon: swapfile has holes\n");
1038 #if 0 /* We don't need this yet */
1039 #include <linux/backing-dev.h>
1040 int page_queue_congested(struct page *page)
1042 struct backing_dev_info *bdi;
1044 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1046 if (PageSwapCache(page)) {
1047 swp_entry_t entry = { .val = page->private };
1048 struct swap_info_struct *sis;
1050 sis = get_swap_info_struct(swp_type(entry));
1051 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1053 bdi = page->mapping->backing_dev_info;
1054 return bdi_write_congested(bdi);
1058 asmlinkage long sys_swapoff(const char __user * specialfile)
1060 struct swap_info_struct * p = NULL;
1061 unsigned short *swap_map;
1062 struct file *swap_file, *victim;
1063 struct address_space *mapping;
1064 struct inode *inode;
1069 if (!capable(CAP_SYS_ADMIN))
1072 pathname = getname(specialfile);
1073 err = PTR_ERR(pathname);
1074 if (IS_ERR(pathname))
1077 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1079 err = PTR_ERR(victim);
1083 mapping = victim->f_mapping;
1086 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1087 p = swap_info + type;
1088 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1089 if (p->swap_file->f_mapping == mapping)
1099 if (!security_vm_enough_memory(p->pages))
1100 vm_unacct_memory(p->pages);
1107 swap_list.head = p->next;
1109 swap_info[prev].next = p->next;
1111 if (type == swap_list.next) {
1112 /* just pick something that's safe... */
1113 swap_list.next = swap_list.head;
1115 nr_swap_pages -= p->pages;
1116 total_swap_pages -= p->pages;
1117 swap_device_lock(p);
1118 p->flags &= ~SWP_WRITEOK;
1119 swap_device_unlock(p);
1122 current->flags |= PF_SWAPOFF;
1123 err = try_to_unuse(type);
1124 current->flags &= ~PF_SWAPOFF;
1127 /* re-insert swap space back into swap_list */
1129 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1130 if (p->prio >= swap_info[i].prio)
1134 swap_list.head = swap_list.next = p - swap_info;
1136 swap_info[prev].next = p - swap_info;
1137 nr_swap_pages += p->pages;
1138 total_swap_pages += p->pages;
1139 swap_device_lock(p);
1140 p->flags |= SWP_WRITEOK;
1141 swap_device_unlock(p);
1146 /* wait for any unplug function to finish */
1147 down_write(&swap_unplug_sem);
1148 up_write(&swap_unplug_sem);
1150 /* wait for anyone still in scan_swap_map */
1151 swap_device_lock(p);
1152 p->highest_bit = 0; /* cuts scans short */
1153 while (p->flags >= SWP_SCANNING) {
1154 swap_device_unlock(p);
1155 set_current_state(TASK_UNINTERRUPTIBLE);
1156 schedule_timeout(1);
1157 swap_device_lock(p);
1159 swap_device_unlock(p);
1161 destroy_swap_extents(p);
1165 swap_device_lock(p);
1166 swap_file = p->swap_file;
1167 p->swap_file = NULL;
1169 swap_map = p->swap_map;
1172 swap_device_unlock(p);
1176 inode = mapping->host;
1177 if (S_ISBLK(inode->i_mode)) {
1178 struct block_device *bdev = I_BDEV(inode);
1179 set_blocksize(bdev, p->old_block_size);
1182 down(&inode->i_sem);
1183 inode->i_flags &= ~S_SWAPFILE;
1186 filp_close(swap_file, NULL);
1190 filp_close(victim, NULL);
1195 #ifdef CONFIG_PROC_FS
1197 static void *swap_start(struct seq_file *swap, loff_t *pos)
1199 struct swap_info_struct *ptr = swap_info;
1205 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1206 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1215 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1217 struct swap_info_struct *ptr = v;
1218 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1220 for (++ptr; ptr < endptr; ptr++) {
1221 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1230 static void swap_stop(struct seq_file *swap, void *v)
1235 static int swap_show(struct seq_file *swap, void *v)
1237 struct swap_info_struct *ptr = v;
1242 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1244 file = ptr->swap_file;
1245 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1246 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1247 len < 40 ? 40 - len : 1, " ",
1248 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1249 "partition" : "file\t",
1250 ptr->pages << (PAGE_SHIFT - 10),
1251 ptr->inuse_pages << (PAGE_SHIFT - 10),
1256 static struct seq_operations swaps_op = {
1257 .start = swap_start,
1263 static int swaps_open(struct inode *inode, struct file *file)
1265 return seq_open(file, &swaps_op);
1268 static struct file_operations proc_swaps_operations = {
1271 .llseek = seq_lseek,
1272 .release = seq_release,
1275 static int __init procswaps_init(void)
1277 struct proc_dir_entry *entry;
1279 entry = create_proc_entry("swaps", 0, NULL);
1281 entry->proc_fops = &proc_swaps_operations;
1284 __initcall(procswaps_init);
1285 #endif /* CONFIG_PROC_FS */
1288 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1290 * The swapon system call
1292 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1294 struct swap_info_struct * p;
1296 struct block_device *bdev = NULL;
1297 struct file *swap_file = NULL;
1298 struct address_space *mapping;
1302 static int least_priority;
1303 union swap_header *swap_header = NULL;
1304 int swap_header_version;
1305 unsigned int nr_good_pages = 0;
1308 unsigned long maxpages = 1;
1310 unsigned short *swap_map;
1311 struct page *page = NULL;
1312 struct inode *inode = NULL;
1315 if (!capable(CAP_SYS_ADMIN))
1319 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1320 if (!(p->flags & SWP_USED))
1324 * Test if adding another swap device is possible. There are
1325 * two limiting factors: 1) the number of bits for the swap
1326 * type swp_entry_t definition and 2) the number of bits for
1327 * the swap type in the swap ptes as defined by the different
1328 * architectures. To honor both limitations a swap entry
1329 * with swap offset 0 and swap type ~0UL is created, encoded
1330 * to a swap pte, decoded to a swp_entry_t again and finally
1331 * the swap type part is extracted. This will mask all bits
1332 * from the initial ~0UL that can't be encoded in either the
1333 * swp_entry_t or the architecture definition of a swap pte.
1335 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1339 if (type >= nr_swapfiles)
1340 nr_swapfiles = type+1;
1341 INIT_LIST_HEAD(&p->extent_list);
1342 p->flags = SWP_USED;
1343 p->swap_file = NULL;
1344 p->old_block_size = 0;
1350 spin_lock_init(&p->sdev_lock);
1352 if (swap_flags & SWAP_FLAG_PREFER) {
1354 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1356 p->prio = --least_priority;
1359 name = getname(specialfile);
1360 error = PTR_ERR(name);
1365 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1366 error = PTR_ERR(swap_file);
1367 if (IS_ERR(swap_file)) {
1372 p->swap_file = swap_file;
1373 mapping = swap_file->f_mapping;
1374 inode = mapping->host;
1377 for (i = 0; i < nr_swapfiles; i++) {
1378 struct swap_info_struct *q = &swap_info[i];
1380 if (i == type || !q->swap_file)
1382 if (mapping == q->swap_file->f_mapping)
1387 if (S_ISBLK(inode->i_mode)) {
1388 bdev = I_BDEV(inode);
1389 error = bd_claim(bdev, sys_swapon);
1394 p->old_block_size = block_size(bdev);
1395 error = set_blocksize(bdev, PAGE_SIZE);
1399 } else if (S_ISREG(inode->i_mode)) {
1400 p->bdev = inode->i_sb->s_bdev;
1401 down(&inode->i_sem);
1403 if (IS_SWAPFILE(inode)) {
1411 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1414 * Read the swap header.
1416 if (!mapping->a_ops->readpage) {
1420 page = read_cache_page(mapping, 0,
1421 (filler_t *)mapping->a_ops->readpage, swap_file);
1423 error = PTR_ERR(page);
1426 wait_on_page_locked(page);
1427 if (!PageUptodate(page))
1430 swap_header = page_address(page);
1432 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1433 swap_header_version = 1;
1434 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1435 swap_header_version = 2;
1437 printk("Unable to find swap-space signature\n");
1442 switch (swap_header_version) {
1444 printk(KERN_ERR "version 0 swap is no longer supported. "
1445 "Use mkswap -v1 %s\n", name);
1449 /* Check the swap header's sub-version and the size of
1450 the swap file and bad block lists */
1451 if (swap_header->info.version != 1) {
1453 "Unable to handle swap header version %d\n",
1454 swap_header->info.version);
1460 p->cluster_next = 1;
1463 * Find out how many pages are allowed for a single swap
1464 * device. There are two limiting factors: 1) the number of
1465 * bits for the swap offset in the swp_entry_t type and
1466 * 2) the number of bits in the a swap pte as defined by
1467 * the different architectures. In order to find the
1468 * largest possible bit mask a swap entry with swap type 0
1469 * and swap offset ~0UL is created, encoded to a swap pte,
1470 * decoded to a swp_entry_t again and finally the swap
1471 * offset is extracted. This will mask all the bits from
1472 * the initial ~0UL mask that can't be encoded in either
1473 * the swp_entry_t or the architecture definition of a
1476 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1477 if (maxpages > swap_header->info.last_page)
1478 maxpages = swap_header->info.last_page;
1479 p->highest_bit = maxpages - 1;
1484 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1486 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1489 /* OK, set up the swap map and apply the bad block list */
1490 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1496 memset(p->swap_map, 0, maxpages * sizeof(short));
1497 for (i=0; i<swap_header->info.nr_badpages; i++) {
1498 int page = swap_header->info.badpages[i];
1499 if (page <= 0 || page >= swap_header->info.last_page)
1502 p->swap_map[page] = SWAP_MAP_BAD;
1504 nr_good_pages = swap_header->info.last_page -
1505 swap_header->info.nr_badpages -
1506 1 /* header page */;
1511 if (swapfilesize && maxpages > swapfilesize) {
1513 "Swap area shorter than signature indicates\n");
1517 if (nr_good_pages) {
1518 p->swap_map[0] = SWAP_MAP_BAD;
1520 p->pages = nr_good_pages;
1521 nr_extents = setup_swap_extents(p, &span);
1522 if (nr_extents < 0) {
1526 nr_good_pages = p->pages;
1528 if (!nr_good_pages) {
1529 printk(KERN_WARNING "Empty swap-file\n");
1536 swap_device_lock(p);
1537 p->flags = SWP_ACTIVE;
1538 nr_swap_pages += nr_good_pages;
1539 total_swap_pages += nr_good_pages;
1541 printk(KERN_INFO "Adding %uk swap on %s. "
1542 "Priority:%d extents:%d across:%lluk\n",
1543 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1544 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1546 /* insert swap space into swap_list: */
1548 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1549 if (p->prio >= swap_info[i].prio) {
1556 swap_list.head = swap_list.next = p - swap_info;
1558 swap_info[prev].next = p - swap_info;
1560 swap_device_unlock(p);
1567 set_blocksize(bdev, p->old_block_size);
1570 destroy_swap_extents(p);
1573 swap_map = p->swap_map;
1574 p->swap_file = NULL;
1577 if (!(swap_flags & SWAP_FLAG_PREFER))
1582 filp_close(swap_file, NULL);
1584 if (page && !IS_ERR(page)) {
1586 page_cache_release(page);
1592 inode->i_flags |= S_SWAPFILE;
1598 void si_swapinfo(struct sysinfo *val)
1601 unsigned long nr_to_be_unused = 0;
1604 for (i = 0; i < nr_swapfiles; i++) {
1605 if (!(swap_info[i].flags & SWP_USED) ||
1606 (swap_info[i].flags & SWP_WRITEOK))
1608 nr_to_be_unused += swap_info[i].inuse_pages;
1610 val->freeswap = nr_swap_pages + nr_to_be_unused;
1611 val->totalswap = total_swap_pages + nr_to_be_unused;
1616 * Verify that a swap entry is valid and increment its swap map count.
1618 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1619 * "permanent", but will be reclaimed by the next swapoff.
1621 int swap_duplicate(swp_entry_t entry)
1623 struct swap_info_struct * p;
1624 unsigned long offset, type;
1627 type = swp_type(entry);
1628 if (type >= nr_swapfiles)
1630 p = type + swap_info;
1631 offset = swp_offset(entry);
1633 swap_device_lock(p);
1634 if (offset < p->max && p->swap_map[offset]) {
1635 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1636 p->swap_map[offset]++;
1638 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1639 if (swap_overflow++ < 5)
1640 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1641 p->swap_map[offset] = SWAP_MAP_MAX;
1645 swap_device_unlock(p);
1650 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1654 struct swap_info_struct *
1655 get_swap_info_struct(unsigned type)
1657 return &swap_info[type];
1661 * swap_device_lock prevents swap_map being freed. Don't grab an extra
1662 * reference on the swaphandle, it doesn't matter if it becomes unused.
1664 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1666 int ret = 0, i = 1 << page_cluster;
1668 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1670 if (!page_cluster) /* no readahead */
1672 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1673 if (!toff) /* first page is swap header */
1677 swap_device_lock(swapdev);
1679 /* Don't read-ahead past the end of the swap area */
1680 if (toff >= swapdev->max)
1682 /* Don't read in free or bad pages */
1683 if (!swapdev->swap_map[toff])
1685 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1690 swap_device_unlock(swapdev);