2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
14 * Permanent SPARSEMEM data:
16 * 1) mem_section - memory sections, mem_map's for valid memory
18 #ifdef CONFIG_SPARSEMEM_EXTREME
19 struct mem_section *mem_section[NR_SECTION_ROOTS]
20 ____cacheline_internodealigned_in_smp;
22 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
23 ____cacheline_internodealigned_in_smp;
25 EXPORT_SYMBOL(mem_section);
27 #ifdef NODE_NOT_IN_PAGE_FLAGS
29 * If we did not store the node number in the page then we have to
30 * do a lookup in the section_to_node_table in order to find which
31 * node the page belongs to.
33 #if MAX_NUMNODES <= 256
34 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
36 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 int page_to_nid(struct page *page)
41 return section_to_node_table[page_to_section(page)];
43 EXPORT_SYMBOL(page_to_nid);
46 #ifdef CONFIG_SPARSEMEM_EXTREME
47 static struct mem_section noinline *sparse_index_alloc(int nid)
49 struct mem_section *section = NULL;
50 unsigned long array_size = SECTIONS_PER_ROOT *
51 sizeof(struct mem_section);
53 if (slab_is_available())
54 section = kmalloc_node(array_size, GFP_KERNEL, nid);
56 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
59 memset(section, 0, array_size);
64 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
66 static DEFINE_SPINLOCK(index_init_lock);
67 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
68 struct mem_section *section;
71 #ifdef NODE_NOT_IN_PAGE_FLAGS
72 section_to_node_table[section_nr] = nid;
75 if (mem_section[root])
78 section = sparse_index_alloc(nid);
80 * This lock keeps two different sections from
81 * reallocating for the same index
83 spin_lock(&index_init_lock);
85 if (mem_section[root]) {
90 mem_section[root] = section;
92 spin_unlock(&index_init_lock);
95 #else /* !SPARSEMEM_EXTREME */
96 static inline int sparse_index_init(unsigned long section_nr, int nid)
103 * Although written for the SPARSEMEM_EXTREME case, this happens
104 * to also work for the flat array case becase
105 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 int __section_nr(struct mem_section* ms)
109 unsigned long root_nr;
110 struct mem_section* root;
112 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
113 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
117 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
121 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125 * During early boot, before section_mem_map is used for an actual
126 * mem_map, we use section_mem_map to store the section's NUMA
127 * node. This keeps us from having to use another data structure. The
128 * node information is cleared just before we store the real mem_map.
130 static inline unsigned long sparse_encode_early_nid(int nid)
132 return (nid << SECTION_NID_SHIFT);
135 static inline int sparse_early_nid(struct mem_section *section)
137 return (section->section_mem_map >> SECTION_NID_SHIFT);
140 /* Record a memory area against a node. */
141 void __init memory_present(int nid, unsigned long start, unsigned long end)
145 start &= PAGE_SECTION_MASK;
146 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
147 unsigned long section = pfn_to_section_nr(pfn);
148 struct mem_section *ms;
150 sparse_index_init(section, nid);
152 ms = __nr_to_section(section);
153 if (!ms->section_mem_map)
154 ms->section_mem_map = sparse_encode_early_nid(nid) |
155 SECTION_MARKED_PRESENT;
160 * Only used by the i386 NUMA architecures, but relatively
163 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
164 unsigned long end_pfn)
167 unsigned long nr_pages = 0;
169 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
170 if (nid != early_pfn_to_nid(pfn))
174 nr_pages += PAGES_PER_SECTION;
177 return nr_pages * sizeof(struct page);
181 * Subtle, we encode the real pfn into the mem_map such that
182 * the identity pfn - section_mem_map will return the actual
183 * physical page frame number.
185 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
187 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
191 * We need this if we ever free the mem_maps. While not implemented yet,
192 * this function is included for parity with its sibling.
194 static __attribute((unused))
195 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
197 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
200 static int __meminit sparse_init_one_section(struct mem_section *ms,
201 unsigned long pnum, struct page *mem_map)
203 if (!valid_section(ms))
206 ms->section_mem_map &= ~SECTION_MAP_MASK;
207 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
212 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
215 struct mem_section *ms = __nr_to_section(pnum);
216 int nid = sparse_early_nid(ms);
218 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
222 map = alloc_bootmem_node(NODE_DATA(nid),
223 sizeof(struct page) * PAGES_PER_SECTION);
227 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
228 ms->section_mem_map = 0;
232 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
234 struct page *page, *ret;
235 unsigned long memmap_size = sizeof(struct page) * nr_pages;
237 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
241 ret = vmalloc(memmap_size);
247 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
249 memset(ret, 0, memmap_size);
254 static int vaddr_in_vmalloc_area(void *addr)
256 if (addr >= (void *)VMALLOC_START &&
257 addr < (void *)VMALLOC_END)
262 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
264 if (vaddr_in_vmalloc_area(memmap))
267 free_pages((unsigned long)memmap,
268 get_order(sizeof(struct page) * nr_pages));
272 * Allocate the accumulated non-linear sections, allocate a mem_map
273 * for each and record the physical to section mapping.
275 void __init sparse_init(void)
280 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
281 if (!valid_section_nr(pnum))
284 map = sparse_early_mem_map_alloc(pnum);
287 sparse_init_one_section(__nr_to_section(pnum), pnum, map);
291 #ifdef CONFIG_MEMORY_HOTPLUG
293 * returns the number of sections whose mem_maps were properly
294 * set. If this is <=0, then that means that the passed-in
295 * map was not consumed and must be freed.
297 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
300 unsigned long section_nr = pfn_to_section_nr(start_pfn);
301 struct pglist_data *pgdat = zone->zone_pgdat;
302 struct mem_section *ms;
308 * no locking for this, because it does its own
309 * plus, it does a kmalloc
311 sparse_index_init(section_nr, pgdat->node_id);
312 memmap = __kmalloc_section_memmap(nr_pages);
314 pgdat_resize_lock(pgdat, &flags);
316 ms = __pfn_to_section(start_pfn);
317 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
321 ms->section_mem_map |= SECTION_MARKED_PRESENT;
323 ret = sparse_init_one_section(ms, section_nr, memmap);
326 pgdat_resize_unlock(pgdat, &flags);
328 __kfree_section_memmap(memmap, nr_pages);