2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE, /* may exceed i_size, may allocate page */
89 static unsigned long shmem_default_max_blocks(void)
91 return totalram_pages / 2;
94 static unsigned long shmem_default_max_inodes(void)
96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
100 static int shmem_getpage(struct inode *inode, unsigned long idx,
101 struct page **pagep, enum sgp_type sgp, int *type);
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
110 * Mobility flags are masked out as swap vectors cannot move
112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 PAGE_CACHE_SHIFT-PAGE_SHIFT);
116 static inline void shmem_dir_free(struct page *page)
118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
121 static struct page **shmem_dir_map(struct page *page)
123 return (struct page **)kmap_atomic(page, KM_USER0);
126 static inline void shmem_dir_unmap(struct page **dir)
128 kunmap_atomic(dir, KM_USER0);
131 static swp_entry_t *shmem_swp_map(struct page *page)
133 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
136 static inline void shmem_swp_balance_unmap(void)
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
148 static inline void shmem_swp_unmap(swp_entry_t *entry)
150 kunmap_atomic(entry, KM_USER1);
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 return sb->s_fs_info;
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 return (flags & VM_ACCOUNT)?
167 security_vm_enough_memory(VM_ACCT(size)): 0;
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 if (flags & VM_ACCOUNT)
173 vm_unacct_memory(VM_ACCT(size));
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
182 static inline int shmem_acct_block(unsigned long flags)
184 return (flags & VM_ACCOUNT)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
190 if (!(flags & VM_ACCOUNT))
191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
194 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops;
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
203 .ra_pages = 0, /* No readahead */
204 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205 .unplug_io_fn = default_unplug_io_fn,
208 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex);
211 static void shmem_free_blocks(struct inode *inode, long pages)
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_blocks += pages;
217 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 spin_unlock(&sbinfo->stat_lock);
222 static int shmem_reserve_inode(struct super_block *sb)
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock);
227 if (!sbinfo->free_inodes) {
228 spin_unlock(&sbinfo->stat_lock);
231 sbinfo->free_inodes--;
232 spin_unlock(&sbinfo->stat_lock);
237 static void shmem_free_inode(struct super_block *sb)
239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 if (sbinfo->max_inodes) {
241 spin_lock(&sbinfo->stat_lock);
242 sbinfo->free_inodes++;
243 spin_unlock(&sbinfo->stat_lock);
248 * shmem_recalc_inode - recalculate the size of an inode
250 * @inode: inode to recalc
252 * We have to calculate the free blocks since the mm can drop
253 * undirtied hole pages behind our back.
255 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
256 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
258 * It has to be called with the spinlock held.
260 static void shmem_recalc_inode(struct inode *inode)
262 struct shmem_inode_info *info = SHMEM_I(inode);
265 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
267 info->alloced -= freed;
268 shmem_unacct_blocks(info->flags, freed);
269 shmem_free_blocks(inode, freed);
274 * shmem_swp_entry - find the swap vector position in the info structure
276 * @info: info structure for the inode
277 * @index: index of the page to find
278 * @page: optional page to add to the structure. Has to be preset to
281 * If there is no space allocated yet it will return NULL when
282 * page is NULL, else it will use the page for the needed block,
283 * setting it to NULL on return to indicate that it has been used.
285 * The swap vector is organized the following way:
287 * There are SHMEM_NR_DIRECT entries directly stored in the
288 * shmem_inode_info structure. So small files do not need an addional
291 * For pages with index > SHMEM_NR_DIRECT there is the pointer
292 * i_indirect which points to a page which holds in the first half
293 * doubly indirect blocks, in the second half triple indirect blocks:
295 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
296 * following layout (for SHMEM_NR_DIRECT == 16):
298 * i_indirect -> dir --> 16-19
311 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
313 unsigned long offset;
317 if (index < SHMEM_NR_DIRECT) {
318 shmem_swp_balance_unmap();
319 return info->i_direct+index;
321 if (!info->i_indirect) {
323 info->i_indirect = *page;
326 return NULL; /* need another page */
329 index -= SHMEM_NR_DIRECT;
330 offset = index % ENTRIES_PER_PAGE;
331 index /= ENTRIES_PER_PAGE;
332 dir = shmem_dir_map(info->i_indirect);
334 if (index >= ENTRIES_PER_PAGE/2) {
335 index -= ENTRIES_PER_PAGE/2;
336 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
337 index %= ENTRIES_PER_PAGE;
344 shmem_dir_unmap(dir);
345 return NULL; /* need another page */
347 shmem_dir_unmap(dir);
348 dir = shmem_dir_map(subdir);
354 if (!page || !(subdir = *page)) {
355 shmem_dir_unmap(dir);
356 return NULL; /* need a page */
361 shmem_dir_unmap(dir);
362 return shmem_swp_map(subdir) + offset;
365 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
367 long incdec = value? 1: -1;
370 info->swapped += incdec;
371 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
372 struct page *page = kmap_atomic_to_page(entry);
373 set_page_private(page, page_private(page) + incdec);
378 * shmem_swp_alloc - get the position of the swap entry for the page.
379 * If it does not exist allocate the entry.
381 * @info: info structure for the inode
382 * @index: index of the page to find
383 * @sgp: check and recheck i_size? skip allocation?
385 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
387 struct inode *inode = &info->vfs_inode;
388 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
389 struct page *page = NULL;
392 if (sgp != SGP_WRITE &&
393 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
394 return ERR_PTR(-EINVAL);
396 while (!(entry = shmem_swp_entry(info, index, &page))) {
398 return shmem_swp_map(ZERO_PAGE(0));
400 * Test free_blocks against 1 not 0, since we have 1 data
401 * page (and perhaps indirect index pages) yet to allocate:
402 * a waste to allocate index if we cannot allocate data.
404 if (sbinfo->max_blocks) {
405 spin_lock(&sbinfo->stat_lock);
406 if (sbinfo->free_blocks <= 1) {
407 spin_unlock(&sbinfo->stat_lock);
408 return ERR_PTR(-ENOSPC);
410 sbinfo->free_blocks--;
411 inode->i_blocks += BLOCKS_PER_PAGE;
412 spin_unlock(&sbinfo->stat_lock);
415 spin_unlock(&info->lock);
416 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
418 set_page_private(page, 0);
419 spin_lock(&info->lock);
422 shmem_free_blocks(inode, 1);
423 return ERR_PTR(-ENOMEM);
425 if (sgp != SGP_WRITE &&
426 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
427 entry = ERR_PTR(-EINVAL);
430 if (info->next_index <= index)
431 info->next_index = index + 1;
434 /* another task gave its page, or truncated the file */
435 shmem_free_blocks(inode, 1);
436 shmem_dir_free(page);
438 if (info->next_index <= index && !IS_ERR(entry))
439 info->next_index = index + 1;
444 * shmem_free_swp - free some swap entries in a directory
446 * @dir: pointer to the directory
447 * @edir: pointer after last entry of the directory
448 * @punch_lock: pointer to spinlock when needed for the holepunch case
450 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
451 spinlock_t *punch_lock)
453 spinlock_t *punch_unlock = NULL;
457 for (ptr = dir; ptr < edir; ptr++) {
459 if (unlikely(punch_lock)) {
460 punch_unlock = punch_lock;
462 spin_lock(punch_unlock);
466 free_swap_and_cache(*ptr);
467 *ptr = (swp_entry_t){0};
472 spin_unlock(punch_unlock);
476 static int shmem_map_and_free_swp(struct page *subdir, int offset,
477 int limit, struct page ***dir, spinlock_t *punch_lock)
482 ptr = shmem_swp_map(subdir);
483 for (; offset < limit; offset += LATENCY_LIMIT) {
484 int size = limit - offset;
485 if (size > LATENCY_LIMIT)
486 size = LATENCY_LIMIT;
487 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
489 if (need_resched()) {
490 shmem_swp_unmap(ptr);
492 shmem_dir_unmap(*dir);
496 ptr = shmem_swp_map(subdir);
499 shmem_swp_unmap(ptr);
503 static void shmem_free_pages(struct list_head *next)
509 page = container_of(next, struct page, lru);
511 shmem_dir_free(page);
513 if (freed >= LATENCY_LIMIT) {
520 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
522 struct shmem_inode_info *info = SHMEM_I(inode);
527 unsigned long diroff;
533 LIST_HEAD(pages_to_free);
534 long nr_pages_to_free = 0;
535 long nr_swaps_freed = 0;
539 spinlock_t *needs_lock;
540 spinlock_t *punch_lock;
541 unsigned long upper_limit;
543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
545 if (idx >= info->next_index)
548 spin_lock(&info->lock);
549 info->flags |= SHMEM_TRUNCATE;
550 if (likely(end == (loff_t) -1)) {
551 limit = info->next_index;
552 upper_limit = SHMEM_MAX_INDEX;
553 info->next_index = idx;
557 if (end + 1 >= inode->i_size) { /* we may free a little more */
558 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
560 upper_limit = SHMEM_MAX_INDEX;
562 limit = (end + 1) >> PAGE_CACHE_SHIFT;
565 needs_lock = &info->lock;
569 topdir = info->i_indirect;
570 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
571 info->i_indirect = NULL;
573 list_add(&topdir->lru, &pages_to_free);
575 spin_unlock(&info->lock);
577 if (info->swapped && idx < SHMEM_NR_DIRECT) {
578 ptr = info->i_direct;
580 if (size > SHMEM_NR_DIRECT)
581 size = SHMEM_NR_DIRECT;
582 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
586 * If there are no indirect blocks or we are punching a hole
587 * below indirect blocks, nothing to be done.
589 if (!topdir || limit <= SHMEM_NR_DIRECT)
593 * The truncation case has already dropped info->lock, and we're safe
594 * because i_size and next_index have already been lowered, preventing
595 * access beyond. But in the punch_hole case, we still need to take
596 * the lock when updating the swap directory, because there might be
597 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
598 * shmem_writepage. However, whenever we find we can remove a whole
599 * directory page (not at the misaligned start or end of the range),
600 * we first NULLify its pointer in the level above, and then have no
601 * need to take the lock when updating its contents: needs_lock and
602 * punch_lock (either pointing to info->lock or NULL) manage this.
605 upper_limit -= SHMEM_NR_DIRECT;
606 limit -= SHMEM_NR_DIRECT;
607 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
608 offset = idx % ENTRIES_PER_PAGE;
611 dir = shmem_dir_map(topdir);
612 stage = ENTRIES_PER_PAGEPAGE/2;
613 if (idx < ENTRIES_PER_PAGEPAGE/2) {
615 diroff = idx/ENTRIES_PER_PAGE;
617 dir += ENTRIES_PER_PAGE/2;
618 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
620 stage += ENTRIES_PER_PAGEPAGE;
623 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
624 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
625 if (!diroff && !offset && upper_limit >= stage) {
627 spin_lock(needs_lock);
629 spin_unlock(needs_lock);
634 list_add(&middir->lru, &pages_to_free);
636 shmem_dir_unmap(dir);
637 dir = shmem_dir_map(middir);
645 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
646 if (unlikely(idx == stage)) {
647 shmem_dir_unmap(dir);
648 dir = shmem_dir_map(topdir) +
649 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
652 idx += ENTRIES_PER_PAGEPAGE;
656 stage = idx + ENTRIES_PER_PAGEPAGE;
659 needs_lock = &info->lock;
660 if (upper_limit >= stage) {
662 spin_lock(needs_lock);
664 spin_unlock(needs_lock);
669 list_add(&middir->lru, &pages_to_free);
671 shmem_dir_unmap(dir);
673 dir = shmem_dir_map(middir);
676 punch_lock = needs_lock;
677 subdir = dir[diroff];
678 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
680 spin_lock(needs_lock);
682 spin_unlock(needs_lock);
687 list_add(&subdir->lru, &pages_to_free);
689 if (subdir && page_private(subdir) /* has swap entries */) {
691 if (size > ENTRIES_PER_PAGE)
692 size = ENTRIES_PER_PAGE;
693 freed = shmem_map_and_free_swp(subdir,
694 offset, size, &dir, punch_lock);
696 dir = shmem_dir_map(middir);
697 nr_swaps_freed += freed;
698 if (offset || punch_lock) {
699 spin_lock(&info->lock);
700 set_page_private(subdir,
701 page_private(subdir) - freed);
702 spin_unlock(&info->lock);
704 BUG_ON(page_private(subdir) != freed);
709 shmem_dir_unmap(dir);
711 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
713 * Call truncate_inode_pages again: racing shmem_unuse_inode
714 * may have swizzled a page in from swap since vmtruncate or
715 * generic_delete_inode did it, before we lowered next_index.
716 * Also, though shmem_getpage checks i_size before adding to
717 * cache, no recheck after: so fix the narrow window there too.
719 * Recalling truncate_inode_pages_range and unmap_mapping_range
720 * every time for punch_hole (which never got a chance to clear
721 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
722 * yet hardly ever necessary: try to optimize them out later.
724 truncate_inode_pages_range(inode->i_mapping, start, end);
726 unmap_mapping_range(inode->i_mapping, start,
730 spin_lock(&info->lock);
731 info->flags &= ~SHMEM_TRUNCATE;
732 info->swapped -= nr_swaps_freed;
733 if (nr_pages_to_free)
734 shmem_free_blocks(inode, nr_pages_to_free);
735 shmem_recalc_inode(inode);
736 spin_unlock(&info->lock);
739 * Empty swap vector directory pages to be freed?
741 if (!list_empty(&pages_to_free)) {
742 pages_to_free.prev->next = NULL;
743 shmem_free_pages(pages_to_free.next);
747 static void shmem_truncate(struct inode *inode)
749 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
752 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
754 struct inode *inode = dentry->d_inode;
755 struct page *page = NULL;
758 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
759 if (attr->ia_size < inode->i_size) {
761 * If truncating down to a partial page, then
762 * if that page is already allocated, hold it
763 * in memory until the truncation is over, so
764 * truncate_partial_page cannnot miss it were
765 * it assigned to swap.
767 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
768 (void) shmem_getpage(inode,
769 attr->ia_size>>PAGE_CACHE_SHIFT,
770 &page, SGP_READ, NULL);
775 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
776 * detect if any pages might have been added to cache
777 * after truncate_inode_pages. But we needn't bother
778 * if it's being fully truncated to zero-length: the
779 * nrpages check is efficient enough in that case.
782 struct shmem_inode_info *info = SHMEM_I(inode);
783 spin_lock(&info->lock);
784 info->flags &= ~SHMEM_PAGEIN;
785 spin_unlock(&info->lock);
790 error = inode_change_ok(inode, attr);
792 error = inode_setattr(inode, attr);
793 #ifdef CONFIG_TMPFS_POSIX_ACL
794 if (!error && (attr->ia_valid & ATTR_MODE))
795 error = generic_acl_chmod(inode, &shmem_acl_ops);
798 page_cache_release(page);
802 static void shmem_delete_inode(struct inode *inode)
804 struct shmem_inode_info *info = SHMEM_I(inode);
806 if (inode->i_op->truncate == shmem_truncate) {
807 truncate_inode_pages(inode->i_mapping, 0);
808 shmem_unacct_size(info->flags, inode->i_size);
810 shmem_truncate(inode);
811 if (!list_empty(&info->swaplist)) {
812 mutex_lock(&shmem_swaplist_mutex);
813 list_del_init(&info->swaplist);
814 mutex_unlock(&shmem_swaplist_mutex);
817 BUG_ON(inode->i_blocks);
818 shmem_free_inode(inode->i_sb);
822 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
826 for (ptr = dir; ptr < edir; ptr++) {
827 if (ptr->val == entry.val)
833 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
847 ptr = info->i_direct;
848 spin_lock(&info->lock);
849 if (!info->swapped) {
850 list_del_init(&info->swaplist);
853 limit = info->next_index;
855 if (size > SHMEM_NR_DIRECT)
856 size = SHMEM_NR_DIRECT;
857 offset = shmem_find_swp(entry, ptr, ptr+size);
860 if (!info->i_indirect)
863 dir = shmem_dir_map(info->i_indirect);
864 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
866 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
867 if (unlikely(idx == stage)) {
868 shmem_dir_unmap(dir-1);
869 if (cond_resched_lock(&info->lock)) {
870 /* check it has not been truncated */
871 if (limit > info->next_index) {
872 limit = info->next_index;
877 dir = shmem_dir_map(info->i_indirect) +
878 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
881 idx += ENTRIES_PER_PAGEPAGE;
885 stage = idx + ENTRIES_PER_PAGEPAGE;
887 shmem_dir_unmap(dir);
888 dir = shmem_dir_map(subdir);
891 if (subdir && page_private(subdir)) {
892 ptr = shmem_swp_map(subdir);
894 if (size > ENTRIES_PER_PAGE)
895 size = ENTRIES_PER_PAGE;
896 offset = shmem_find_swp(entry, ptr, ptr+size);
897 shmem_swp_unmap(ptr);
899 shmem_dir_unmap(dir);
905 shmem_dir_unmap(dir-1);
907 spin_unlock(&info->lock);
911 inode = igrab(&info->vfs_inode);
912 spin_unlock(&info->lock);
915 * Move _head_ to start search for next from here.
916 * But be careful: shmem_delete_inode checks list_empty without taking
917 * mutex, and there's an instant in list_move_tail when info->swaplist
918 * would appear empty, if it were the only one on shmem_swaplist. We
919 * could avoid doing it if inode NULL; or use this minor optimization.
921 if (shmem_swaplist.next != &info->swaplist)
922 list_move_tail(&shmem_swaplist, &info->swaplist);
923 mutex_unlock(&shmem_swaplist_mutex);
928 /* Precharge page while we can wait, compensate afterwards */
929 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
932 error = radix_tree_preload(GFP_KERNEL);
937 spin_lock(&info->lock);
938 ptr = shmem_swp_entry(info, idx, NULL);
939 if (ptr && ptr->val == entry.val)
940 error = add_to_page_cache(page, inode->i_mapping,
942 if (error == -EEXIST) {
943 struct page *filepage = find_get_page(inode->i_mapping, idx);
947 * There might be a more uptodate page coming down
948 * from a stacked writepage: forget our swappage if so.
950 if (PageUptodate(filepage))
952 page_cache_release(filepage);
956 delete_from_swap_cache(page);
957 set_page_dirty(page);
958 info->flags |= SHMEM_PAGEIN;
959 shmem_swp_set(info, ptr, 0);
961 error = 1; /* not an error, but entry was found */
964 shmem_swp_unmap(ptr);
965 spin_unlock(&info->lock);
966 radix_tree_preload_end();
968 mem_cgroup_uncharge_page(page);
971 page_cache_release(page);
972 iput(inode); /* allows for NULL */
977 * shmem_unuse() search for an eventually swapped out shmem page.
979 int shmem_unuse(swp_entry_t entry, struct page *page)
981 struct list_head *p, *next;
982 struct shmem_inode_info *info;
985 mutex_lock(&shmem_swaplist_mutex);
986 list_for_each_safe(p, next, &shmem_swaplist) {
987 info = list_entry(p, struct shmem_inode_info, swaplist);
988 found = shmem_unuse_inode(info, entry, page);
993 mutex_unlock(&shmem_swaplist_mutex);
994 out: return found; /* 0 or 1 or -ENOMEM */
998 * Move the page from the page cache to the swap cache.
1000 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1002 struct shmem_inode_info *info;
1003 swp_entry_t *entry, swap;
1004 struct address_space *mapping;
1005 unsigned long index;
1006 struct inode *inode;
1008 BUG_ON(!PageLocked(page));
1009 mapping = page->mapping;
1010 index = page->index;
1011 inode = mapping->host;
1012 info = SHMEM_I(inode);
1013 if (info->flags & VM_LOCKED)
1015 if (!total_swap_pages)
1019 * shmem_backing_dev_info's capabilities prevent regular writeback or
1020 * sync from ever calling shmem_writepage; but a stacking filesystem
1021 * may use the ->writepage of its underlying filesystem, in which case
1022 * tmpfs should write out to swap only in response to memory pressure,
1023 * and not for pdflush or sync. However, in those cases, we do still
1024 * want to check if there's a redundant swappage to be discarded.
1026 if (wbc->for_reclaim)
1027 swap = get_swap_page();
1031 spin_lock(&info->lock);
1032 if (index >= info->next_index) {
1033 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1036 entry = shmem_swp_entry(info, index, NULL);
1039 * The more uptodate page coming down from a stacked
1040 * writepage should replace our old swappage.
1042 free_swap_and_cache(*entry);
1043 shmem_swp_set(info, entry, 0);
1045 shmem_recalc_inode(inode);
1047 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1048 remove_from_page_cache(page);
1049 shmem_swp_set(info, entry, swap.val);
1050 shmem_swp_unmap(entry);
1051 if (list_empty(&info->swaplist))
1052 inode = igrab(inode);
1055 spin_unlock(&info->lock);
1056 swap_duplicate(swap);
1057 BUG_ON(page_mapped(page));
1058 page_cache_release(page); /* pagecache ref */
1059 set_page_dirty(page);
1062 mutex_lock(&shmem_swaplist_mutex);
1063 /* move instead of add in case we're racing */
1064 list_move_tail(&info->swaplist, &shmem_swaplist);
1065 mutex_unlock(&shmem_swaplist_mutex);
1071 shmem_swp_unmap(entry);
1073 spin_unlock(&info->lock);
1076 set_page_dirty(page);
1077 if (wbc->for_reclaim)
1078 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1085 static int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1087 char *nodelist = strchr(value, ':');
1091 /* NUL-terminate policy string */
1093 if (nodelist_parse(nodelist, *policy_nodes))
1095 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1098 if (!strcmp(value, "default")) {
1099 *policy = MPOL_DEFAULT;
1100 /* Don't allow a nodelist */
1103 } else if (!strcmp(value, "prefer")) {
1104 *policy = MPOL_PREFERRED;
1105 /* Insist on a nodelist of one node only */
1107 char *rest = nodelist;
1108 while (isdigit(*rest))
1113 } else if (!strcmp(value, "bind")) {
1114 *policy = MPOL_BIND;
1115 /* Insist on a nodelist */
1118 } else if (!strcmp(value, "interleave")) {
1119 *policy = MPOL_INTERLEAVE;
1121 * Default to online nodes with memory if no nodelist
1124 *policy_nodes = node_states[N_HIGH_MEMORY];
1128 /* Restore string for error message */
1134 static void shmem_show_mpol(struct seq_file *seq, int policy,
1135 const nodemask_t policy_nodes)
1137 char *policy_string;
1140 case MPOL_PREFERRED:
1141 policy_string = "prefer";
1144 policy_string = "bind";
1146 case MPOL_INTERLEAVE:
1147 policy_string = "interleave";
1154 seq_printf(seq, ",mpol=%s", policy_string);
1156 if (policy != MPOL_INTERLEAVE ||
1157 !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1161 len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1162 if (len < sizeof(buffer))
1163 seq_printf(seq, ":%s", buffer);
1165 seq_printf(seq, ":?");
1168 #endif /* CONFIG_TMPFS */
1170 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1171 struct shmem_inode_info *info, unsigned long idx)
1173 struct vm_area_struct pvma;
1176 /* Create a pseudo vma that just contains the policy */
1178 pvma.vm_pgoff = idx;
1180 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1181 page = swapin_readahead(entry, gfp, &pvma, 0);
1182 mpol_free(pvma.vm_policy);
1186 static struct page *shmem_alloc_page(gfp_t gfp,
1187 struct shmem_inode_info *info, unsigned long idx)
1189 struct vm_area_struct pvma;
1192 /* Create a pseudo vma that just contains the policy */
1194 pvma.vm_pgoff = idx;
1196 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1197 page = alloc_page_vma(gfp, &pvma, 0);
1198 mpol_free(pvma.vm_policy);
1201 #else /* !CONFIG_NUMA */
1203 static inline int shmem_parse_mpol(char *value, int *policy,
1204 nodemask_t *policy_nodes)
1209 static inline void shmem_show_mpol(struct seq_file *seq, int policy,
1210 const nodemask_t policy_nodes)
1213 #endif /* CONFIG_TMPFS */
1215 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1216 struct shmem_inode_info *info, unsigned long idx)
1218 return swapin_readahead(entry, gfp, NULL, 0);
1221 static inline struct page *shmem_alloc_page(gfp_t gfp,
1222 struct shmem_inode_info *info, unsigned long idx)
1224 return alloc_page(gfp);
1226 #endif /* CONFIG_NUMA */
1229 * shmem_getpage - either get the page from swap or allocate a new one
1231 * If we allocate a new one we do not mark it dirty. That's up to the
1232 * vm. If we swap it in we mark it dirty since we also free the swap
1233 * entry since a page cannot live in both the swap and page cache
1235 static int shmem_getpage(struct inode *inode, unsigned long idx,
1236 struct page **pagep, enum sgp_type sgp, int *type)
1238 struct address_space *mapping = inode->i_mapping;
1239 struct shmem_inode_info *info = SHMEM_I(inode);
1240 struct shmem_sb_info *sbinfo;
1241 struct page *filepage = *pagep;
1242 struct page *swappage;
1248 if (idx >= SHMEM_MAX_INDEX)
1255 * Normally, filepage is NULL on entry, and either found
1256 * uptodate immediately, or allocated and zeroed, or read
1257 * in under swappage, which is then assigned to filepage.
1258 * But shmem_readpage (required for splice) passes in a locked
1259 * filepage, which may be found not uptodate by other callers
1260 * too, and may need to be copied from the swappage read in.
1264 filepage = find_lock_page(mapping, idx);
1265 if (filepage && PageUptodate(filepage))
1268 gfp = mapping_gfp_mask(mapping);
1271 * Try to preload while we can wait, to not make a habit of
1272 * draining atomic reserves; but don't latch on to this cpu.
1274 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1277 radix_tree_preload_end();
1280 spin_lock(&info->lock);
1281 shmem_recalc_inode(inode);
1282 entry = shmem_swp_alloc(info, idx, sgp);
1283 if (IS_ERR(entry)) {
1284 spin_unlock(&info->lock);
1285 error = PTR_ERR(entry);
1291 /* Look it up and read it in.. */
1292 swappage = lookup_swap_cache(swap);
1294 shmem_swp_unmap(entry);
1295 /* here we actually do the io */
1296 if (type && !(*type & VM_FAULT_MAJOR)) {
1297 __count_vm_event(PGMAJFAULT);
1298 *type |= VM_FAULT_MAJOR;
1300 spin_unlock(&info->lock);
1301 swappage = shmem_swapin(swap, gfp, info, idx);
1303 spin_lock(&info->lock);
1304 entry = shmem_swp_alloc(info, idx, sgp);
1306 error = PTR_ERR(entry);
1308 if (entry->val == swap.val)
1310 shmem_swp_unmap(entry);
1312 spin_unlock(&info->lock);
1317 wait_on_page_locked(swappage);
1318 page_cache_release(swappage);
1322 /* We have to do this with page locked to prevent races */
1323 if (TestSetPageLocked(swappage)) {
1324 shmem_swp_unmap(entry);
1325 spin_unlock(&info->lock);
1326 wait_on_page_locked(swappage);
1327 page_cache_release(swappage);
1330 if (PageWriteback(swappage)) {
1331 shmem_swp_unmap(entry);
1332 spin_unlock(&info->lock);
1333 wait_on_page_writeback(swappage);
1334 unlock_page(swappage);
1335 page_cache_release(swappage);
1338 if (!PageUptodate(swappage)) {
1339 shmem_swp_unmap(entry);
1340 spin_unlock(&info->lock);
1341 unlock_page(swappage);
1342 page_cache_release(swappage);
1348 shmem_swp_set(info, entry, 0);
1349 shmem_swp_unmap(entry);
1350 delete_from_swap_cache(swappage);
1351 spin_unlock(&info->lock);
1352 copy_highpage(filepage, swappage);
1353 unlock_page(swappage);
1354 page_cache_release(swappage);
1355 flush_dcache_page(filepage);
1356 SetPageUptodate(filepage);
1357 set_page_dirty(filepage);
1359 } else if (!(error = add_to_page_cache(
1360 swappage, mapping, idx, GFP_NOWAIT))) {
1361 info->flags |= SHMEM_PAGEIN;
1362 shmem_swp_set(info, entry, 0);
1363 shmem_swp_unmap(entry);
1364 delete_from_swap_cache(swappage);
1365 spin_unlock(&info->lock);
1366 filepage = swappage;
1367 set_page_dirty(filepage);
1370 shmem_swp_unmap(entry);
1371 spin_unlock(&info->lock);
1372 unlock_page(swappage);
1373 page_cache_release(swappage);
1374 if (error == -ENOMEM) {
1375 /* allow reclaim from this memory cgroup */
1376 error = mem_cgroup_cache_charge(NULL,
1377 current->mm, gfp & ~__GFP_HIGHMEM);
1383 } else if (sgp == SGP_READ && !filepage) {
1384 shmem_swp_unmap(entry);
1385 filepage = find_get_page(mapping, idx);
1387 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1388 spin_unlock(&info->lock);
1389 wait_on_page_locked(filepage);
1390 page_cache_release(filepage);
1394 spin_unlock(&info->lock);
1396 shmem_swp_unmap(entry);
1397 sbinfo = SHMEM_SB(inode->i_sb);
1398 if (sbinfo->max_blocks) {
1399 spin_lock(&sbinfo->stat_lock);
1400 if (sbinfo->free_blocks == 0 ||
1401 shmem_acct_block(info->flags)) {
1402 spin_unlock(&sbinfo->stat_lock);
1403 spin_unlock(&info->lock);
1407 sbinfo->free_blocks--;
1408 inode->i_blocks += BLOCKS_PER_PAGE;
1409 spin_unlock(&sbinfo->stat_lock);
1410 } else if (shmem_acct_block(info->flags)) {
1411 spin_unlock(&info->lock);
1417 spin_unlock(&info->lock);
1418 filepage = shmem_alloc_page(gfp, info, idx);
1420 shmem_unacct_blocks(info->flags, 1);
1421 shmem_free_blocks(inode, 1);
1426 /* Precharge page while we can wait, compensate after */
1427 error = mem_cgroup_cache_charge(filepage, current->mm,
1428 gfp & ~__GFP_HIGHMEM);
1430 page_cache_release(filepage);
1431 shmem_unacct_blocks(info->flags, 1);
1432 shmem_free_blocks(inode, 1);
1437 spin_lock(&info->lock);
1438 entry = shmem_swp_alloc(info, idx, sgp);
1440 error = PTR_ERR(entry);
1443 shmem_swp_unmap(entry);
1445 if (error || swap.val || 0 != add_to_page_cache_lru(
1446 filepage, mapping, idx, GFP_NOWAIT)) {
1447 spin_unlock(&info->lock);
1448 mem_cgroup_uncharge_page(filepage);
1449 page_cache_release(filepage);
1450 shmem_unacct_blocks(info->flags, 1);
1451 shmem_free_blocks(inode, 1);
1457 mem_cgroup_uncharge_page(filepage);
1458 info->flags |= SHMEM_PAGEIN;
1462 spin_unlock(&info->lock);
1463 clear_highpage(filepage);
1464 flush_dcache_page(filepage);
1465 SetPageUptodate(filepage);
1466 if (sgp == SGP_DIRTY)
1467 set_page_dirty(filepage);
1474 if (*pagep != filepage) {
1475 unlock_page(filepage);
1476 page_cache_release(filepage);
1481 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1483 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1487 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1488 return VM_FAULT_SIGBUS;
1490 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1492 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1494 mark_page_accessed(vmf->page);
1495 return ret | VM_FAULT_LOCKED;
1499 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1501 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1502 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1505 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1508 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1511 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1512 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1516 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1518 struct inode *inode = file->f_path.dentry->d_inode;
1519 struct shmem_inode_info *info = SHMEM_I(inode);
1520 int retval = -ENOMEM;
1522 spin_lock(&info->lock);
1523 if (lock && !(info->flags & VM_LOCKED)) {
1524 if (!user_shm_lock(inode->i_size, user))
1526 info->flags |= VM_LOCKED;
1528 if (!lock && (info->flags & VM_LOCKED) && user) {
1529 user_shm_unlock(inode->i_size, user);
1530 info->flags &= ~VM_LOCKED;
1534 spin_unlock(&info->lock);
1538 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1540 file_accessed(file);
1541 vma->vm_ops = &shmem_vm_ops;
1542 vma->vm_flags |= VM_CAN_NONLINEAR;
1546 static struct inode *
1547 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1549 struct inode *inode;
1550 struct shmem_inode_info *info;
1551 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1553 if (shmem_reserve_inode(sb))
1556 inode = new_inode(sb);
1558 inode->i_mode = mode;
1559 inode->i_uid = current->fsuid;
1560 inode->i_gid = current->fsgid;
1561 inode->i_blocks = 0;
1562 inode->i_mapping->a_ops = &shmem_aops;
1563 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1564 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1565 inode->i_generation = get_seconds();
1566 info = SHMEM_I(inode);
1567 memset(info, 0, (char *)inode - (char *)info);
1568 spin_lock_init(&info->lock);
1569 INIT_LIST_HEAD(&info->swaplist);
1571 switch (mode & S_IFMT) {
1573 inode->i_op = &shmem_special_inode_operations;
1574 init_special_inode(inode, mode, dev);
1577 inode->i_op = &shmem_inode_operations;
1578 inode->i_fop = &shmem_file_operations;
1579 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1580 &sbinfo->policy_nodes);
1584 /* Some things misbehave if size == 0 on a directory */
1585 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1586 inode->i_op = &shmem_dir_inode_operations;
1587 inode->i_fop = &simple_dir_operations;
1591 * Must not load anything in the rbtree,
1592 * mpol_free_shared_policy will not be called.
1594 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1599 shmem_free_inode(sb);
1604 static const struct inode_operations shmem_symlink_inode_operations;
1605 static const struct inode_operations shmem_symlink_inline_operations;
1608 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1609 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1610 * below the loop driver, in the generic fashion that many filesystems support.
1612 static int shmem_readpage(struct file *file, struct page *page)
1614 struct inode *inode = page->mapping->host;
1615 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1621 shmem_write_begin(struct file *file, struct address_space *mapping,
1622 loff_t pos, unsigned len, unsigned flags,
1623 struct page **pagep, void **fsdata)
1625 struct inode *inode = mapping->host;
1626 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1628 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1632 shmem_write_end(struct file *file, struct address_space *mapping,
1633 loff_t pos, unsigned len, unsigned copied,
1634 struct page *page, void *fsdata)
1636 struct inode *inode = mapping->host;
1638 if (pos + copied > inode->i_size)
1639 i_size_write(inode, pos + copied);
1642 set_page_dirty(page);
1643 page_cache_release(page);
1648 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1650 struct inode *inode = filp->f_path.dentry->d_inode;
1651 struct address_space *mapping = inode->i_mapping;
1652 unsigned long index, offset;
1653 enum sgp_type sgp = SGP_READ;
1656 * Might this read be for a stacking filesystem? Then when reading
1657 * holes of a sparse file, we actually need to allocate those pages,
1658 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1660 if (segment_eq(get_fs(), KERNEL_DS))
1663 index = *ppos >> PAGE_CACHE_SHIFT;
1664 offset = *ppos & ~PAGE_CACHE_MASK;
1667 struct page *page = NULL;
1668 unsigned long end_index, nr, ret;
1669 loff_t i_size = i_size_read(inode);
1671 end_index = i_size >> PAGE_CACHE_SHIFT;
1672 if (index > end_index)
1674 if (index == end_index) {
1675 nr = i_size & ~PAGE_CACHE_MASK;
1680 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1682 if (desc->error == -EINVAL)
1690 * We must evaluate after, since reads (unlike writes)
1691 * are called without i_mutex protection against truncate
1693 nr = PAGE_CACHE_SIZE;
1694 i_size = i_size_read(inode);
1695 end_index = i_size >> PAGE_CACHE_SHIFT;
1696 if (index == end_index) {
1697 nr = i_size & ~PAGE_CACHE_MASK;
1700 page_cache_release(page);
1708 * If users can be writing to this page using arbitrary
1709 * virtual addresses, take care about potential aliasing
1710 * before reading the page on the kernel side.
1712 if (mapping_writably_mapped(mapping))
1713 flush_dcache_page(page);
1715 * Mark the page accessed if we read the beginning.
1718 mark_page_accessed(page);
1720 page = ZERO_PAGE(0);
1721 page_cache_get(page);
1725 * Ok, we have the page, and it's up-to-date, so
1726 * now we can copy it to user space...
1728 * The actor routine returns how many bytes were actually used..
1729 * NOTE! This may not be the same as how much of a user buffer
1730 * we filled up (we may be padding etc), so we can only update
1731 * "pos" here (the actor routine has to update the user buffer
1732 * pointers and the remaining count).
1734 ret = actor(desc, page, offset, nr);
1736 index += offset >> PAGE_CACHE_SHIFT;
1737 offset &= ~PAGE_CACHE_MASK;
1739 page_cache_release(page);
1740 if (ret != nr || !desc->count)
1746 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1747 file_accessed(filp);
1750 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1752 read_descriptor_t desc;
1754 if ((ssize_t) count < 0)
1756 if (!access_ok(VERIFY_WRITE, buf, count))
1766 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1768 return desc.written;
1772 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1774 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1776 buf->f_type = TMPFS_MAGIC;
1777 buf->f_bsize = PAGE_CACHE_SIZE;
1778 buf->f_namelen = NAME_MAX;
1779 spin_lock(&sbinfo->stat_lock);
1780 if (sbinfo->max_blocks) {
1781 buf->f_blocks = sbinfo->max_blocks;
1782 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1784 if (sbinfo->max_inodes) {
1785 buf->f_files = sbinfo->max_inodes;
1786 buf->f_ffree = sbinfo->free_inodes;
1788 /* else leave those fields 0 like simple_statfs */
1789 spin_unlock(&sbinfo->stat_lock);
1794 * File creation. Allocate an inode, and we're done..
1797 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1799 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1800 int error = -ENOSPC;
1803 error = security_inode_init_security(inode, dir, NULL, NULL,
1806 if (error != -EOPNOTSUPP) {
1811 error = shmem_acl_init(inode, dir);
1816 if (dir->i_mode & S_ISGID) {
1817 inode->i_gid = dir->i_gid;
1819 inode->i_mode |= S_ISGID;
1821 dir->i_size += BOGO_DIRENT_SIZE;
1822 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1823 d_instantiate(dentry, inode);
1824 dget(dentry); /* Extra count - pin the dentry in core */
1829 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1833 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1839 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1840 struct nameidata *nd)
1842 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1848 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1850 struct inode *inode = old_dentry->d_inode;
1854 * No ordinary (disk based) filesystem counts links as inodes;
1855 * but each new link needs a new dentry, pinning lowmem, and
1856 * tmpfs dentries cannot be pruned until they are unlinked.
1858 ret = shmem_reserve_inode(inode->i_sb);
1862 dir->i_size += BOGO_DIRENT_SIZE;
1863 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865 atomic_inc(&inode->i_count); /* New dentry reference */
1866 dget(dentry); /* Extra pinning count for the created dentry */
1867 d_instantiate(dentry, inode);
1872 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1874 struct inode *inode = dentry->d_inode;
1876 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1877 shmem_free_inode(inode->i_sb);
1879 dir->i_size -= BOGO_DIRENT_SIZE;
1880 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1882 dput(dentry); /* Undo the count from "create" - this does all the work */
1886 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1888 if (!simple_empty(dentry))
1891 drop_nlink(dentry->d_inode);
1893 return shmem_unlink(dir, dentry);
1897 * The VFS layer already does all the dentry stuff for rename,
1898 * we just have to decrement the usage count for the target if
1899 * it exists so that the VFS layer correctly free's it when it
1902 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1904 struct inode *inode = old_dentry->d_inode;
1905 int they_are_dirs = S_ISDIR(inode->i_mode);
1907 if (!simple_empty(new_dentry))
1910 if (new_dentry->d_inode) {
1911 (void) shmem_unlink(new_dir, new_dentry);
1913 drop_nlink(old_dir);
1914 } else if (they_are_dirs) {
1915 drop_nlink(old_dir);
1919 old_dir->i_size -= BOGO_DIRENT_SIZE;
1920 new_dir->i_size += BOGO_DIRENT_SIZE;
1921 old_dir->i_ctime = old_dir->i_mtime =
1922 new_dir->i_ctime = new_dir->i_mtime =
1923 inode->i_ctime = CURRENT_TIME;
1927 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1931 struct inode *inode;
1932 struct page *page = NULL;
1934 struct shmem_inode_info *info;
1936 len = strlen(symname) + 1;
1937 if (len > PAGE_CACHE_SIZE)
1938 return -ENAMETOOLONG;
1940 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1944 error = security_inode_init_security(inode, dir, NULL, NULL,
1947 if (error != -EOPNOTSUPP) {
1954 info = SHMEM_I(inode);
1955 inode->i_size = len-1;
1956 if (len <= (char *)inode - (char *)info) {
1958 memcpy(info, symname, len);
1959 inode->i_op = &shmem_symlink_inline_operations;
1961 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1967 inode->i_op = &shmem_symlink_inode_operations;
1968 kaddr = kmap_atomic(page, KM_USER0);
1969 memcpy(kaddr, symname, len);
1970 kunmap_atomic(kaddr, KM_USER0);
1971 set_page_dirty(page);
1972 page_cache_release(page);
1974 if (dir->i_mode & S_ISGID)
1975 inode->i_gid = dir->i_gid;
1976 dir->i_size += BOGO_DIRENT_SIZE;
1977 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1978 d_instantiate(dentry, inode);
1983 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1985 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1989 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1991 struct page *page = NULL;
1992 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1993 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1999 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2001 if (!IS_ERR(nd_get_link(nd))) {
2002 struct page *page = cookie;
2004 mark_page_accessed(page);
2005 page_cache_release(page);
2009 static const struct inode_operations shmem_symlink_inline_operations = {
2010 .readlink = generic_readlink,
2011 .follow_link = shmem_follow_link_inline,
2014 static const struct inode_operations shmem_symlink_inode_operations = {
2015 .truncate = shmem_truncate,
2016 .readlink = generic_readlink,
2017 .follow_link = shmem_follow_link,
2018 .put_link = shmem_put_link,
2021 #ifdef CONFIG_TMPFS_POSIX_ACL
2023 * Superblocks without xattr inode operations will get security.* xattr
2024 * support from the VFS "for free". As soon as we have any other xattrs
2025 * like ACLs, we also need to implement the security.* handlers at
2026 * filesystem level, though.
2029 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2030 size_t list_len, const char *name,
2033 return security_inode_listsecurity(inode, list, list_len);
2036 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2037 void *buffer, size_t size)
2039 if (strcmp(name, "") == 0)
2041 return xattr_getsecurity(inode, name, buffer, size);
2044 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2045 const void *value, size_t size, int flags)
2047 if (strcmp(name, "") == 0)
2049 return security_inode_setsecurity(inode, name, value, size, flags);
2052 static struct xattr_handler shmem_xattr_security_handler = {
2053 .prefix = XATTR_SECURITY_PREFIX,
2054 .list = shmem_xattr_security_list,
2055 .get = shmem_xattr_security_get,
2056 .set = shmem_xattr_security_set,
2059 static struct xattr_handler *shmem_xattr_handlers[] = {
2060 &shmem_xattr_acl_access_handler,
2061 &shmem_xattr_acl_default_handler,
2062 &shmem_xattr_security_handler,
2067 static struct dentry *shmem_get_parent(struct dentry *child)
2069 return ERR_PTR(-ESTALE);
2072 static int shmem_match(struct inode *ino, void *vfh)
2076 inum = (inum << 32) | fh[1];
2077 return ino->i_ino == inum && fh[0] == ino->i_generation;
2080 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2081 struct fid *fid, int fh_len, int fh_type)
2083 struct inode *inode;
2084 struct dentry *dentry = NULL;
2085 u64 inum = fid->raw[2];
2086 inum = (inum << 32) | fid->raw[1];
2091 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2092 shmem_match, fid->raw);
2094 dentry = d_find_alias(inode);
2101 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2104 struct inode *inode = dentry->d_inode;
2109 if (hlist_unhashed(&inode->i_hash)) {
2110 /* Unfortunately insert_inode_hash is not idempotent,
2111 * so as we hash inodes here rather than at creation
2112 * time, we need a lock to ensure we only try
2115 static DEFINE_SPINLOCK(lock);
2117 if (hlist_unhashed(&inode->i_hash))
2118 __insert_inode_hash(inode,
2119 inode->i_ino + inode->i_generation);
2123 fh[0] = inode->i_generation;
2124 fh[1] = inode->i_ino;
2125 fh[2] = ((__u64)inode->i_ino) >> 32;
2131 static const struct export_operations shmem_export_ops = {
2132 .get_parent = shmem_get_parent,
2133 .encode_fh = shmem_encode_fh,
2134 .fh_to_dentry = shmem_fh_to_dentry,
2137 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2140 char *this_char, *value, *rest;
2142 while (options != NULL) {
2143 this_char = options;
2146 * NUL-terminate this option: unfortunately,
2147 * mount options form a comma-separated list,
2148 * but mpol's nodelist may also contain commas.
2150 options = strchr(options, ',');
2151 if (options == NULL)
2154 if (!isdigit(*options)) {
2161 if ((value = strchr(this_char,'=')) != NULL) {
2165 "tmpfs: No value for mount option '%s'\n",
2170 if (!strcmp(this_char,"size")) {
2171 unsigned long long size;
2172 size = memparse(value,&rest);
2174 size <<= PAGE_SHIFT;
2175 size *= totalram_pages;
2181 sbinfo->max_blocks =
2182 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2183 } else if (!strcmp(this_char,"nr_blocks")) {
2184 sbinfo->max_blocks = memparse(value, &rest);
2187 } else if (!strcmp(this_char,"nr_inodes")) {
2188 sbinfo->max_inodes = memparse(value, &rest);
2191 } else if (!strcmp(this_char,"mode")) {
2194 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2197 } else if (!strcmp(this_char,"uid")) {
2200 sbinfo->uid = simple_strtoul(value, &rest, 0);
2203 } else if (!strcmp(this_char,"gid")) {
2206 sbinfo->gid = simple_strtoul(value, &rest, 0);
2209 } else if (!strcmp(this_char,"mpol")) {
2210 if (shmem_parse_mpol(value, &sbinfo->policy,
2211 &sbinfo->policy_nodes))
2214 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2222 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2228 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2230 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2231 struct shmem_sb_info config = *sbinfo;
2232 unsigned long blocks;
2233 unsigned long inodes;
2234 int error = -EINVAL;
2236 if (shmem_parse_options(data, &config, true))
2239 spin_lock(&sbinfo->stat_lock);
2240 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2241 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2242 if (config.max_blocks < blocks)
2244 if (config.max_inodes < inodes)
2247 * Those tests also disallow limited->unlimited while any are in
2248 * use, so i_blocks will always be zero when max_blocks is zero;
2249 * but we must separately disallow unlimited->limited, because
2250 * in that case we have no record of how much is already in use.
2252 if (config.max_blocks && !sbinfo->max_blocks)
2254 if (config.max_inodes && !sbinfo->max_inodes)
2258 sbinfo->max_blocks = config.max_blocks;
2259 sbinfo->free_blocks = config.max_blocks - blocks;
2260 sbinfo->max_inodes = config.max_inodes;
2261 sbinfo->free_inodes = config.max_inodes - inodes;
2262 sbinfo->policy = config.policy;
2263 sbinfo->policy_nodes = config.policy_nodes;
2265 spin_unlock(&sbinfo->stat_lock);
2269 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2271 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2273 if (sbinfo->max_blocks != shmem_default_max_blocks())
2274 seq_printf(seq, ",size=%luk",
2275 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2276 if (sbinfo->max_inodes != shmem_default_max_inodes())
2277 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2278 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2279 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2280 if (sbinfo->uid != 0)
2281 seq_printf(seq, ",uid=%u", sbinfo->uid);
2282 if (sbinfo->gid != 0)
2283 seq_printf(seq, ",gid=%u", sbinfo->gid);
2284 shmem_show_mpol(seq, sbinfo->policy, sbinfo->policy_nodes);
2287 #endif /* CONFIG_TMPFS */
2289 static void shmem_put_super(struct super_block *sb)
2291 kfree(sb->s_fs_info);
2292 sb->s_fs_info = NULL;
2295 static int shmem_fill_super(struct super_block *sb,
2296 void *data, int silent)
2298 struct inode *inode;
2299 struct dentry *root;
2300 struct shmem_sb_info *sbinfo;
2303 /* Round up to L1_CACHE_BYTES to resist false sharing */
2304 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2305 L1_CACHE_BYTES), GFP_KERNEL);
2309 sbinfo->max_blocks = 0;
2310 sbinfo->max_inodes = 0;
2311 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2312 sbinfo->uid = current->fsuid;
2313 sbinfo->gid = current->fsgid;
2314 sbinfo->policy = MPOL_DEFAULT;
2315 sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2316 sb->s_fs_info = sbinfo;
2320 * Per default we only allow half of the physical ram per
2321 * tmpfs instance, limiting inodes to one per page of lowmem;
2322 * but the internal instance is left unlimited.
2324 if (!(sb->s_flags & MS_NOUSER)) {
2325 sbinfo->max_blocks = shmem_default_max_blocks();
2326 sbinfo->max_inodes = shmem_default_max_inodes();
2327 if (shmem_parse_options(data, sbinfo, false)) {
2332 sb->s_export_op = &shmem_export_ops;
2334 sb->s_flags |= MS_NOUSER;
2337 spin_lock_init(&sbinfo->stat_lock);
2338 sbinfo->free_blocks = sbinfo->max_blocks;
2339 sbinfo->free_inodes = sbinfo->max_inodes;
2341 sb->s_maxbytes = SHMEM_MAX_BYTES;
2342 sb->s_blocksize = PAGE_CACHE_SIZE;
2343 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2344 sb->s_magic = TMPFS_MAGIC;
2345 sb->s_op = &shmem_ops;
2346 sb->s_time_gran = 1;
2347 #ifdef CONFIG_TMPFS_POSIX_ACL
2348 sb->s_xattr = shmem_xattr_handlers;
2349 sb->s_flags |= MS_POSIXACL;
2352 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2355 inode->i_uid = sbinfo->uid;
2356 inode->i_gid = sbinfo->gid;
2357 root = d_alloc_root(inode);
2366 shmem_put_super(sb);
2370 static struct kmem_cache *shmem_inode_cachep;
2372 static struct inode *shmem_alloc_inode(struct super_block *sb)
2374 struct shmem_inode_info *p;
2375 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2378 return &p->vfs_inode;
2381 static void shmem_destroy_inode(struct inode *inode)
2383 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2384 /* only struct inode is valid if it's an inline symlink */
2385 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2387 shmem_acl_destroy_inode(inode);
2388 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2391 static void init_once(struct kmem_cache *cachep, void *foo)
2393 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2395 inode_init_once(&p->vfs_inode);
2396 #ifdef CONFIG_TMPFS_POSIX_ACL
2398 p->i_default_acl = NULL;
2402 static int init_inodecache(void)
2404 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2405 sizeof(struct shmem_inode_info),
2406 0, SLAB_PANIC, init_once);
2410 static void destroy_inodecache(void)
2412 kmem_cache_destroy(shmem_inode_cachep);
2415 static const struct address_space_operations shmem_aops = {
2416 .writepage = shmem_writepage,
2417 .set_page_dirty = __set_page_dirty_no_writeback,
2419 .readpage = shmem_readpage,
2420 .write_begin = shmem_write_begin,
2421 .write_end = shmem_write_end,
2423 .migratepage = migrate_page,
2426 static const struct file_operations shmem_file_operations = {
2429 .llseek = generic_file_llseek,
2430 .read = shmem_file_read,
2431 .write = do_sync_write,
2432 .aio_write = generic_file_aio_write,
2433 .fsync = simple_sync_file,
2434 .splice_read = generic_file_splice_read,
2435 .splice_write = generic_file_splice_write,
2439 static const struct inode_operations shmem_inode_operations = {
2440 .truncate = shmem_truncate,
2441 .setattr = shmem_notify_change,
2442 .truncate_range = shmem_truncate_range,
2443 #ifdef CONFIG_TMPFS_POSIX_ACL
2444 .setxattr = generic_setxattr,
2445 .getxattr = generic_getxattr,
2446 .listxattr = generic_listxattr,
2447 .removexattr = generic_removexattr,
2448 .permission = shmem_permission,
2453 static const struct inode_operations shmem_dir_inode_operations = {
2455 .create = shmem_create,
2456 .lookup = simple_lookup,
2458 .unlink = shmem_unlink,
2459 .symlink = shmem_symlink,
2460 .mkdir = shmem_mkdir,
2461 .rmdir = shmem_rmdir,
2462 .mknod = shmem_mknod,
2463 .rename = shmem_rename,
2465 #ifdef CONFIG_TMPFS_POSIX_ACL
2466 .setattr = shmem_notify_change,
2467 .setxattr = generic_setxattr,
2468 .getxattr = generic_getxattr,
2469 .listxattr = generic_listxattr,
2470 .removexattr = generic_removexattr,
2471 .permission = shmem_permission,
2475 static const struct inode_operations shmem_special_inode_operations = {
2476 #ifdef CONFIG_TMPFS_POSIX_ACL
2477 .setattr = shmem_notify_change,
2478 .setxattr = generic_setxattr,
2479 .getxattr = generic_getxattr,
2480 .listxattr = generic_listxattr,
2481 .removexattr = generic_removexattr,
2482 .permission = shmem_permission,
2486 static const struct super_operations shmem_ops = {
2487 .alloc_inode = shmem_alloc_inode,
2488 .destroy_inode = shmem_destroy_inode,
2490 .statfs = shmem_statfs,
2491 .remount_fs = shmem_remount_fs,
2492 .show_options = shmem_show_options,
2494 .delete_inode = shmem_delete_inode,
2495 .drop_inode = generic_delete_inode,
2496 .put_super = shmem_put_super,
2499 static struct vm_operations_struct shmem_vm_ops = {
2500 .fault = shmem_fault,
2502 .set_policy = shmem_set_policy,
2503 .get_policy = shmem_get_policy,
2508 static int shmem_get_sb(struct file_system_type *fs_type,
2509 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2511 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2514 static struct file_system_type tmpfs_fs_type = {
2515 .owner = THIS_MODULE,
2517 .get_sb = shmem_get_sb,
2518 .kill_sb = kill_litter_super,
2520 static struct vfsmount *shm_mnt;
2522 static int __init init_tmpfs(void)
2526 error = bdi_init(&shmem_backing_dev_info);
2530 error = init_inodecache();
2534 error = register_filesystem(&tmpfs_fs_type);
2536 printk(KERN_ERR "Could not register tmpfs\n");
2540 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2541 tmpfs_fs_type.name, NULL);
2542 if (IS_ERR(shm_mnt)) {
2543 error = PTR_ERR(shm_mnt);
2544 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2550 unregister_filesystem(&tmpfs_fs_type);
2552 destroy_inodecache();
2554 bdi_destroy(&shmem_backing_dev_info);
2556 shm_mnt = ERR_PTR(error);
2559 module_init(init_tmpfs)
2562 * shmem_file_setup - get an unlinked file living in tmpfs
2564 * @name: name for dentry (to be seen in /proc/<pid>/maps
2565 * @size: size to be set for the file
2568 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2572 struct inode *inode;
2573 struct dentry *dentry, *root;
2576 if (IS_ERR(shm_mnt))
2577 return (void *)shm_mnt;
2579 if (size < 0 || size > SHMEM_MAX_BYTES)
2580 return ERR_PTR(-EINVAL);
2582 if (shmem_acct_size(flags, size))
2583 return ERR_PTR(-ENOMEM);
2587 this.len = strlen(name);
2588 this.hash = 0; /* will go */
2589 root = shm_mnt->mnt_root;
2590 dentry = d_alloc(root, &this);
2595 file = get_empty_filp();
2600 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2604 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2605 d_instantiate(dentry, inode);
2606 inode->i_size = size;
2607 inode->i_nlink = 0; /* It is unlinked */
2608 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2609 &shmem_file_operations);
2617 shmem_unacct_size(flags, size);
2618 return ERR_PTR(error);
2622 * shmem_zero_setup - setup a shared anonymous mapping
2624 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2626 int shmem_zero_setup(struct vm_area_struct *vma)
2629 loff_t size = vma->vm_end - vma->vm_start;
2631 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2633 return PTR_ERR(file);
2637 vma->vm_file = file;
2638 vma->vm_ops = &shmem_vm_ops;