2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
38 #include <asm/tlbflush.h>
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
71 struct zone *zone_table[1 << ZONETABLE_SHIFT];
72 EXPORT_SYMBOL(zone_table);
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
81 * Temporary debugging check for pages not lying within a given zone.
83 static int bad_range(struct zone *zone, struct page *page)
85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
87 if (page_to_pfn(page) < zone->zone_start_pfn)
89 #ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page)))
93 if (zone != page_zone(page))
98 static void bad_page(const char *function, struct page *page)
100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 function, current->comm, page);
102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 page->mapping, page_mapcount(page), page_count(page));
105 printk(KERN_EMERG "Backtrace:\n");
107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 page->flags &= ~(1 << PG_lru |
117 set_page_count(page, 0);
118 reset_page_mapcount(page);
119 page->mapping = NULL;
120 tainted |= TAINT_BAD_PAGE;
123 #ifndef CONFIG_HUGETLB_PAGE
124 #define prep_compound_page(page, order) do { } while (0)
125 #define destroy_compound_page(page, order) do { } while (0)
128 * Higher-order pages are called "compound pages". They are structured thusly:
130 * The first PAGE_SIZE page is called the "head page".
132 * The remaining PAGE_SIZE pages are called "tail pages".
134 * All pages have PG_compound set. All pages have their ->private pointing at
135 * the head page (even the head page has this).
137 * The first tail page's ->mapping, if non-zero, holds the address of the
138 * compound page's put_page() function.
140 * The order of the allocation is stored in the first tail page's ->index
141 * This is only for debug at present. This usage means that zero-order pages
142 * may not be compound.
144 static void prep_compound_page(struct page *page, unsigned long order)
147 int nr_pages = 1 << order;
149 page[1].mapping = NULL;
150 page[1].index = order;
151 for (i = 0; i < nr_pages; i++) {
152 struct page *p = page + i;
155 p->private = (unsigned long)page;
159 static void destroy_compound_page(struct page *page, unsigned long order)
162 int nr_pages = 1 << order;
164 if (!PageCompound(page))
167 if (page[1].index != order)
168 bad_page(__FUNCTION__, page);
170 for (i = 0; i < nr_pages; i++) {
171 struct page *p = page + i;
173 if (!PageCompound(p))
174 bad_page(__FUNCTION__, page);
175 if (p->private != (unsigned long)page)
176 bad_page(__FUNCTION__, page);
177 ClearPageCompound(p);
180 #endif /* CONFIG_HUGETLB_PAGE */
183 * function for dealing with page's order in buddy system.
184 * zone->lock is already acquired when we use these.
185 * So, we don't need atomic page->flags operations here.
187 static inline unsigned long page_order(struct page *page) {
188 return page->private;
191 static inline void set_page_order(struct page *page, int order) {
192 page->private = order;
193 __SetPagePrivate(page);
196 static inline void rmv_page_order(struct page *page)
198 __ClearPagePrivate(page);
203 * Locate the struct page for both the matching buddy in our
204 * pair (buddy1) and the combined O(n+1) page they form (page).
206 * 1) Any buddy B1 will have an order O twin B2 which satisfies
207 * the following equation:
209 * For example, if the starting buddy (buddy2) is #8 its order
211 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
213 * 2) Any buddy B will have an order O+1 parent P which
214 * satisfies the following equation:
217 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
219 static inline struct page *
220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
222 unsigned long buddy_idx = page_idx ^ (1 << order);
224 return page + (buddy_idx - page_idx);
227 static inline unsigned long
228 __find_combined_index(unsigned long page_idx, unsigned int order)
230 return (page_idx & ~(1 << order));
234 * This function checks whether a page is free && is the buddy
235 * we can do coalesce a page and its buddy if
236 * (a) the buddy is free &&
237 * (b) the buddy is on the buddy system &&
238 * (c) a page and its buddy have the same order.
239 * for recording page's order, we use page->private and PG_private.
242 static inline int page_is_buddy(struct page *page, int order)
244 if (PagePrivate(page) &&
245 (page_order(page) == order) &&
246 !PageReserved(page) &&
247 page_count(page) == 0)
253 * Freeing function for a buddy system allocator.
255 * The concept of a buddy system is to maintain direct-mapped table
256 * (containing bit values) for memory blocks of various "orders".
257 * The bottom level table contains the map for the smallest allocatable
258 * units of memory (here, pages), and each level above it describes
259 * pairs of units from the levels below, hence, "buddies".
260 * At a high level, all that happens here is marking the table entry
261 * at the bottom level available, and propagating the changes upward
262 * as necessary, plus some accounting needed to play nicely with other
263 * parts of the VM system.
264 * At each level, we keep a list of pages, which are heads of continuous
265 * free pages of length of (1 << order) and marked with PG_Private.Page's
266 * order is recorded in page->private field.
267 * So when we are allocating or freeing one, we can derive the state of the
268 * other. That is, if we allocate a small block, and both were
269 * free, the remainder of the region must be split into blocks.
270 * If a block is freed, and its buddy is also free, then this
271 * triggers coalescing into a block of larger size.
276 static inline void __free_pages_bulk (struct page *page,
277 struct zone *zone, unsigned int order)
279 unsigned long page_idx;
280 int order_size = 1 << order;
283 destroy_compound_page(page, order);
285 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
287 BUG_ON(page_idx & (order_size - 1));
288 BUG_ON(bad_range(zone, page));
290 zone->free_pages += order_size;
291 while (order < MAX_ORDER-1) {
292 unsigned long combined_idx;
293 struct free_area *area;
296 combined_idx = __find_combined_index(page_idx, order);
297 buddy = __page_find_buddy(page, page_idx, order);
299 if (bad_range(zone, buddy))
301 if (!page_is_buddy(buddy, order))
302 break; /* Move the buddy up one level. */
303 list_del(&buddy->lru);
304 area = zone->free_area + order;
306 rmv_page_order(buddy);
307 page = page + (combined_idx - page_idx);
308 page_idx = combined_idx;
311 set_page_order(page, order);
312 list_add(&page->lru, &zone->free_area[order].free_list);
313 zone->free_area[order].nr_free++;
316 static inline void free_pages_check(const char *function, struct page *page)
318 if ( page_mapcount(page) ||
319 page->mapping != NULL ||
320 page_count(page) != 0 ||
329 1 << PG_writeback )))
330 bad_page(function, page);
332 __ClearPageDirty(page);
336 * Frees a list of pages.
337 * Assumes all pages on list are in same zone, and of same order.
338 * count is the number of pages to free, or 0 for all on the list.
340 * If the zone was previously in an "all pages pinned" state then look to
341 * see if this freeing clears that state.
343 * And clear the zone's pages_scanned counter, to hold off the "all pages are
344 * pinned" detection logic.
347 free_pages_bulk(struct zone *zone, int count,
348 struct list_head *list, unsigned int order)
351 struct page *page = NULL;
354 spin_lock_irqsave(&zone->lock, flags);
355 zone->all_unreclaimable = 0;
356 zone->pages_scanned = 0;
357 while (!list_empty(list) && count--) {
358 page = list_entry(list->prev, struct page, lru);
359 /* have to delete it as __free_pages_bulk list manipulates */
360 list_del(&page->lru);
361 __free_pages_bulk(page, zone, order);
364 spin_unlock_irqrestore(&zone->lock, flags);
368 void __free_pages_ok(struct page *page, unsigned int order)
373 arch_free_page(page, order);
375 mod_page_state(pgfree, 1 << order);
379 for (i = 1 ; i < (1 << order) ; ++i)
380 __put_page(page + i);
383 for (i = 0 ; i < (1 << order) ; ++i)
384 free_pages_check(__FUNCTION__, page + i);
385 list_add(&page->lru, &list);
386 kernel_map_pages(page, 1<<order, 0);
387 free_pages_bulk(page_zone(page), 1, &list, order);
392 * The order of subdivision here is critical for the IO subsystem.
393 * Please do not alter this order without good reasons and regression
394 * testing. Specifically, as large blocks of memory are subdivided,
395 * the order in which smaller blocks are delivered depends on the order
396 * they're subdivided in this function. This is the primary factor
397 * influencing the order in which pages are delivered to the IO
398 * subsystem according to empirical testing, and this is also justified
399 * by considering the behavior of a buddy system containing a single
400 * large block of memory acted on by a series of small allocations.
401 * This behavior is a critical factor in sglist merging's success.
405 static inline struct page *
406 expand(struct zone *zone, struct page *page,
407 int low, int high, struct free_area *area)
409 unsigned long size = 1 << high;
415 BUG_ON(bad_range(zone, &page[size]));
416 list_add(&page[size].lru, &area->free_list);
418 set_page_order(&page[size], high);
423 void set_page_refs(struct page *page, int order)
426 set_page_count(page, 1);
431 * We need to reference all the pages for this order, otherwise if
432 * anyone accesses one of the pages with (get/put) it will be freed.
433 * - eg: access_process_vm()
435 for (i = 0; i < (1 << order); i++)
436 set_page_count(page + i, 1);
437 #endif /* CONFIG_MMU */
441 * This page is about to be returned from the page allocator
443 static void prep_new_page(struct page *page, int order)
445 if ( page_mapcount(page) ||
446 page->mapping != NULL ||
447 page_count(page) != 0 ||
457 1 << PG_writeback )))
458 bad_page(__FUNCTION__, page);
460 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 1 << PG_referenced | 1 << PG_arch_1 |
462 1 << PG_checked | 1 << PG_mappedtodisk);
464 set_page_refs(page, order);
465 kernel_map_pages(page, 1 << order, 1);
469 * Do the hard work of removing an element from the buddy allocator.
470 * Call me with the zone->lock already held.
472 static struct page *__rmqueue(struct zone *zone, unsigned int order)
474 struct free_area * area;
475 unsigned int current_order;
478 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 area = zone->free_area + current_order;
480 if (list_empty(&area->free_list))
483 page = list_entry(area->free_list.next, struct page, lru);
484 list_del(&page->lru);
485 rmv_page_order(page);
487 zone->free_pages -= 1UL << order;
488 return expand(zone, page, order, current_order, area);
495 * Obtain a specified number of elements from the buddy allocator, all under
496 * a single hold of the lock, for efficiency. Add them to the supplied list.
497 * Returns the number of new pages which were placed at *list.
499 static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 unsigned long count, struct list_head *list)
507 spin_lock_irqsave(&zone->lock, flags);
508 for (i = 0; i < count; ++i) {
509 page = __rmqueue(zone, order);
513 list_add_tail(&page->lru, list);
515 spin_unlock_irqrestore(&zone->lock, flags);
520 /* Called from the slab reaper to drain remote pagesets */
521 void drain_remote_pages(void)
527 local_irq_save(flags);
528 for_each_zone(zone) {
529 struct per_cpu_pageset *pset;
531 /* Do not drain local pagesets */
532 if (zone->zone_pgdat->node_id == numa_node_id())
535 pset = zone->pageset[smp_processor_id()];
536 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537 struct per_cpu_pages *pcp;
541 pcp->count -= free_pages_bulk(zone, pcp->count,
545 local_irq_restore(flags);
549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550 static void __drain_pages(unsigned int cpu)
555 for_each_zone(zone) {
556 struct per_cpu_pageset *pset;
558 pset = zone_pcp(zone, cpu);
559 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560 struct per_cpu_pages *pcp;
563 pcp->count -= free_pages_bulk(zone, pcp->count,
568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
572 void mark_free_pages(struct zone *zone)
574 unsigned long zone_pfn, flags;
576 struct list_head *curr;
578 if (!zone->spanned_pages)
581 spin_lock_irqsave(&zone->lock, flags);
582 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
585 for (order = MAX_ORDER - 1; order >= 0; --order)
586 list_for_each(curr, &zone->free_area[order].free_list) {
587 unsigned long start_pfn, i;
589 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
591 for (i=0; i < (1<<order); i++)
592 SetPageNosaveFree(pfn_to_page(start_pfn+i));
594 spin_unlock_irqrestore(&zone->lock, flags);
598 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
600 void drain_local_pages(void)
604 local_irq_save(flags);
605 __drain_pages(smp_processor_id());
606 local_irq_restore(flags);
608 #endif /* CONFIG_PM */
610 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
615 pg_data_t *pg = z->zone_pgdat;
616 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617 struct per_cpu_pageset *p;
619 local_irq_save(flags);
620 cpu = smp_processor_id();
626 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
628 if (pg == NODE_DATA(numa_node_id()))
632 local_irq_restore(flags);
637 * Free a 0-order page
639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640 static void fastcall free_hot_cold_page(struct page *page, int cold)
642 struct zone *zone = page_zone(page);
643 struct per_cpu_pages *pcp;
646 arch_free_page(page, 0);
648 kernel_map_pages(page, 1, 0);
649 inc_page_state(pgfree);
651 page->mapping = NULL;
652 free_pages_check(__FUNCTION__, page);
653 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654 local_irq_save(flags);
655 list_add(&page->lru, &pcp->list);
657 if (pcp->count >= pcp->high)
658 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659 local_irq_restore(flags);
663 void fastcall free_hot_page(struct page *page)
665 free_hot_cold_page(page, 0);
668 void fastcall free_cold_page(struct page *page)
670 free_hot_cold_page(page, 1);
673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
677 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678 for(i = 0; i < (1 << order); i++)
679 clear_highpage(page + i);
683 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
684 * we cheat by calling it from here, in the order > 0 path. Saves a branch
688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
691 struct page *page = NULL;
692 int cold = !!(gfp_flags & __GFP_COLD);
695 struct per_cpu_pages *pcp;
697 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698 local_irq_save(flags);
699 if (pcp->count <= pcp->low)
700 pcp->count += rmqueue_bulk(zone, 0,
701 pcp->batch, &pcp->list);
703 page = list_entry(pcp->list.next, struct page, lru);
704 list_del(&page->lru);
707 local_irq_restore(flags);
712 spin_lock_irqsave(&zone->lock, flags);
713 page = __rmqueue(zone, order);
714 spin_unlock_irqrestore(&zone->lock, flags);
718 BUG_ON(bad_range(zone, page));
719 mod_page_state_zone(zone, pgalloc, 1 << order);
720 prep_new_page(page, order);
722 if (gfp_flags & __GFP_ZERO)
723 prep_zero_page(page, order, gfp_flags);
725 if (order && (gfp_flags & __GFP_COMP))
726 prep_compound_page(page, order);
732 * Return 1 if free pages are above 'mark'. This takes into account the order
735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 int classzone_idx, int can_try_harder, int gfp_high)
738 /* free_pages my go negative - that's OK */
739 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
747 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
749 for (o = 0; o < order; o++) {
750 /* At the next order, this order's pages become unavailable */
751 free_pages -= z->free_area[o].nr_free << o;
753 /* Require fewer higher order pages to be free */
756 if (free_pages <= min)
763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
765 if (!z->reclaim_pages)
767 if (gfp_mask & __GFP_NORECLAIM)
773 * This is the 'heart' of the zoned buddy allocator.
775 struct page * fastcall
776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777 struct zonelist *zonelist)
779 const int wait = gfp_mask & __GFP_WAIT;
780 struct zone **zones, *z;
782 struct reclaim_state reclaim_state;
783 struct task_struct *p = current;
788 int did_some_progress;
790 might_sleep_if(wait);
793 * The caller may dip into page reserves a bit more if the caller
794 * cannot run direct reclaim, or is the caller has realtime scheduling
797 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
799 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
801 if (unlikely(zones[0] == NULL)) {
802 /* Should this ever happen?? */
806 classzone_idx = zone_idx(zones[0]);
809 /* Go through the zonelist once, looking for a zone with enough free */
810 for (i = 0; (z = zones[i]) != NULL; i++) {
811 int do_reclaim = should_reclaim_zone(z, gfp_mask);
813 if (!cpuset_zone_allowed(z))
817 * If the zone is to attempt early page reclaim then this loop
818 * will try to reclaim pages and check the watermark a second
819 * time before giving up and falling back to the next zone.
822 if (!zone_watermark_ok(z, order, z->pages_low,
823 classzone_idx, 0, 0)) {
827 zone_reclaim(z, gfp_mask, order);
828 /* Only try reclaim once */
830 goto zone_reclaim_retry;
834 page = buffered_rmqueue(z, order, gfp_mask);
839 for (i = 0; (z = zones[i]) != NULL; i++)
840 wakeup_kswapd(z, order);
843 * Go through the zonelist again. Let __GFP_HIGH and allocations
844 * coming from realtime tasks to go deeper into reserves
846 * This is the last chance, in general, before the goto nopage.
847 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
849 for (i = 0; (z = zones[i]) != NULL; i++) {
850 if (!zone_watermark_ok(z, order, z->pages_min,
851 classzone_idx, can_try_harder,
852 gfp_mask & __GFP_HIGH))
855 if (wait && !cpuset_zone_allowed(z))
858 page = buffered_rmqueue(z, order, gfp_mask);
863 /* This allocation should allow future memory freeing. */
865 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
866 && !in_interrupt()) {
867 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
868 /* go through the zonelist yet again, ignoring mins */
869 for (i = 0; (z = zones[i]) != NULL; i++) {
870 if (!cpuset_zone_allowed(z))
872 page = buffered_rmqueue(z, order, gfp_mask);
880 /* Atomic allocations - we can't balance anything */
887 /* We now go into synchronous reclaim */
888 p->flags |= PF_MEMALLOC;
889 reclaim_state.reclaimed_slab = 0;
890 p->reclaim_state = &reclaim_state;
892 did_some_progress = try_to_free_pages(zones, gfp_mask);
894 p->reclaim_state = NULL;
895 p->flags &= ~PF_MEMALLOC;
899 if (likely(did_some_progress)) {
900 for (i = 0; (z = zones[i]) != NULL; i++) {
901 if (!zone_watermark_ok(z, order, z->pages_min,
902 classzone_idx, can_try_harder,
903 gfp_mask & __GFP_HIGH))
906 if (!cpuset_zone_allowed(z))
909 page = buffered_rmqueue(z, order, gfp_mask);
913 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
915 * Go through the zonelist yet one more time, keep
916 * very high watermark here, this is only to catch
917 * a parallel oom killing, we must fail if we're still
918 * under heavy pressure.
920 for (i = 0; (z = zones[i]) != NULL; i++) {
921 if (!zone_watermark_ok(z, order, z->pages_high,
922 classzone_idx, 0, 0))
925 if (!cpuset_zone_allowed(z))
928 page = buffered_rmqueue(z, order, gfp_mask);
933 out_of_memory(gfp_mask, order);
938 * Don't let big-order allocations loop unless the caller explicitly
939 * requests that. Wait for some write requests to complete then retry.
941 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
942 * <= 3, but that may not be true in other implementations.
945 if (!(gfp_mask & __GFP_NORETRY)) {
946 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
948 if (gfp_mask & __GFP_NOFAIL)
952 blk_congestion_wait(WRITE, HZ/50);
957 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
958 printk(KERN_WARNING "%s: page allocation failure."
959 " order:%d, mode:0x%x\n",
960 p->comm, order, gfp_mask);
966 zone_statistics(zonelist, z);
970 EXPORT_SYMBOL(__alloc_pages);
973 * Common helper functions.
975 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
978 page = alloc_pages(gfp_mask, order);
981 return (unsigned long) page_address(page);
984 EXPORT_SYMBOL(__get_free_pages);
986 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
991 * get_zeroed_page() returns a 32-bit address, which cannot represent
994 BUG_ON(gfp_mask & __GFP_HIGHMEM);
996 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
998 return (unsigned long) page_address(page);
1002 EXPORT_SYMBOL(get_zeroed_page);
1004 void __pagevec_free(struct pagevec *pvec)
1006 int i = pagevec_count(pvec);
1009 free_hot_cold_page(pvec->pages[i], pvec->cold);
1012 fastcall void __free_pages(struct page *page, unsigned int order)
1014 if (!PageReserved(page) && put_page_testzero(page)) {
1016 free_hot_page(page);
1018 __free_pages_ok(page, order);
1022 EXPORT_SYMBOL(__free_pages);
1024 fastcall void free_pages(unsigned long addr, unsigned int order)
1027 BUG_ON(!virt_addr_valid((void *)addr));
1028 __free_pages(virt_to_page((void *)addr), order);
1032 EXPORT_SYMBOL(free_pages);
1035 * Total amount of free (allocatable) RAM:
1037 unsigned int nr_free_pages(void)
1039 unsigned int sum = 0;
1043 sum += zone->free_pages;
1048 EXPORT_SYMBOL(nr_free_pages);
1051 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1053 unsigned int i, sum = 0;
1055 for (i = 0; i < MAX_NR_ZONES; i++)
1056 sum += pgdat->node_zones[i].free_pages;
1062 static unsigned int nr_free_zone_pages(int offset)
1064 /* Just pick one node, since fallback list is circular */
1065 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1066 unsigned int sum = 0;
1068 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1069 struct zone **zonep = zonelist->zones;
1072 for (zone = *zonep++; zone; zone = *zonep++) {
1073 unsigned long size = zone->present_pages;
1074 unsigned long high = zone->pages_high;
1083 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1085 unsigned int nr_free_buffer_pages(void)
1087 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1091 * Amount of free RAM allocatable within all zones
1093 unsigned int nr_free_pagecache_pages(void)
1095 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1098 #ifdef CONFIG_HIGHMEM
1099 unsigned int nr_free_highpages (void)
1102 unsigned int pages = 0;
1104 for_each_pgdat(pgdat)
1105 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1112 static void show_node(struct zone *zone)
1114 printk("Node %d ", zone->zone_pgdat->node_id);
1117 #define show_node(zone) do { } while (0)
1121 * Accumulate the page_state information across all CPUs.
1122 * The result is unavoidably approximate - it can change
1123 * during and after execution of this function.
1125 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1127 atomic_t nr_pagecache = ATOMIC_INIT(0);
1128 EXPORT_SYMBOL(nr_pagecache);
1130 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1133 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1137 memset(ret, 0, sizeof(*ret));
1138 cpus_and(*cpumask, *cpumask, cpu_online_map);
1140 cpu = first_cpu(*cpumask);
1141 while (cpu < NR_CPUS) {
1142 unsigned long *in, *out, off;
1144 in = (unsigned long *)&per_cpu(page_states, cpu);
1146 cpu = next_cpu(cpu, *cpumask);
1149 prefetch(&per_cpu(page_states, cpu));
1151 out = (unsigned long *)ret;
1152 for (off = 0; off < nr; off++)
1157 void get_page_state_node(struct page_state *ret, int node)
1160 cpumask_t mask = node_to_cpumask(node);
1162 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1163 nr /= sizeof(unsigned long);
1165 __get_page_state(ret, nr+1, &mask);
1168 void get_page_state(struct page_state *ret)
1171 cpumask_t mask = CPU_MASK_ALL;
1173 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1174 nr /= sizeof(unsigned long);
1176 __get_page_state(ret, nr + 1, &mask);
1179 void get_full_page_state(struct page_state *ret)
1181 cpumask_t mask = CPU_MASK_ALL;
1183 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1186 unsigned long __read_page_state(unsigned long offset)
1188 unsigned long ret = 0;
1191 for_each_online_cpu(cpu) {
1194 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1195 ret += *((unsigned long *)in);
1200 void __mod_page_state(unsigned long offset, unsigned long delta)
1202 unsigned long flags;
1205 local_irq_save(flags);
1206 ptr = &__get_cpu_var(page_states);
1207 *(unsigned long*)(ptr + offset) += delta;
1208 local_irq_restore(flags);
1211 EXPORT_SYMBOL(__mod_page_state);
1213 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1214 unsigned long *free, struct pglist_data *pgdat)
1216 struct zone *zones = pgdat->node_zones;
1222 for (i = 0; i < MAX_NR_ZONES; i++) {
1223 *active += zones[i].nr_active;
1224 *inactive += zones[i].nr_inactive;
1225 *free += zones[i].free_pages;
1229 void get_zone_counts(unsigned long *active,
1230 unsigned long *inactive, unsigned long *free)
1232 struct pglist_data *pgdat;
1237 for_each_pgdat(pgdat) {
1238 unsigned long l, m, n;
1239 __get_zone_counts(&l, &m, &n, pgdat);
1246 void si_meminfo(struct sysinfo *val)
1248 val->totalram = totalram_pages;
1250 val->freeram = nr_free_pages();
1251 val->bufferram = nr_blockdev_pages();
1252 #ifdef CONFIG_HIGHMEM
1253 val->totalhigh = totalhigh_pages;
1254 val->freehigh = nr_free_highpages();
1259 val->mem_unit = PAGE_SIZE;
1262 EXPORT_SYMBOL(si_meminfo);
1265 void si_meminfo_node(struct sysinfo *val, int nid)
1267 pg_data_t *pgdat = NODE_DATA(nid);
1269 val->totalram = pgdat->node_present_pages;
1270 val->freeram = nr_free_pages_pgdat(pgdat);
1271 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1272 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1273 val->mem_unit = PAGE_SIZE;
1277 #define K(x) ((x) << (PAGE_SHIFT-10))
1280 * Show free area list (used inside shift_scroll-lock stuff)
1281 * We also calculate the percentage fragmentation. We do this by counting the
1282 * memory on each free list with the exception of the first item on the list.
1284 void show_free_areas(void)
1286 struct page_state ps;
1287 int cpu, temperature;
1288 unsigned long active;
1289 unsigned long inactive;
1293 for_each_zone(zone) {
1295 printk("%s per-cpu:", zone->name);
1297 if (!zone->present_pages) {
1303 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1304 struct per_cpu_pageset *pageset;
1306 if (!cpu_possible(cpu))
1309 pageset = zone_pcp(zone, cpu);
1311 for (temperature = 0; temperature < 2; temperature++)
1312 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1314 temperature ? "cold" : "hot",
1315 pageset->pcp[temperature].low,
1316 pageset->pcp[temperature].high,
1317 pageset->pcp[temperature].batch,
1318 pageset->pcp[temperature].count);
1322 get_page_state(&ps);
1323 get_zone_counts(&active, &inactive, &free);
1325 printk("Free pages: %11ukB (%ukB HighMem)\n",
1327 K(nr_free_highpages()));
1329 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1330 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1339 ps.nr_page_table_pages);
1341 for_each_zone(zone) {
1353 " pages_scanned:%lu"
1354 " all_unreclaimable? %s"
1357 K(zone->free_pages),
1360 K(zone->pages_high),
1362 K(zone->nr_inactive),
1363 K(zone->present_pages),
1364 zone->pages_scanned,
1365 (zone->all_unreclaimable ? "yes" : "no")
1367 printk("lowmem_reserve[]:");
1368 for (i = 0; i < MAX_NR_ZONES; i++)
1369 printk(" %lu", zone->lowmem_reserve[i]);
1373 for_each_zone(zone) {
1374 unsigned long nr, flags, order, total = 0;
1377 printk("%s: ", zone->name);
1378 if (!zone->present_pages) {
1383 spin_lock_irqsave(&zone->lock, flags);
1384 for (order = 0; order < MAX_ORDER; order++) {
1385 nr = zone->free_area[order].nr_free;
1386 total += nr << order;
1387 printk("%lu*%lukB ", nr, K(1UL) << order);
1389 spin_unlock_irqrestore(&zone->lock, flags);
1390 printk("= %lukB\n", K(total));
1393 show_swap_cache_info();
1397 * Builds allocation fallback zone lists.
1399 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1406 zone = pgdat->node_zones + ZONE_HIGHMEM;
1407 if (zone->present_pages) {
1408 #ifndef CONFIG_HIGHMEM
1411 zonelist->zones[j++] = zone;
1414 zone = pgdat->node_zones + ZONE_NORMAL;
1415 if (zone->present_pages)
1416 zonelist->zones[j++] = zone;
1418 zone = pgdat->node_zones + ZONE_DMA;
1419 if (zone->present_pages)
1420 zonelist->zones[j++] = zone;
1427 #define MAX_NODE_LOAD (num_online_nodes())
1428 static int __initdata node_load[MAX_NUMNODES];
1430 * find_next_best_node - find the next node that should appear in a given node's fallback list
1431 * @node: node whose fallback list we're appending
1432 * @used_node_mask: nodemask_t of already used nodes
1434 * We use a number of factors to determine which is the next node that should
1435 * appear on a given node's fallback list. The node should not have appeared
1436 * already in @node's fallback list, and it should be the next closest node
1437 * according to the distance array (which contains arbitrary distance values
1438 * from each node to each node in the system), and should also prefer nodes
1439 * with no CPUs, since presumably they'll have very little allocation pressure
1440 * on them otherwise.
1441 * It returns -1 if no node is found.
1443 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1446 int min_val = INT_MAX;
1449 for_each_online_node(i) {
1452 /* Start from local node */
1453 n = (node+i) % num_online_nodes();
1455 /* Don't want a node to appear more than once */
1456 if (node_isset(n, *used_node_mask))
1459 /* Use the local node if we haven't already */
1460 if (!node_isset(node, *used_node_mask)) {
1465 /* Use the distance array to find the distance */
1466 val = node_distance(node, n);
1468 /* Give preference to headless and unused nodes */
1469 tmp = node_to_cpumask(n);
1470 if (!cpus_empty(tmp))
1471 val += PENALTY_FOR_NODE_WITH_CPUS;
1473 /* Slight preference for less loaded node */
1474 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1475 val += node_load[n];
1477 if (val < min_val) {
1484 node_set(best_node, *used_node_mask);
1489 static void __init build_zonelists(pg_data_t *pgdat)
1491 int i, j, k, node, local_node;
1492 int prev_node, load;
1493 struct zonelist *zonelist;
1494 nodemask_t used_mask;
1496 /* initialize zonelists */
1497 for (i = 0; i < GFP_ZONETYPES; i++) {
1498 zonelist = pgdat->node_zonelists + i;
1499 zonelist->zones[0] = NULL;
1502 /* NUMA-aware ordering of nodes */
1503 local_node = pgdat->node_id;
1504 load = num_online_nodes();
1505 prev_node = local_node;
1506 nodes_clear(used_mask);
1507 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1509 * We don't want to pressure a particular node.
1510 * So adding penalty to the first node in same
1511 * distance group to make it round-robin.
1513 if (node_distance(local_node, node) !=
1514 node_distance(local_node, prev_node))
1515 node_load[node] += load;
1518 for (i = 0; i < GFP_ZONETYPES; i++) {
1519 zonelist = pgdat->node_zonelists + i;
1520 for (j = 0; zonelist->zones[j] != NULL; j++);
1523 if (i & __GFP_HIGHMEM)
1528 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1529 zonelist->zones[j] = NULL;
1534 #else /* CONFIG_NUMA */
1536 static void __init build_zonelists(pg_data_t *pgdat)
1538 int i, j, k, node, local_node;
1540 local_node = pgdat->node_id;
1541 for (i = 0; i < GFP_ZONETYPES; i++) {
1542 struct zonelist *zonelist;
1544 zonelist = pgdat->node_zonelists + i;
1548 if (i & __GFP_HIGHMEM)
1553 j = build_zonelists_node(pgdat, zonelist, j, k);
1555 * Now we build the zonelist so that it contains the zones
1556 * of all the other nodes.
1557 * We don't want to pressure a particular node, so when
1558 * building the zones for node N, we make sure that the
1559 * zones coming right after the local ones are those from
1560 * node N+1 (modulo N)
1562 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1563 if (!node_online(node))
1565 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1567 for (node = 0; node < local_node; node++) {
1568 if (!node_online(node))
1570 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1573 zonelist->zones[j] = NULL;
1577 #endif /* CONFIG_NUMA */
1579 void __init build_all_zonelists(void)
1583 for_each_online_node(i)
1584 build_zonelists(NODE_DATA(i));
1585 printk("Built %i zonelists\n", num_online_nodes());
1586 cpuset_init_current_mems_allowed();
1590 * Helper functions to size the waitqueue hash table.
1591 * Essentially these want to choose hash table sizes sufficiently
1592 * large so that collisions trying to wait on pages are rare.
1593 * But in fact, the number of active page waitqueues on typical
1594 * systems is ridiculously low, less than 200. So this is even
1595 * conservative, even though it seems large.
1597 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1598 * waitqueues, i.e. the size of the waitq table given the number of pages.
1600 #define PAGES_PER_WAITQUEUE 256
1602 static inline unsigned long wait_table_size(unsigned long pages)
1604 unsigned long size = 1;
1606 pages /= PAGES_PER_WAITQUEUE;
1608 while (size < pages)
1612 * Once we have dozens or even hundreds of threads sleeping
1613 * on IO we've got bigger problems than wait queue collision.
1614 * Limit the size of the wait table to a reasonable size.
1616 size = min(size, 4096UL);
1618 return max(size, 4UL);
1622 * This is an integer logarithm so that shifts can be used later
1623 * to extract the more random high bits from the multiplicative
1624 * hash function before the remainder is taken.
1626 static inline unsigned long wait_table_bits(unsigned long size)
1631 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1633 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1634 unsigned long *zones_size, unsigned long *zholes_size)
1636 unsigned long realtotalpages, totalpages = 0;
1639 for (i = 0; i < MAX_NR_ZONES; i++)
1640 totalpages += zones_size[i];
1641 pgdat->node_spanned_pages = totalpages;
1643 realtotalpages = totalpages;
1645 for (i = 0; i < MAX_NR_ZONES; i++)
1646 realtotalpages -= zholes_size[i];
1647 pgdat->node_present_pages = realtotalpages;
1648 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1653 * Initially all pages are reserved - free ones are freed
1654 * up by free_all_bootmem() once the early boot process is
1655 * done. Non-atomic initialization, single-pass.
1657 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1658 unsigned long start_pfn)
1661 unsigned long end_pfn = start_pfn + size;
1664 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1665 if (!early_pfn_valid(pfn))
1667 if (!early_pfn_in_nid(pfn, nid))
1669 page = pfn_to_page(pfn);
1670 set_page_links(page, zone, nid, pfn);
1671 set_page_count(page, 0);
1672 reset_page_mapcount(page);
1673 SetPageReserved(page);
1674 INIT_LIST_HEAD(&page->lru);
1675 #ifdef WANT_PAGE_VIRTUAL
1676 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1677 if (!is_highmem_idx(zone))
1678 set_page_address(page, __va(pfn << PAGE_SHIFT));
1683 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1687 for (order = 0; order < MAX_ORDER ; order++) {
1688 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1689 zone->free_area[order].nr_free = 0;
1693 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1694 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1697 unsigned long snum = pfn_to_section_nr(pfn);
1698 unsigned long end = pfn_to_section_nr(pfn + size);
1701 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1703 for (; snum <= end; snum++)
1704 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1707 #ifndef __HAVE_ARCH_MEMMAP_INIT
1708 #define memmap_init(size, nid, zone, start_pfn) \
1709 memmap_init_zone((size), (nid), (zone), (start_pfn))
1712 static int __devinit zone_batchsize(struct zone *zone)
1717 * The per-cpu-pages pools are set to around 1000th of the
1718 * size of the zone. But no more than 1/4 of a meg - there's
1719 * no point in going beyond the size of L2 cache.
1721 * OK, so we don't know how big the cache is. So guess.
1723 batch = zone->present_pages / 1024;
1724 if (batch * PAGE_SIZE > 256 * 1024)
1725 batch = (256 * 1024) / PAGE_SIZE;
1726 batch /= 4; /* We effectively *= 4 below */
1731 * Clamp the batch to a 2^n - 1 value. Having a power
1732 * of 2 value was found to be more likely to have
1733 * suboptimal cache aliasing properties in some cases.
1735 * For example if 2 tasks are alternately allocating
1736 * batches of pages, one task can end up with a lot
1737 * of pages of one half of the possible page colors
1738 * and the other with pages of the other colors.
1740 batch = (1 << fls(batch + batch/2)) - 1;
1744 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1746 struct per_cpu_pages *pcp;
1748 pcp = &p->pcp[0]; /* hot */
1750 pcp->low = 2 * batch;
1751 pcp->high = 6 * batch;
1752 pcp->batch = max(1UL, 1 * batch);
1753 INIT_LIST_HEAD(&pcp->list);
1755 pcp = &p->pcp[1]; /* cold*/
1758 pcp->high = 2 * batch;
1759 pcp->batch = max(1UL, 1 * batch);
1760 INIT_LIST_HEAD(&pcp->list);
1765 * Boot pageset table. One per cpu which is going to be used for all
1766 * zones and all nodes. The parameters will be set in such a way
1767 * that an item put on a list will immediately be handed over to
1768 * the buddy list. This is safe since pageset manipulation is done
1769 * with interrupts disabled.
1771 * Some NUMA counter updates may also be caught by the boot pagesets.
1773 * The boot_pagesets must be kept even after bootup is complete for
1774 * unused processors and/or zones. They do play a role for bootstrapping
1775 * hotplugged processors.
1777 * zoneinfo_show() and maybe other functions do
1778 * not check if the processor is online before following the pageset pointer.
1779 * Other parts of the kernel may not check if the zone is available.
1781 static struct per_cpu_pageset
1782 boot_pageset[NR_CPUS];
1785 * Dynamically allocate memory for the
1786 * per cpu pageset array in struct zone.
1788 static int __devinit process_zones(int cpu)
1790 struct zone *zone, *dzone;
1792 for_each_zone(zone) {
1794 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1795 GFP_KERNEL, cpu_to_node(cpu));
1796 if (!zone->pageset[cpu])
1799 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1804 for_each_zone(dzone) {
1807 kfree(dzone->pageset[cpu]);
1808 dzone->pageset[cpu] = NULL;
1813 static inline void free_zone_pagesets(int cpu)
1818 for_each_zone(zone) {
1819 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1821 zone_pcp(zone, cpu) = NULL;
1827 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1828 unsigned long action,
1831 int cpu = (long)hcpu;
1832 int ret = NOTIFY_OK;
1835 case CPU_UP_PREPARE:
1836 if (process_zones(cpu))
1839 #ifdef CONFIG_HOTPLUG_CPU
1841 free_zone_pagesets(cpu);
1850 static struct notifier_block pageset_notifier =
1851 { &pageset_cpuup_callback, NULL, 0 };
1853 void __init setup_per_cpu_pageset()
1857 /* Initialize per_cpu_pageset for cpu 0.
1858 * A cpuup callback will do this for every cpu
1859 * as it comes online
1861 err = process_zones(smp_processor_id());
1863 register_cpu_notifier(&pageset_notifier);
1869 * Set up the zone data structures:
1870 * - mark all pages reserved
1871 * - mark all memory queues empty
1872 * - clear the memory bitmaps
1874 static void __init free_area_init_core(struct pglist_data *pgdat,
1875 unsigned long *zones_size, unsigned long *zholes_size)
1878 int cpu, nid = pgdat->node_id;
1879 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1881 pgdat->nr_zones = 0;
1882 init_waitqueue_head(&pgdat->kswapd_wait);
1883 pgdat->kswapd_max_order = 0;
1885 for (j = 0; j < MAX_NR_ZONES; j++) {
1886 struct zone *zone = pgdat->node_zones + j;
1887 unsigned long size, realsize;
1888 unsigned long batch;
1890 realsize = size = zones_size[j];
1892 realsize -= zholes_size[j];
1894 if (j == ZONE_DMA || j == ZONE_NORMAL)
1895 nr_kernel_pages += realsize;
1896 nr_all_pages += realsize;
1898 zone->spanned_pages = size;
1899 zone->present_pages = realsize;
1900 zone->name = zone_names[j];
1901 spin_lock_init(&zone->lock);
1902 spin_lock_init(&zone->lru_lock);
1903 zone->zone_pgdat = pgdat;
1904 zone->free_pages = 0;
1906 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1908 batch = zone_batchsize(zone);
1910 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1912 /* Early boot. Slab allocator not functional yet */
1913 zone->pageset[cpu] = &boot_pageset[cpu];
1914 setup_pageset(&boot_pageset[cpu],0);
1916 setup_pageset(zone_pcp(zone,cpu), batch);
1919 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1920 zone_names[j], realsize, batch);
1921 INIT_LIST_HEAD(&zone->active_list);
1922 INIT_LIST_HEAD(&zone->inactive_list);
1923 zone->nr_scan_active = 0;
1924 zone->nr_scan_inactive = 0;
1925 zone->nr_active = 0;
1926 zone->nr_inactive = 0;
1927 atomic_set(&zone->reclaim_in_progress, 0);
1932 * The per-page waitqueue mechanism uses hashed waitqueues
1935 zone->wait_table_size = wait_table_size(size);
1936 zone->wait_table_bits =
1937 wait_table_bits(zone->wait_table_size);
1938 zone->wait_table = (wait_queue_head_t *)
1939 alloc_bootmem_node(pgdat, zone->wait_table_size
1940 * sizeof(wait_queue_head_t));
1942 for(i = 0; i < zone->wait_table_size; ++i)
1943 init_waitqueue_head(zone->wait_table + i);
1945 pgdat->nr_zones = j+1;
1947 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1948 zone->zone_start_pfn = zone_start_pfn;
1950 memmap_init(size, nid, j, zone_start_pfn);
1952 zonetable_add(zone, nid, j, zone_start_pfn, size);
1954 zone_start_pfn += size;
1956 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1960 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1962 /* Skip empty nodes */
1963 if (!pgdat->node_spanned_pages)
1966 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1967 /* ia64 gets its own node_mem_map, before this, without bootmem */
1968 if (!pgdat->node_mem_map) {
1972 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1973 map = alloc_remap(pgdat->node_id, size);
1975 map = alloc_bootmem_node(pgdat, size);
1976 pgdat->node_mem_map = map;
1978 #ifdef CONFIG_FLATMEM
1980 * With no DISCONTIG, the global mem_map is just set as node 0's
1982 if (pgdat == NODE_DATA(0))
1983 mem_map = NODE_DATA(0)->node_mem_map;
1985 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1988 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1989 unsigned long *zones_size, unsigned long node_start_pfn,
1990 unsigned long *zholes_size)
1992 pgdat->node_id = nid;
1993 pgdat->node_start_pfn = node_start_pfn;
1994 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1996 alloc_node_mem_map(pgdat);
1998 free_area_init_core(pgdat, zones_size, zholes_size);
2001 #ifndef CONFIG_NEED_MULTIPLE_NODES
2002 static bootmem_data_t contig_bootmem_data;
2003 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2005 EXPORT_SYMBOL(contig_page_data);
2008 void __init free_area_init(unsigned long *zones_size)
2010 free_area_init_node(0, NODE_DATA(0), zones_size,
2011 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2014 #ifdef CONFIG_PROC_FS
2016 #include <linux/seq_file.h>
2018 static void *frag_start(struct seq_file *m, loff_t *pos)
2023 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2029 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2031 pg_data_t *pgdat = (pg_data_t *)arg;
2034 return pgdat->pgdat_next;
2037 static void frag_stop(struct seq_file *m, void *arg)
2042 * This walks the free areas for each zone.
2044 static int frag_show(struct seq_file *m, void *arg)
2046 pg_data_t *pgdat = (pg_data_t *)arg;
2048 struct zone *node_zones = pgdat->node_zones;
2049 unsigned long flags;
2052 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2053 if (!zone->present_pages)
2056 spin_lock_irqsave(&zone->lock, flags);
2057 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2058 for (order = 0; order < MAX_ORDER; ++order)
2059 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2060 spin_unlock_irqrestore(&zone->lock, flags);
2066 struct seq_operations fragmentation_op = {
2067 .start = frag_start,
2074 * Output information about zones in @pgdat.
2076 static int zoneinfo_show(struct seq_file *m, void *arg)
2078 pg_data_t *pgdat = arg;
2080 struct zone *node_zones = pgdat->node_zones;
2081 unsigned long flags;
2083 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2086 if (!zone->present_pages)
2089 spin_lock_irqsave(&zone->lock, flags);
2090 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2098 "\n scanned %lu (a: %lu i: %lu)"
2107 zone->pages_scanned,
2108 zone->nr_scan_active, zone->nr_scan_inactive,
2109 zone->spanned_pages,
2110 zone->present_pages);
2112 "\n protection: (%lu",
2113 zone->lowmem_reserve[0]);
2114 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2115 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2119 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2120 struct per_cpu_pageset *pageset;
2123 pageset = zone_pcp(zone, i);
2124 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2125 if (pageset->pcp[j].count)
2128 if (j == ARRAY_SIZE(pageset->pcp))
2130 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2132 "\n cpu: %i pcp: %i"
2138 pageset->pcp[j].count,
2139 pageset->pcp[j].low,
2140 pageset->pcp[j].high,
2141 pageset->pcp[j].batch);
2147 "\n numa_foreign: %lu"
2148 "\n interleave_hit: %lu"
2149 "\n local_node: %lu"
2150 "\n other_node: %lu",
2153 pageset->numa_foreign,
2154 pageset->interleave_hit,
2155 pageset->local_node,
2156 pageset->other_node);
2160 "\n all_unreclaimable: %u"
2161 "\n prev_priority: %i"
2162 "\n temp_priority: %i"
2163 "\n start_pfn: %lu",
2164 zone->all_unreclaimable,
2165 zone->prev_priority,
2166 zone->temp_priority,
2167 zone->zone_start_pfn);
2168 spin_unlock_irqrestore(&zone->lock, flags);
2174 struct seq_operations zoneinfo_op = {
2175 .start = frag_start, /* iterate over all zones. The same as in
2179 .show = zoneinfo_show,
2182 static char *vmstat_text[] = {
2186 "nr_page_table_pages",
2211 "pgscan_kswapd_high",
2212 "pgscan_kswapd_normal",
2214 "pgscan_kswapd_dma",
2215 "pgscan_direct_high",
2216 "pgscan_direct_normal",
2217 "pgscan_direct_dma",
2222 "kswapd_inodesteal",
2230 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2232 struct page_state *ps;
2234 if (*pos >= ARRAY_SIZE(vmstat_text))
2237 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2240 return ERR_PTR(-ENOMEM);
2241 get_full_page_state(ps);
2242 ps->pgpgin /= 2; /* sectors -> kbytes */
2244 return (unsigned long *)ps + *pos;
2247 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2250 if (*pos >= ARRAY_SIZE(vmstat_text))
2252 return (unsigned long *)m->private + *pos;
2255 static int vmstat_show(struct seq_file *m, void *arg)
2257 unsigned long *l = arg;
2258 unsigned long off = l - (unsigned long *)m->private;
2260 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2264 static void vmstat_stop(struct seq_file *m, void *arg)
2270 struct seq_operations vmstat_op = {
2271 .start = vmstat_start,
2272 .next = vmstat_next,
2273 .stop = vmstat_stop,
2274 .show = vmstat_show,
2277 #endif /* CONFIG_PROC_FS */
2279 #ifdef CONFIG_HOTPLUG_CPU
2280 static int page_alloc_cpu_notify(struct notifier_block *self,
2281 unsigned long action, void *hcpu)
2283 int cpu = (unsigned long)hcpu;
2285 unsigned long *src, *dest;
2287 if (action == CPU_DEAD) {
2290 /* Drain local pagecache count. */
2291 count = &per_cpu(nr_pagecache_local, cpu);
2292 atomic_add(*count, &nr_pagecache);
2294 local_irq_disable();
2297 /* Add dead cpu's page_states to our own. */
2298 dest = (unsigned long *)&__get_cpu_var(page_states);
2299 src = (unsigned long *)&per_cpu(page_states, cpu);
2301 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2311 #endif /* CONFIG_HOTPLUG_CPU */
2313 void __init page_alloc_init(void)
2315 hotcpu_notifier(page_alloc_cpu_notify, 0);
2319 * setup_per_zone_lowmem_reserve - called whenever
2320 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2321 * has a correct pages reserved value, so an adequate number of
2322 * pages are left in the zone after a successful __alloc_pages().
2324 static void setup_per_zone_lowmem_reserve(void)
2326 struct pglist_data *pgdat;
2329 for_each_pgdat(pgdat) {
2330 for (j = 0; j < MAX_NR_ZONES; j++) {
2331 struct zone *zone = pgdat->node_zones + j;
2332 unsigned long present_pages = zone->present_pages;
2334 zone->lowmem_reserve[j] = 0;
2336 for (idx = j-1; idx >= 0; idx--) {
2337 struct zone *lower_zone;
2339 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2340 sysctl_lowmem_reserve_ratio[idx] = 1;
2342 lower_zone = pgdat->node_zones + idx;
2343 lower_zone->lowmem_reserve[j] = present_pages /
2344 sysctl_lowmem_reserve_ratio[idx];
2345 present_pages += lower_zone->present_pages;
2352 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2353 * that the pages_{min,low,high} values for each zone are set correctly
2354 * with respect to min_free_kbytes.
2356 static void setup_per_zone_pages_min(void)
2358 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2359 unsigned long lowmem_pages = 0;
2361 unsigned long flags;
2363 /* Calculate total number of !ZONE_HIGHMEM pages */
2364 for_each_zone(zone) {
2365 if (!is_highmem(zone))
2366 lowmem_pages += zone->present_pages;
2369 for_each_zone(zone) {
2370 spin_lock_irqsave(&zone->lru_lock, flags);
2371 if (is_highmem(zone)) {
2373 * Often, highmem doesn't need to reserve any pages.
2374 * But the pages_min/low/high values are also used for
2375 * batching up page reclaim activity so we need a
2376 * decent value here.
2380 min_pages = zone->present_pages / 1024;
2381 if (min_pages < SWAP_CLUSTER_MAX)
2382 min_pages = SWAP_CLUSTER_MAX;
2383 if (min_pages > 128)
2385 zone->pages_min = min_pages;
2387 /* if it's a lowmem zone, reserve a number of pages
2388 * proportionate to the zone's size.
2390 zone->pages_min = (pages_min * zone->present_pages) /
2395 * When interpreting these watermarks, just keep in mind that:
2396 * zone->pages_min == (zone->pages_min * 4) / 4;
2398 zone->pages_low = (zone->pages_min * 5) / 4;
2399 zone->pages_high = (zone->pages_min * 6) / 4;
2400 spin_unlock_irqrestore(&zone->lru_lock, flags);
2405 * Initialise min_free_kbytes.
2407 * For small machines we want it small (128k min). For large machines
2408 * we want it large (64MB max). But it is not linear, because network
2409 * bandwidth does not increase linearly with machine size. We use
2411 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2412 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2428 static int __init init_per_zone_pages_min(void)
2430 unsigned long lowmem_kbytes;
2432 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2434 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2435 if (min_free_kbytes < 128)
2436 min_free_kbytes = 128;
2437 if (min_free_kbytes > 65536)
2438 min_free_kbytes = 65536;
2439 setup_per_zone_pages_min();
2440 setup_per_zone_lowmem_reserve();
2443 module_init(init_per_zone_pages_min)
2446 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2447 * that we can call two helper functions whenever min_free_kbytes
2450 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2451 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2453 proc_dointvec(table, write, file, buffer, length, ppos);
2454 setup_per_zone_pages_min();
2459 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2460 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2461 * whenever sysctl_lowmem_reserve_ratio changes.
2463 * The reserve ratio obviously has absolutely no relation with the
2464 * pages_min watermarks. The lowmem reserve ratio can only make sense
2465 * if in function of the boot time zone sizes.
2467 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2468 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2470 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2471 setup_per_zone_lowmem_reserve();
2475 __initdata int hashdist = HASHDIST_DEFAULT;
2478 static int __init set_hashdist(char *str)
2482 hashdist = simple_strtoul(str, &str, 0);
2485 __setup("hashdist=", set_hashdist);
2489 * allocate a large system hash table from bootmem
2490 * - it is assumed that the hash table must contain an exact power-of-2
2491 * quantity of entries
2492 * - limit is the number of hash buckets, not the total allocation size
2494 void *__init alloc_large_system_hash(const char *tablename,
2495 unsigned long bucketsize,
2496 unsigned long numentries,
2499 unsigned int *_hash_shift,
2500 unsigned int *_hash_mask,
2501 unsigned long limit)
2503 unsigned long long max = limit;
2504 unsigned long log2qty, size;
2507 /* allow the kernel cmdline to have a say */
2509 /* round applicable memory size up to nearest megabyte */
2510 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2511 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2512 numentries >>= 20 - PAGE_SHIFT;
2513 numentries <<= 20 - PAGE_SHIFT;
2515 /* limit to 1 bucket per 2^scale bytes of low memory */
2516 if (scale > PAGE_SHIFT)
2517 numentries >>= (scale - PAGE_SHIFT);
2519 numentries <<= (PAGE_SHIFT - scale);
2521 /* rounded up to nearest power of 2 in size */
2522 numentries = 1UL << (long_log2(numentries) + 1);
2524 /* limit allocation size to 1/16 total memory by default */
2526 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2527 do_div(max, bucketsize);
2530 if (numentries > max)
2533 log2qty = long_log2(numentries);
2536 size = bucketsize << log2qty;
2537 if (flags & HASH_EARLY)
2538 table = alloc_bootmem(size);
2540 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2542 unsigned long order;
2543 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2545 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2547 } while (!table && size > PAGE_SIZE && --log2qty);
2550 panic("Failed to allocate %s hash table\n", tablename);
2552 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2555 long_log2(size) - PAGE_SHIFT,
2559 *_hash_shift = log2qty;
2561 *_hash_mask = (1 << log2qty) - 1;