2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
85 free_huge_pages_node[nid]--;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
96 struct page *page = NULL;
97 struct mempolicy *mpol;
99 struct zonelist *zonelist = huge_zonelist(vma, address,
100 htlb_alloc_mask, &mpol, &nodemask);
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
111 list_del(&page->lru);
113 free_huge_pages_node[nid]--;
114 if (vma && vma->vm_flags & VM_MAYSHARE)
123 static void update_and_free_page(struct page *page)
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
135 arch_release_hugepage(page);
136 __free_pages(page, HUGETLB_PAGE_ORDER);
139 static void free_huge_page(struct page *page)
141 int nid = page_to_nid(page);
142 struct address_space *mapping;
144 mapping = (struct address_space *) page_private(page);
145 set_page_private(page, 0);
146 BUG_ON(page_count(page));
147 INIT_LIST_HEAD(&page->lru);
149 spin_lock(&hugetlb_lock);
150 if (surplus_huge_pages_node[nid]) {
151 update_and_free_page(page);
152 surplus_huge_pages--;
153 surplus_huge_pages_node[nid]--;
155 enqueue_huge_page(page);
157 spin_unlock(&hugetlb_lock);
159 hugetlb_put_quota(mapping, 1);
163 * Increment or decrement surplus_huge_pages. Keep node-specific counters
164 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made.
167 static int adjust_pool_surplus(int delta)
173 VM_BUG_ON(delta != -1 && delta != 1);
175 nid = next_node(nid, node_online_map);
176 if (nid == MAX_NUMNODES)
177 nid = first_node(node_online_map);
179 /* To shrink on this node, there must be a surplus page */
180 if (delta < 0 && !surplus_huge_pages_node[nid])
182 /* Surplus cannot exceed the total number of pages */
183 if (delta > 0 && surplus_huge_pages_node[nid] >=
184 nr_huge_pages_node[nid])
187 surplus_huge_pages += delta;
188 surplus_huge_pages_node[nid] += delta;
191 } while (nid != prev_nid);
197 static struct page *alloc_fresh_huge_page_node(int nid)
201 page = alloc_pages_node(nid,
202 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
205 if (arch_prepare_hugepage(page)) {
206 __free_pages(page, HUGETLB_PAGE_ORDER);
209 set_compound_page_dtor(page, free_huge_page);
210 spin_lock(&hugetlb_lock);
212 nr_huge_pages_node[nid]++;
213 spin_unlock(&hugetlb_lock);
214 put_page(page); /* free it into the hugepage allocator */
220 static int alloc_fresh_huge_page(void)
227 start_nid = hugetlb_next_nid;
230 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
234 * Use a helper variable to find the next node and then
235 * copy it back to hugetlb_next_nid afterwards:
236 * otherwise there's a window in which a racer might
237 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
238 * But we don't need to use a spin_lock here: it really
239 * doesn't matter if occasionally a racer chooses the
240 * same nid as we do. Move nid forward in the mask even
241 * if we just successfully allocated a hugepage so that
242 * the next caller gets hugepages on the next node.
244 next_nid = next_node(hugetlb_next_nid, node_online_map);
245 if (next_nid == MAX_NUMNODES)
246 next_nid = first_node(node_online_map);
247 hugetlb_next_nid = next_nid;
248 } while (!page && hugetlb_next_nid != start_nid);
251 count_vm_event(HTLB_BUDDY_PGALLOC);
253 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
258 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
259 unsigned long address)
265 * Assume we will successfully allocate the surplus page to
266 * prevent racing processes from causing the surplus to exceed
269 * This however introduces a different race, where a process B
270 * tries to grow the static hugepage pool while alloc_pages() is
271 * called by process A. B will only examine the per-node
272 * counters in determining if surplus huge pages can be
273 * converted to normal huge pages in adjust_pool_surplus(). A
274 * won't be able to increment the per-node counter, until the
275 * lock is dropped by B, but B doesn't drop hugetlb_lock until
276 * no more huge pages can be converted from surplus to normal
277 * state (and doesn't try to convert again). Thus, we have a
278 * case where a surplus huge page exists, the pool is grown, and
279 * the surplus huge page still exists after, even though it
280 * should just have been converted to a normal huge page. This
281 * does not leak memory, though, as the hugepage will be freed
282 * once it is out of use. It also does not allow the counters to
283 * go out of whack in adjust_pool_surplus() as we don't modify
284 * the node values until we've gotten the hugepage and only the
285 * per-node value is checked there.
287 spin_lock(&hugetlb_lock);
288 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
289 spin_unlock(&hugetlb_lock);
293 surplus_huge_pages++;
295 spin_unlock(&hugetlb_lock);
297 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
300 spin_lock(&hugetlb_lock);
303 * This page is now managed by the hugetlb allocator and has
304 * no users -- drop the buddy allocator's reference.
306 put_page_testzero(page);
307 VM_BUG_ON(page_count(page));
308 nid = page_to_nid(page);
309 set_compound_page_dtor(page, free_huge_page);
311 * We incremented the global counters already
313 nr_huge_pages_node[nid]++;
314 surplus_huge_pages_node[nid]++;
315 __count_vm_event(HTLB_BUDDY_PGALLOC);
318 surplus_huge_pages--;
319 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
321 spin_unlock(&hugetlb_lock);
327 * Increase the hugetlb pool such that it can accomodate a reservation
330 static int gather_surplus_pages(int delta)
332 struct list_head surplus_list;
333 struct page *page, *tmp;
335 int needed, allocated;
337 needed = (resv_huge_pages + delta) - free_huge_pages;
339 resv_huge_pages += delta;
344 INIT_LIST_HEAD(&surplus_list);
348 spin_unlock(&hugetlb_lock);
349 for (i = 0; i < needed; i++) {
350 page = alloc_buddy_huge_page(NULL, 0);
353 * We were not able to allocate enough pages to
354 * satisfy the entire reservation so we free what
355 * we've allocated so far.
357 spin_lock(&hugetlb_lock);
362 list_add(&page->lru, &surplus_list);
367 * After retaking hugetlb_lock, we need to recalculate 'needed'
368 * because either resv_huge_pages or free_huge_pages may have changed.
370 spin_lock(&hugetlb_lock);
371 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
376 * The surplus_list now contains _at_least_ the number of extra pages
377 * needed to accomodate the reservation. Add the appropriate number
378 * of pages to the hugetlb pool and free the extras back to the buddy
379 * allocator. Commit the entire reservation here to prevent another
380 * process from stealing the pages as they are added to the pool but
381 * before they are reserved.
384 resv_huge_pages += delta;
387 /* Free the needed pages to the hugetlb pool */
388 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
391 list_del(&page->lru);
392 enqueue_huge_page(page);
395 /* Free unnecessary surplus pages to the buddy allocator */
396 if (!list_empty(&surplus_list)) {
397 spin_unlock(&hugetlb_lock);
398 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
399 list_del(&page->lru);
401 * The page has a reference count of zero already, so
402 * call free_huge_page directly instead of using
403 * put_page. This must be done with hugetlb_lock
404 * unlocked which is safe because free_huge_page takes
405 * hugetlb_lock before deciding how to free the page.
407 free_huge_page(page);
409 spin_lock(&hugetlb_lock);
416 * When releasing a hugetlb pool reservation, any surplus pages that were
417 * allocated to satisfy the reservation must be explicitly freed if they were
420 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
424 unsigned long nr_pages;
427 * We want to release as many surplus pages as possible, spread
428 * evenly across all nodes. Iterate across all nodes until we
429 * can no longer free unreserved surplus pages. This occurs when
430 * the nodes with surplus pages have no free pages.
432 unsigned long remaining_iterations = num_online_nodes();
434 /* Uncommit the reservation */
435 resv_huge_pages -= unused_resv_pages;
437 nr_pages = min(unused_resv_pages, surplus_huge_pages);
439 while (remaining_iterations-- && nr_pages) {
440 nid = next_node(nid, node_online_map);
441 if (nid == MAX_NUMNODES)
442 nid = first_node(node_online_map);
444 if (!surplus_huge_pages_node[nid])
447 if (!list_empty(&hugepage_freelists[nid])) {
448 page = list_entry(hugepage_freelists[nid].next,
450 list_del(&page->lru);
451 update_and_free_page(page);
453 free_huge_pages_node[nid]--;
454 surplus_huge_pages--;
455 surplus_huge_pages_node[nid]--;
457 remaining_iterations = num_online_nodes();
463 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
468 spin_lock(&hugetlb_lock);
469 page = dequeue_huge_page_vma(vma, addr);
470 spin_unlock(&hugetlb_lock);
471 return page ? page : ERR_PTR(-VM_FAULT_OOM);
474 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
477 struct page *page = NULL;
479 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
480 return ERR_PTR(-VM_FAULT_SIGBUS);
482 spin_lock(&hugetlb_lock);
483 if (free_huge_pages > resv_huge_pages)
484 page = dequeue_huge_page_vma(vma, addr);
485 spin_unlock(&hugetlb_lock);
487 page = alloc_buddy_huge_page(vma, addr);
489 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
490 return ERR_PTR(-VM_FAULT_OOM);
496 static struct page *alloc_huge_page(struct vm_area_struct *vma,
500 struct address_space *mapping = vma->vm_file->f_mapping;
502 if (vma->vm_flags & VM_MAYSHARE)
503 page = alloc_huge_page_shared(vma, addr);
505 page = alloc_huge_page_private(vma, addr);
508 set_page_refcounted(page);
509 set_page_private(page, (unsigned long) mapping);
514 static int __init hugetlb_init(void)
518 if (HPAGE_SHIFT == 0)
521 for (i = 0; i < MAX_NUMNODES; ++i)
522 INIT_LIST_HEAD(&hugepage_freelists[i]);
524 hugetlb_next_nid = first_node(node_online_map);
526 for (i = 0; i < max_huge_pages; ++i) {
527 if (!alloc_fresh_huge_page())
530 max_huge_pages = free_huge_pages = nr_huge_pages = i;
531 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
534 module_init(hugetlb_init);
536 static int __init hugetlb_setup(char *s)
538 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
542 __setup("hugepages=", hugetlb_setup);
544 static unsigned int cpuset_mems_nr(unsigned int *array)
549 for_each_node_mask(node, cpuset_current_mems_allowed)
556 #ifdef CONFIG_HIGHMEM
557 static void try_to_free_low(unsigned long count)
561 for (i = 0; i < MAX_NUMNODES; ++i) {
562 struct page *page, *next;
563 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
564 if (count >= nr_huge_pages)
566 if (PageHighMem(page))
568 list_del(&page->lru);
569 update_and_free_page(page);
571 free_huge_pages_node[page_to_nid(page)]--;
576 static inline void try_to_free_low(unsigned long count)
581 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
582 static unsigned long set_max_huge_pages(unsigned long count)
584 unsigned long min_count, ret;
587 * Increase the pool size
588 * First take pages out of surplus state. Then make up the
589 * remaining difference by allocating fresh huge pages.
591 * We might race with alloc_buddy_huge_page() here and be unable
592 * to convert a surplus huge page to a normal huge page. That is
593 * not critical, though, it just means the overall size of the
594 * pool might be one hugepage larger than it needs to be, but
595 * within all the constraints specified by the sysctls.
597 spin_lock(&hugetlb_lock);
598 while (surplus_huge_pages && count > persistent_huge_pages) {
599 if (!adjust_pool_surplus(-1))
603 while (count > persistent_huge_pages) {
606 * If this allocation races such that we no longer need the
607 * page, free_huge_page will handle it by freeing the page
608 * and reducing the surplus.
610 spin_unlock(&hugetlb_lock);
611 ret = alloc_fresh_huge_page();
612 spin_lock(&hugetlb_lock);
619 * Decrease the pool size
620 * First return free pages to the buddy allocator (being careful
621 * to keep enough around to satisfy reservations). Then place
622 * pages into surplus state as needed so the pool will shrink
623 * to the desired size as pages become free.
625 * By placing pages into the surplus state independent of the
626 * overcommit value, we are allowing the surplus pool size to
627 * exceed overcommit. There are few sane options here. Since
628 * alloc_buddy_huge_page() is checking the global counter,
629 * though, we'll note that we're not allowed to exceed surplus
630 * and won't grow the pool anywhere else. Not until one of the
631 * sysctls are changed, or the surplus pages go out of use.
633 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
634 min_count = max(count, min_count);
635 try_to_free_low(min_count);
636 while (min_count < persistent_huge_pages) {
637 struct page *page = dequeue_huge_page();
640 update_and_free_page(page);
642 while (count < persistent_huge_pages) {
643 if (!adjust_pool_surplus(1))
647 ret = persistent_huge_pages;
648 spin_unlock(&hugetlb_lock);
652 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
653 struct file *file, void __user *buffer,
654 size_t *length, loff_t *ppos)
656 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
657 max_huge_pages = set_max_huge_pages(max_huge_pages);
661 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
662 struct file *file, void __user *buffer,
663 size_t *length, loff_t *ppos)
665 proc_dointvec(table, write, file, buffer, length, ppos);
666 if (hugepages_treat_as_movable)
667 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
669 htlb_alloc_mask = GFP_HIGHUSER;
673 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
674 struct file *file, void __user *buffer,
675 size_t *length, loff_t *ppos)
677 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
678 spin_lock(&hugetlb_lock);
679 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
680 spin_unlock(&hugetlb_lock);
684 #endif /* CONFIG_SYSCTL */
686 int hugetlb_report_meminfo(char *buf)
689 "HugePages_Total: %5lu\n"
690 "HugePages_Free: %5lu\n"
691 "HugePages_Rsvd: %5lu\n"
692 "HugePages_Surp: %5lu\n"
693 "Hugepagesize: %5lu kB\n",
701 int hugetlb_report_node_meminfo(int nid, char *buf)
704 "Node %d HugePages_Total: %5u\n"
705 "Node %d HugePages_Free: %5u\n"
706 "Node %d HugePages_Surp: %5u\n",
707 nid, nr_huge_pages_node[nid],
708 nid, free_huge_pages_node[nid],
709 nid, surplus_huge_pages_node[nid]);
712 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
713 unsigned long hugetlb_total_pages(void)
715 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
719 * We cannot handle pagefaults against hugetlb pages at all. They cause
720 * handle_mm_fault() to try to instantiate regular-sized pages in the
721 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
724 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
730 struct vm_operations_struct hugetlb_vm_ops = {
731 .fault = hugetlb_vm_op_fault,
734 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
741 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
743 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
745 entry = pte_mkyoung(entry);
746 entry = pte_mkhuge(entry);
751 static void set_huge_ptep_writable(struct vm_area_struct *vma,
752 unsigned long address, pte_t *ptep)
756 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
757 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
758 update_mmu_cache(vma, address, entry);
763 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
764 struct vm_area_struct *vma)
766 pte_t *src_pte, *dst_pte, entry;
767 struct page *ptepage;
771 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
773 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
774 src_pte = huge_pte_offset(src, addr);
777 dst_pte = huge_pte_alloc(dst, addr);
781 /* If the pagetables are shared don't copy or take references */
782 if (dst_pte == src_pte)
785 spin_lock(&dst->page_table_lock);
786 spin_lock(&src->page_table_lock);
787 if (!huge_pte_none(huge_ptep_get(src_pte))) {
789 huge_ptep_set_wrprotect(src, addr, src_pte);
790 entry = huge_ptep_get(src_pte);
791 ptepage = pte_page(entry);
793 set_huge_pte_at(dst, addr, dst_pte, entry);
795 spin_unlock(&src->page_table_lock);
796 spin_unlock(&dst->page_table_lock);
804 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
807 struct mm_struct *mm = vma->vm_mm;
808 unsigned long address;
814 * A page gathering list, protected by per file i_mmap_lock. The
815 * lock is used to avoid list corruption from multiple unmapping
816 * of the same page since we are using page->lru.
818 LIST_HEAD(page_list);
820 WARN_ON(!is_vm_hugetlb_page(vma));
821 BUG_ON(start & ~HPAGE_MASK);
822 BUG_ON(end & ~HPAGE_MASK);
824 spin_lock(&mm->page_table_lock);
825 for (address = start; address < end; address += HPAGE_SIZE) {
826 ptep = huge_pte_offset(mm, address);
830 if (huge_pmd_unshare(mm, &address, ptep))
833 pte = huge_ptep_get_and_clear(mm, address, ptep);
834 if (huge_pte_none(pte))
837 page = pte_page(pte);
839 set_page_dirty(page);
840 list_add(&page->lru, &page_list);
842 spin_unlock(&mm->page_table_lock);
843 flush_tlb_range(vma, start, end);
844 list_for_each_entry_safe(page, tmp, &page_list, lru) {
845 list_del(&page->lru);
850 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
854 * It is undesirable to test vma->vm_file as it should be non-null
855 * for valid hugetlb area. However, vm_file will be NULL in the error
856 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
857 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
858 * to clean up. Since no pte has actually been setup, it is safe to
859 * do nothing in this case.
862 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
863 __unmap_hugepage_range(vma, start, end);
864 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
868 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
869 unsigned long address, pte_t *ptep, pte_t pte)
871 struct page *old_page, *new_page;
874 old_page = pte_page(pte);
876 /* If no-one else is actually using this page, avoid the copy
877 * and just make the page writable */
878 avoidcopy = (page_count(old_page) == 1);
880 set_huge_ptep_writable(vma, address, ptep);
884 page_cache_get(old_page);
885 new_page = alloc_huge_page(vma, address);
887 if (IS_ERR(new_page)) {
888 page_cache_release(old_page);
889 return -PTR_ERR(new_page);
892 spin_unlock(&mm->page_table_lock);
893 copy_huge_page(new_page, old_page, address, vma);
894 __SetPageUptodate(new_page);
895 spin_lock(&mm->page_table_lock);
897 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
898 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
900 huge_ptep_clear_flush(vma, address, ptep);
901 set_huge_pte_at(mm, address, ptep,
902 make_huge_pte(vma, new_page, 1));
903 /* Make the old page be freed below */
906 page_cache_release(new_page);
907 page_cache_release(old_page);
911 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
912 unsigned long address, pte_t *ptep, int write_access)
914 int ret = VM_FAULT_SIGBUS;
918 struct address_space *mapping;
921 mapping = vma->vm_file->f_mapping;
922 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
923 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
926 * Use page lock to guard against racing truncation
927 * before we get page_table_lock.
930 page = find_lock_page(mapping, idx);
932 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
935 page = alloc_huge_page(vma, address);
937 ret = -PTR_ERR(page);
940 clear_huge_page(page, address);
941 __SetPageUptodate(page);
943 if (vma->vm_flags & VM_SHARED) {
945 struct inode *inode = mapping->host;
947 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
955 spin_lock(&inode->i_lock);
956 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
957 spin_unlock(&inode->i_lock);
962 spin_lock(&mm->page_table_lock);
963 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
968 if (!huge_pte_none(huge_ptep_get(ptep)))
971 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
972 && (vma->vm_flags & VM_SHARED)));
973 set_huge_pte_at(mm, address, ptep, new_pte);
975 if (write_access && !(vma->vm_flags & VM_SHARED)) {
976 /* Optimization, do the COW without a second fault */
977 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
980 spin_unlock(&mm->page_table_lock);
986 spin_unlock(&mm->page_table_lock);
992 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
993 unsigned long address, int write_access)
998 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1000 ptep = huge_pte_alloc(mm, address);
1002 return VM_FAULT_OOM;
1005 * Serialize hugepage allocation and instantiation, so that we don't
1006 * get spurious allocation failures if two CPUs race to instantiate
1007 * the same page in the page cache.
1009 mutex_lock(&hugetlb_instantiation_mutex);
1010 entry = huge_ptep_get(ptep);
1011 if (huge_pte_none(entry)) {
1012 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1013 mutex_unlock(&hugetlb_instantiation_mutex);
1019 spin_lock(&mm->page_table_lock);
1020 /* Check for a racing update before calling hugetlb_cow */
1021 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1022 if (write_access && !pte_write(entry))
1023 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1024 spin_unlock(&mm->page_table_lock);
1025 mutex_unlock(&hugetlb_instantiation_mutex);
1030 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1031 struct page **pages, struct vm_area_struct **vmas,
1032 unsigned long *position, int *length, int i,
1035 unsigned long pfn_offset;
1036 unsigned long vaddr = *position;
1037 int remainder = *length;
1039 spin_lock(&mm->page_table_lock);
1040 while (vaddr < vma->vm_end && remainder) {
1045 * Some archs (sparc64, sh*) have multiple pte_ts to
1046 * each hugepage. We have to make * sure we get the
1047 * first, for the page indexing below to work.
1049 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1051 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1052 (write && !pte_write(huge_ptep_get(pte)))) {
1055 spin_unlock(&mm->page_table_lock);
1056 ret = hugetlb_fault(mm, vma, vaddr, write);
1057 spin_lock(&mm->page_table_lock);
1058 if (!(ret & VM_FAULT_ERROR))
1067 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1068 page = pte_page(huge_ptep_get(pte));
1072 pages[i] = page + pfn_offset;
1082 if (vaddr < vma->vm_end && remainder &&
1083 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1085 * We use pfn_offset to avoid touching the pageframes
1086 * of this compound page.
1091 spin_unlock(&mm->page_table_lock);
1092 *length = remainder;
1098 void hugetlb_change_protection(struct vm_area_struct *vma,
1099 unsigned long address, unsigned long end, pgprot_t newprot)
1101 struct mm_struct *mm = vma->vm_mm;
1102 unsigned long start = address;
1106 BUG_ON(address >= end);
1107 flush_cache_range(vma, address, end);
1109 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1110 spin_lock(&mm->page_table_lock);
1111 for (; address < end; address += HPAGE_SIZE) {
1112 ptep = huge_pte_offset(mm, address);
1115 if (huge_pmd_unshare(mm, &address, ptep))
1117 if (!huge_pte_none(huge_ptep_get(ptep))) {
1118 pte = huge_ptep_get_and_clear(mm, address, ptep);
1119 pte = pte_mkhuge(pte_modify(pte, newprot));
1120 set_huge_pte_at(mm, address, ptep, pte);
1123 spin_unlock(&mm->page_table_lock);
1124 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1126 flush_tlb_range(vma, start, end);
1129 struct file_region {
1130 struct list_head link;
1135 static long region_add(struct list_head *head, long f, long t)
1137 struct file_region *rg, *nrg, *trg;
1139 /* Locate the region we are either in or before. */
1140 list_for_each_entry(rg, head, link)
1144 /* Round our left edge to the current segment if it encloses us. */
1148 /* Check for and consume any regions we now overlap with. */
1150 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1151 if (&rg->link == head)
1156 /* If this area reaches higher then extend our area to
1157 * include it completely. If this is not the first area
1158 * which we intend to reuse, free it. */
1162 list_del(&rg->link);
1171 static long region_chg(struct list_head *head, long f, long t)
1173 struct file_region *rg, *nrg;
1176 /* Locate the region we are before or in. */
1177 list_for_each_entry(rg, head, link)
1181 /* If we are below the current region then a new region is required.
1182 * Subtle, allocate a new region at the position but make it zero
1183 * size such that we can guarantee to record the reservation. */
1184 if (&rg->link == head || t < rg->from) {
1185 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1190 INIT_LIST_HEAD(&nrg->link);
1191 list_add(&nrg->link, rg->link.prev);
1196 /* Round our left edge to the current segment if it encloses us. */
1201 /* Check for and consume any regions we now overlap with. */
1202 list_for_each_entry(rg, rg->link.prev, link) {
1203 if (&rg->link == head)
1208 /* We overlap with this area, if it extends futher than
1209 * us then we must extend ourselves. Account for its
1210 * existing reservation. */
1215 chg -= rg->to - rg->from;
1220 static long region_truncate(struct list_head *head, long end)
1222 struct file_region *rg, *trg;
1225 /* Locate the region we are either in or before. */
1226 list_for_each_entry(rg, head, link)
1229 if (&rg->link == head)
1232 /* If we are in the middle of a region then adjust it. */
1233 if (end > rg->from) {
1236 rg = list_entry(rg->link.next, typeof(*rg), link);
1239 /* Drop any remaining regions. */
1240 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1241 if (&rg->link == head)
1243 chg += rg->to - rg->from;
1244 list_del(&rg->link);
1250 static int hugetlb_acct_memory(long delta)
1254 spin_lock(&hugetlb_lock);
1256 * When cpuset is configured, it breaks the strict hugetlb page
1257 * reservation as the accounting is done on a global variable. Such
1258 * reservation is completely rubbish in the presence of cpuset because
1259 * the reservation is not checked against page availability for the
1260 * current cpuset. Application can still potentially OOM'ed by kernel
1261 * with lack of free htlb page in cpuset that the task is in.
1262 * Attempt to enforce strict accounting with cpuset is almost
1263 * impossible (or too ugly) because cpuset is too fluid that
1264 * task or memory node can be dynamically moved between cpusets.
1266 * The change of semantics for shared hugetlb mapping with cpuset is
1267 * undesirable. However, in order to preserve some of the semantics,
1268 * we fall back to check against current free page availability as
1269 * a best attempt and hopefully to minimize the impact of changing
1270 * semantics that cpuset has.
1273 if (gather_surplus_pages(delta) < 0)
1276 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1277 return_unused_surplus_pages(delta);
1284 return_unused_surplus_pages((unsigned long) -delta);
1287 spin_unlock(&hugetlb_lock);
1291 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1295 chg = region_chg(&inode->i_mapping->private_list, from, to);
1299 if (hugetlb_get_quota(inode->i_mapping, chg))
1301 ret = hugetlb_acct_memory(chg);
1303 hugetlb_put_quota(inode->i_mapping, chg);
1306 region_add(&inode->i_mapping->private_list, from, to);
1310 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1312 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1314 spin_lock(&inode->i_lock);
1315 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1316 spin_unlock(&inode->i_lock);
1318 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1319 hugetlb_acct_memory(-(chg - freed));