]> err.no Git - linux-2.6/blob - mm/hugetlb.c
hugetlb: fix pool resizing corner case
[linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35
36 /*
37  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
38  */
39 static DEFINE_SPINLOCK(hugetlb_lock);
40
41 static void clear_huge_page(struct page *page, unsigned long addr)
42 {
43         int i;
44
45         might_sleep();
46         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
47                 cond_resched();
48                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
49         }
50 }
51
52 static void copy_huge_page(struct page *dst, struct page *src,
53                            unsigned long addr, struct vm_area_struct *vma)
54 {
55         int i;
56
57         might_sleep();
58         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
59                 cond_resched();
60                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
61         }
62 }
63
64 static void enqueue_huge_page(struct page *page)
65 {
66         int nid = page_to_nid(page);
67         list_add(&page->lru, &hugepage_freelists[nid]);
68         free_huge_pages++;
69         free_huge_pages_node[nid]++;
70 }
71
72 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
73                                 unsigned long address)
74 {
75         int nid;
76         struct page *page = NULL;
77         struct mempolicy *mpol;
78         struct zonelist *zonelist = huge_zonelist(vma, address,
79                                         htlb_alloc_mask, &mpol);
80         struct zone **z;
81
82         for (z = zonelist->zones; *z; z++) {
83                 nid = zone_to_nid(*z);
84                 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
85                     !list_empty(&hugepage_freelists[nid])) {
86                         page = list_entry(hugepage_freelists[nid].next,
87                                           struct page, lru);
88                         list_del(&page->lru);
89                         free_huge_pages--;
90                         free_huge_pages_node[nid]--;
91                         if (vma && vma->vm_flags & VM_MAYSHARE)
92                                 resv_huge_pages--;
93                         break;
94                 }
95         }
96         mpol_free(mpol);        /* unref if mpol !NULL */
97         return page;
98 }
99
100 static void update_and_free_page(struct page *page)
101 {
102         int i;
103         nr_huge_pages--;
104         nr_huge_pages_node[page_to_nid(page)]--;
105         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
106                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
107                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
108                                 1 << PG_private | 1<< PG_writeback);
109         }
110         set_compound_page_dtor(page, NULL);
111         set_page_refcounted(page);
112         __free_pages(page, HUGETLB_PAGE_ORDER);
113 }
114
115 static void free_huge_page(struct page *page)
116 {
117         int nid = page_to_nid(page);
118
119         BUG_ON(page_count(page));
120         INIT_LIST_HEAD(&page->lru);
121
122         spin_lock(&hugetlb_lock);
123         if (surplus_huge_pages_node[nid]) {
124                 update_and_free_page(page);
125                 surplus_huge_pages--;
126                 surplus_huge_pages_node[nid]--;
127         } else {
128                 enqueue_huge_page(page);
129         }
130         spin_unlock(&hugetlb_lock);
131 }
132
133 /*
134  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
135  * balanced by operating on them in a round-robin fashion.
136  * Returns 1 if an adjustment was made.
137  */
138 static int adjust_pool_surplus(int delta)
139 {
140         static int prev_nid;
141         int nid = prev_nid;
142         int ret = 0;
143
144         VM_BUG_ON(delta != -1 && delta != 1);
145         do {
146                 nid = next_node(nid, node_online_map);
147                 if (nid == MAX_NUMNODES)
148                         nid = first_node(node_online_map);
149
150                 /* To shrink on this node, there must be a surplus page */
151                 if (delta < 0 && !surplus_huge_pages_node[nid])
152                         continue;
153                 /* Surplus cannot exceed the total number of pages */
154                 if (delta > 0 && surplus_huge_pages_node[nid] >=
155                                                 nr_huge_pages_node[nid])
156                         continue;
157
158                 surplus_huge_pages += delta;
159                 surplus_huge_pages_node[nid] += delta;
160                 ret = 1;
161                 break;
162         } while (nid != prev_nid);
163
164         prev_nid = nid;
165         return ret;
166 }
167
168 static int alloc_fresh_huge_page(void)
169 {
170         static int prev_nid;
171         struct page *page;
172         int nid;
173
174         /*
175          * Copy static prev_nid to local nid, work on that, then copy it
176          * back to prev_nid afterwards: otherwise there's a window in which
177          * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
178          * But we don't need to use a spin_lock here: it really doesn't
179          * matter if occasionally a racer chooses the same nid as we do.
180          */
181         nid = next_node(prev_nid, node_online_map);
182         if (nid == MAX_NUMNODES)
183                 nid = first_node(node_online_map);
184         prev_nid = nid;
185
186         page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
187                                         HUGETLB_PAGE_ORDER);
188         if (page) {
189                 set_compound_page_dtor(page, free_huge_page);
190                 spin_lock(&hugetlb_lock);
191                 nr_huge_pages++;
192                 nr_huge_pages_node[page_to_nid(page)]++;
193                 spin_unlock(&hugetlb_lock);
194                 put_page(page); /* free it into the hugepage allocator */
195                 return 1;
196         }
197         return 0;
198 }
199
200 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
201                                                 unsigned long address)
202 {
203         struct page *page;
204
205         /* Check if the dynamic pool is enabled */
206         if (!hugetlb_dynamic_pool)
207                 return NULL;
208
209         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
210                                         HUGETLB_PAGE_ORDER);
211         if (page) {
212                 set_compound_page_dtor(page, free_huge_page);
213                 spin_lock(&hugetlb_lock);
214                 nr_huge_pages++;
215                 nr_huge_pages_node[page_to_nid(page)]++;
216                 surplus_huge_pages++;
217                 surplus_huge_pages_node[page_to_nid(page)]++;
218                 spin_unlock(&hugetlb_lock);
219         }
220
221         return page;
222 }
223
224 /*
225  * Increase the hugetlb pool such that it can accomodate a reservation
226  * of size 'delta'.
227  */
228 static int gather_surplus_pages(int delta)
229 {
230         struct list_head surplus_list;
231         struct page *page, *tmp;
232         int ret, i;
233         int needed, allocated;
234
235         needed = (resv_huge_pages + delta) - free_huge_pages;
236         if (needed <= 0)
237                 return 0;
238
239         allocated = 0;
240         INIT_LIST_HEAD(&surplus_list);
241
242         ret = -ENOMEM;
243 retry:
244         spin_unlock(&hugetlb_lock);
245         for (i = 0; i < needed; i++) {
246                 page = alloc_buddy_huge_page(NULL, 0);
247                 if (!page) {
248                         /*
249                          * We were not able to allocate enough pages to
250                          * satisfy the entire reservation so we free what
251                          * we've allocated so far.
252                          */
253                         spin_lock(&hugetlb_lock);
254                         needed = 0;
255                         goto free;
256                 }
257
258                 list_add(&page->lru, &surplus_list);
259         }
260         allocated += needed;
261
262         /*
263          * After retaking hugetlb_lock, we need to recalculate 'needed'
264          * because either resv_huge_pages or free_huge_pages may have changed.
265          */
266         spin_lock(&hugetlb_lock);
267         needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
268         if (needed > 0)
269                 goto retry;
270
271         /*
272          * The surplus_list now contains _at_least_ the number of extra pages
273          * needed to accomodate the reservation.  Add the appropriate number
274          * of pages to the hugetlb pool and free the extras back to the buddy
275          * allocator.
276          */
277         needed += allocated;
278         ret = 0;
279 free:
280         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
281                 list_del(&page->lru);
282                 if ((--needed) >= 0)
283                         enqueue_huge_page(page);
284                 else
285                         update_and_free_page(page);
286         }
287
288         return ret;
289 }
290
291 /*
292  * When releasing a hugetlb pool reservation, any surplus pages that were
293  * allocated to satisfy the reservation must be explicitly freed if they were
294  * never used.
295  */
296 void return_unused_surplus_pages(unsigned long unused_resv_pages)
297 {
298         static int nid = -1;
299         struct page *page;
300         unsigned long nr_pages;
301
302         nr_pages = min(unused_resv_pages, surplus_huge_pages);
303
304         while (nr_pages) {
305                 nid = next_node(nid, node_online_map);
306                 if (nid == MAX_NUMNODES)
307                         nid = first_node(node_online_map);
308
309                 if (!surplus_huge_pages_node[nid])
310                         continue;
311
312                 if (!list_empty(&hugepage_freelists[nid])) {
313                         page = list_entry(hugepage_freelists[nid].next,
314                                           struct page, lru);
315                         list_del(&page->lru);
316                         update_and_free_page(page);
317                         free_huge_pages--;
318                         free_huge_pages_node[nid]--;
319                         surplus_huge_pages--;
320                         surplus_huge_pages_node[nid]--;
321                         nr_pages--;
322                 }
323         }
324 }
325
326 static struct page *alloc_huge_page(struct vm_area_struct *vma,
327                                     unsigned long addr)
328 {
329         struct page *page = NULL;
330         int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
331
332         spin_lock(&hugetlb_lock);
333         if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
334                 goto fail;
335
336         page = dequeue_huge_page(vma, addr);
337         if (!page)
338                 goto fail;
339
340         spin_unlock(&hugetlb_lock);
341         set_page_refcounted(page);
342         return page;
343
344 fail:
345         spin_unlock(&hugetlb_lock);
346
347         /*
348          * Private mappings do not use reserved huge pages so the allocation
349          * may have failed due to an undersized hugetlb pool.  Try to grab a
350          * surplus huge page from the buddy allocator.
351          */
352         if (!use_reserved_page)
353                 page = alloc_buddy_huge_page(vma, addr);
354
355         return page;
356 }
357
358 static int __init hugetlb_init(void)
359 {
360         unsigned long i;
361
362         if (HPAGE_SHIFT == 0)
363                 return 0;
364
365         for (i = 0; i < MAX_NUMNODES; ++i)
366                 INIT_LIST_HEAD(&hugepage_freelists[i]);
367
368         for (i = 0; i < max_huge_pages; ++i) {
369                 if (!alloc_fresh_huge_page())
370                         break;
371         }
372         max_huge_pages = free_huge_pages = nr_huge_pages = i;
373         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
374         return 0;
375 }
376 module_init(hugetlb_init);
377
378 static int __init hugetlb_setup(char *s)
379 {
380         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
381                 max_huge_pages = 0;
382         return 1;
383 }
384 __setup("hugepages=", hugetlb_setup);
385
386 static unsigned int cpuset_mems_nr(unsigned int *array)
387 {
388         int node;
389         unsigned int nr = 0;
390
391         for_each_node_mask(node, cpuset_current_mems_allowed)
392                 nr += array[node];
393
394         return nr;
395 }
396
397 #ifdef CONFIG_SYSCTL
398 #ifdef CONFIG_HIGHMEM
399 static void try_to_free_low(unsigned long count)
400 {
401         int i;
402
403         for (i = 0; i < MAX_NUMNODES; ++i) {
404                 struct page *page, *next;
405                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
406                         if (count >= nr_huge_pages)
407                                 return;
408                         if (PageHighMem(page))
409                                 continue;
410                         list_del(&page->lru);
411                         update_and_free_page(page);
412                         free_huge_pages--;
413                         free_huge_pages_node[page_to_nid(page)]--;
414                 }
415         }
416 }
417 #else
418 static inline void try_to_free_low(unsigned long count)
419 {
420 }
421 #endif
422
423 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
424 static unsigned long set_max_huge_pages(unsigned long count)
425 {
426         unsigned long min_count, ret;
427
428         /*
429          * Increase the pool size
430          * First take pages out of surplus state.  Then make up the
431          * remaining difference by allocating fresh huge pages.
432          */
433         spin_lock(&hugetlb_lock);
434         while (surplus_huge_pages && count > persistent_huge_pages) {
435                 if (!adjust_pool_surplus(-1))
436                         break;
437         }
438
439         while (count > persistent_huge_pages) {
440                 int ret;
441                 /*
442                  * If this allocation races such that we no longer need the
443                  * page, free_huge_page will handle it by freeing the page
444                  * and reducing the surplus.
445                  */
446                 spin_unlock(&hugetlb_lock);
447                 ret = alloc_fresh_huge_page();
448                 spin_lock(&hugetlb_lock);
449                 if (!ret)
450                         goto out;
451
452         }
453
454         /*
455          * Decrease the pool size
456          * First return free pages to the buddy allocator (being careful
457          * to keep enough around to satisfy reservations).  Then place
458          * pages into surplus state as needed so the pool will shrink
459          * to the desired size as pages become free.
460          */
461         min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
462         min_count = max(count, min_count);
463         try_to_free_low(min_count);
464         while (min_count < persistent_huge_pages) {
465                 struct page *page = dequeue_huge_page(NULL, 0);
466                 if (!page)
467                         break;
468                 update_and_free_page(page);
469         }
470         while (count < persistent_huge_pages) {
471                 if (!adjust_pool_surplus(1))
472                         break;
473         }
474 out:
475         ret = persistent_huge_pages;
476         spin_unlock(&hugetlb_lock);
477         return ret;
478 }
479
480 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
481                            struct file *file, void __user *buffer,
482                            size_t *length, loff_t *ppos)
483 {
484         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
485         max_huge_pages = set_max_huge_pages(max_huge_pages);
486         return 0;
487 }
488
489 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
490                         struct file *file, void __user *buffer,
491                         size_t *length, loff_t *ppos)
492 {
493         proc_dointvec(table, write, file, buffer, length, ppos);
494         if (hugepages_treat_as_movable)
495                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
496         else
497                 htlb_alloc_mask = GFP_HIGHUSER;
498         return 0;
499 }
500
501 #endif /* CONFIG_SYSCTL */
502
503 int hugetlb_report_meminfo(char *buf)
504 {
505         return sprintf(buf,
506                         "HugePages_Total: %5lu\n"
507                         "HugePages_Free:  %5lu\n"
508                         "HugePages_Rsvd:  %5lu\n"
509                         "HugePages_Surp:  %5lu\n"
510                         "Hugepagesize:    %5lu kB\n",
511                         nr_huge_pages,
512                         free_huge_pages,
513                         resv_huge_pages,
514                         surplus_huge_pages,
515                         HPAGE_SIZE/1024);
516 }
517
518 int hugetlb_report_node_meminfo(int nid, char *buf)
519 {
520         return sprintf(buf,
521                 "Node %d HugePages_Total: %5u\n"
522                 "Node %d HugePages_Free:  %5u\n",
523                 nid, nr_huge_pages_node[nid],
524                 nid, free_huge_pages_node[nid]);
525 }
526
527 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
528 unsigned long hugetlb_total_pages(void)
529 {
530         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
531 }
532
533 /*
534  * We cannot handle pagefaults against hugetlb pages at all.  They cause
535  * handle_mm_fault() to try to instantiate regular-sized pages in the
536  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
537  * this far.
538  */
539 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
540 {
541         BUG();
542         return 0;
543 }
544
545 struct vm_operations_struct hugetlb_vm_ops = {
546         .fault = hugetlb_vm_op_fault,
547 };
548
549 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
550                                 int writable)
551 {
552         pte_t entry;
553
554         if (writable) {
555                 entry =
556                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
557         } else {
558                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
559         }
560         entry = pte_mkyoung(entry);
561         entry = pte_mkhuge(entry);
562
563         return entry;
564 }
565
566 static void set_huge_ptep_writable(struct vm_area_struct *vma,
567                                    unsigned long address, pte_t *ptep)
568 {
569         pte_t entry;
570
571         entry = pte_mkwrite(pte_mkdirty(*ptep));
572         if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
573                 update_mmu_cache(vma, address, entry);
574         }
575 }
576
577
578 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
579                             struct vm_area_struct *vma)
580 {
581         pte_t *src_pte, *dst_pte, entry;
582         struct page *ptepage;
583         unsigned long addr;
584         int cow;
585
586         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
587
588         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
589                 src_pte = huge_pte_offset(src, addr);
590                 if (!src_pte)
591                         continue;
592                 dst_pte = huge_pte_alloc(dst, addr);
593                 if (!dst_pte)
594                         goto nomem;
595                 spin_lock(&dst->page_table_lock);
596                 spin_lock(&src->page_table_lock);
597                 if (!pte_none(*src_pte)) {
598                         if (cow)
599                                 ptep_set_wrprotect(src, addr, src_pte);
600                         entry = *src_pte;
601                         ptepage = pte_page(entry);
602                         get_page(ptepage);
603                         set_huge_pte_at(dst, addr, dst_pte, entry);
604                 }
605                 spin_unlock(&src->page_table_lock);
606                 spin_unlock(&dst->page_table_lock);
607         }
608         return 0;
609
610 nomem:
611         return -ENOMEM;
612 }
613
614 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
615                             unsigned long end)
616 {
617         struct mm_struct *mm = vma->vm_mm;
618         unsigned long address;
619         pte_t *ptep;
620         pte_t pte;
621         struct page *page;
622         struct page *tmp;
623         /*
624          * A page gathering list, protected by per file i_mmap_lock. The
625          * lock is used to avoid list corruption from multiple unmapping
626          * of the same page since we are using page->lru.
627          */
628         LIST_HEAD(page_list);
629
630         WARN_ON(!is_vm_hugetlb_page(vma));
631         BUG_ON(start & ~HPAGE_MASK);
632         BUG_ON(end & ~HPAGE_MASK);
633
634         spin_lock(&mm->page_table_lock);
635         for (address = start; address < end; address += HPAGE_SIZE) {
636                 ptep = huge_pte_offset(mm, address);
637                 if (!ptep)
638                         continue;
639
640                 if (huge_pmd_unshare(mm, &address, ptep))
641                         continue;
642
643                 pte = huge_ptep_get_and_clear(mm, address, ptep);
644                 if (pte_none(pte))
645                         continue;
646
647                 page = pte_page(pte);
648                 if (pte_dirty(pte))
649                         set_page_dirty(page);
650                 list_add(&page->lru, &page_list);
651         }
652         spin_unlock(&mm->page_table_lock);
653         flush_tlb_range(vma, start, end);
654         list_for_each_entry_safe(page, tmp, &page_list, lru) {
655                 list_del(&page->lru);
656                 put_page(page);
657         }
658 }
659
660 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
661                           unsigned long end)
662 {
663         /*
664          * It is undesirable to test vma->vm_file as it should be non-null
665          * for valid hugetlb area. However, vm_file will be NULL in the error
666          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
667          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
668          * to clean up. Since no pte has actually been setup, it is safe to
669          * do nothing in this case.
670          */
671         if (vma->vm_file) {
672                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
673                 __unmap_hugepage_range(vma, start, end);
674                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
675         }
676 }
677
678 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
679                         unsigned long address, pte_t *ptep, pte_t pte)
680 {
681         struct page *old_page, *new_page;
682         int avoidcopy;
683
684         old_page = pte_page(pte);
685
686         /* If no-one else is actually using this page, avoid the copy
687          * and just make the page writable */
688         avoidcopy = (page_count(old_page) == 1);
689         if (avoidcopy) {
690                 set_huge_ptep_writable(vma, address, ptep);
691                 return 0;
692         }
693
694         page_cache_get(old_page);
695         new_page = alloc_huge_page(vma, address);
696
697         if (!new_page) {
698                 page_cache_release(old_page);
699                 return VM_FAULT_OOM;
700         }
701
702         spin_unlock(&mm->page_table_lock);
703         copy_huge_page(new_page, old_page, address, vma);
704         spin_lock(&mm->page_table_lock);
705
706         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
707         if (likely(pte_same(*ptep, pte))) {
708                 /* Break COW */
709                 set_huge_pte_at(mm, address, ptep,
710                                 make_huge_pte(vma, new_page, 1));
711                 /* Make the old page be freed below */
712                 new_page = old_page;
713         }
714         page_cache_release(new_page);
715         page_cache_release(old_page);
716         return 0;
717 }
718
719 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
720                         unsigned long address, pte_t *ptep, int write_access)
721 {
722         int ret = VM_FAULT_SIGBUS;
723         unsigned long idx;
724         unsigned long size;
725         struct page *page;
726         struct address_space *mapping;
727         pte_t new_pte;
728
729         mapping = vma->vm_file->f_mapping;
730         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
731                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
732
733         /*
734          * Use page lock to guard against racing truncation
735          * before we get page_table_lock.
736          */
737 retry:
738         page = find_lock_page(mapping, idx);
739         if (!page) {
740                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
741                 if (idx >= size)
742                         goto out;
743                 if (hugetlb_get_quota(mapping))
744                         goto out;
745                 page = alloc_huge_page(vma, address);
746                 if (!page) {
747                         hugetlb_put_quota(mapping);
748                         ret = VM_FAULT_OOM;
749                         goto out;
750                 }
751                 clear_huge_page(page, address);
752
753                 if (vma->vm_flags & VM_SHARED) {
754                         int err;
755
756                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
757                         if (err) {
758                                 put_page(page);
759                                 hugetlb_put_quota(mapping);
760                                 if (err == -EEXIST)
761                                         goto retry;
762                                 goto out;
763                         }
764                 } else
765                         lock_page(page);
766         }
767
768         spin_lock(&mm->page_table_lock);
769         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
770         if (idx >= size)
771                 goto backout;
772
773         ret = 0;
774         if (!pte_none(*ptep))
775                 goto backout;
776
777         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
778                                 && (vma->vm_flags & VM_SHARED)));
779         set_huge_pte_at(mm, address, ptep, new_pte);
780
781         if (write_access && !(vma->vm_flags & VM_SHARED)) {
782                 /* Optimization, do the COW without a second fault */
783                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
784         }
785
786         spin_unlock(&mm->page_table_lock);
787         unlock_page(page);
788 out:
789         return ret;
790
791 backout:
792         spin_unlock(&mm->page_table_lock);
793         hugetlb_put_quota(mapping);
794         unlock_page(page);
795         put_page(page);
796         goto out;
797 }
798
799 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
800                         unsigned long address, int write_access)
801 {
802         pte_t *ptep;
803         pte_t entry;
804         int ret;
805         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
806
807         ptep = huge_pte_alloc(mm, address);
808         if (!ptep)
809                 return VM_FAULT_OOM;
810
811         /*
812          * Serialize hugepage allocation and instantiation, so that we don't
813          * get spurious allocation failures if two CPUs race to instantiate
814          * the same page in the page cache.
815          */
816         mutex_lock(&hugetlb_instantiation_mutex);
817         entry = *ptep;
818         if (pte_none(entry)) {
819                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
820                 mutex_unlock(&hugetlb_instantiation_mutex);
821                 return ret;
822         }
823
824         ret = 0;
825
826         spin_lock(&mm->page_table_lock);
827         /* Check for a racing update before calling hugetlb_cow */
828         if (likely(pte_same(entry, *ptep)))
829                 if (write_access && !pte_write(entry))
830                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
831         spin_unlock(&mm->page_table_lock);
832         mutex_unlock(&hugetlb_instantiation_mutex);
833
834         return ret;
835 }
836
837 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
838                         struct page **pages, struct vm_area_struct **vmas,
839                         unsigned long *position, int *length, int i)
840 {
841         unsigned long pfn_offset;
842         unsigned long vaddr = *position;
843         int remainder = *length;
844
845         spin_lock(&mm->page_table_lock);
846         while (vaddr < vma->vm_end && remainder) {
847                 pte_t *pte;
848                 struct page *page;
849
850                 /*
851                  * Some archs (sparc64, sh*) have multiple pte_ts to
852                  * each hugepage.  We have to make * sure we get the
853                  * first, for the page indexing below to work.
854                  */
855                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
856
857                 if (!pte || pte_none(*pte)) {
858                         int ret;
859
860                         spin_unlock(&mm->page_table_lock);
861                         ret = hugetlb_fault(mm, vma, vaddr, 0);
862                         spin_lock(&mm->page_table_lock);
863                         if (!(ret & VM_FAULT_ERROR))
864                                 continue;
865
866                         remainder = 0;
867                         if (!i)
868                                 i = -EFAULT;
869                         break;
870                 }
871
872                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
873                 page = pte_page(*pte);
874 same_page:
875                 if (pages) {
876                         get_page(page);
877                         pages[i] = page + pfn_offset;
878                 }
879
880                 if (vmas)
881                         vmas[i] = vma;
882
883                 vaddr += PAGE_SIZE;
884                 ++pfn_offset;
885                 --remainder;
886                 ++i;
887                 if (vaddr < vma->vm_end && remainder &&
888                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
889                         /*
890                          * We use pfn_offset to avoid touching the pageframes
891                          * of this compound page.
892                          */
893                         goto same_page;
894                 }
895         }
896         spin_unlock(&mm->page_table_lock);
897         *length = remainder;
898         *position = vaddr;
899
900         return i;
901 }
902
903 void hugetlb_change_protection(struct vm_area_struct *vma,
904                 unsigned long address, unsigned long end, pgprot_t newprot)
905 {
906         struct mm_struct *mm = vma->vm_mm;
907         unsigned long start = address;
908         pte_t *ptep;
909         pte_t pte;
910
911         BUG_ON(address >= end);
912         flush_cache_range(vma, address, end);
913
914         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
915         spin_lock(&mm->page_table_lock);
916         for (; address < end; address += HPAGE_SIZE) {
917                 ptep = huge_pte_offset(mm, address);
918                 if (!ptep)
919                         continue;
920                 if (huge_pmd_unshare(mm, &address, ptep))
921                         continue;
922                 if (!pte_none(*ptep)) {
923                         pte = huge_ptep_get_and_clear(mm, address, ptep);
924                         pte = pte_mkhuge(pte_modify(pte, newprot));
925                         set_huge_pte_at(mm, address, ptep, pte);
926                 }
927         }
928         spin_unlock(&mm->page_table_lock);
929         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
930
931         flush_tlb_range(vma, start, end);
932 }
933
934 struct file_region {
935         struct list_head link;
936         long from;
937         long to;
938 };
939
940 static long region_add(struct list_head *head, long f, long t)
941 {
942         struct file_region *rg, *nrg, *trg;
943
944         /* Locate the region we are either in or before. */
945         list_for_each_entry(rg, head, link)
946                 if (f <= rg->to)
947                         break;
948
949         /* Round our left edge to the current segment if it encloses us. */
950         if (f > rg->from)
951                 f = rg->from;
952
953         /* Check for and consume any regions we now overlap with. */
954         nrg = rg;
955         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
956                 if (&rg->link == head)
957                         break;
958                 if (rg->from > t)
959                         break;
960
961                 /* If this area reaches higher then extend our area to
962                  * include it completely.  If this is not the first area
963                  * which we intend to reuse, free it. */
964                 if (rg->to > t)
965                         t = rg->to;
966                 if (rg != nrg) {
967                         list_del(&rg->link);
968                         kfree(rg);
969                 }
970         }
971         nrg->from = f;
972         nrg->to = t;
973         return 0;
974 }
975
976 static long region_chg(struct list_head *head, long f, long t)
977 {
978         struct file_region *rg, *nrg;
979         long chg = 0;
980
981         /* Locate the region we are before or in. */
982         list_for_each_entry(rg, head, link)
983                 if (f <= rg->to)
984                         break;
985
986         /* If we are below the current region then a new region is required.
987          * Subtle, allocate a new region at the position but make it zero
988          * size such that we can guarentee to record the reservation. */
989         if (&rg->link == head || t < rg->from) {
990                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
991                 if (nrg == 0)
992                         return -ENOMEM;
993                 nrg->from = f;
994                 nrg->to   = f;
995                 INIT_LIST_HEAD(&nrg->link);
996                 list_add(&nrg->link, rg->link.prev);
997
998                 return t - f;
999         }
1000
1001         /* Round our left edge to the current segment if it encloses us. */
1002         if (f > rg->from)
1003                 f = rg->from;
1004         chg = t - f;
1005
1006         /* Check for and consume any regions we now overlap with. */
1007         list_for_each_entry(rg, rg->link.prev, link) {
1008                 if (&rg->link == head)
1009                         break;
1010                 if (rg->from > t)
1011                         return chg;
1012
1013                 /* We overlap with this area, if it extends futher than
1014                  * us then we must extend ourselves.  Account for its
1015                  * existing reservation. */
1016                 if (rg->to > t) {
1017                         chg += rg->to - t;
1018                         t = rg->to;
1019                 }
1020                 chg -= rg->to - rg->from;
1021         }
1022         return chg;
1023 }
1024
1025 static long region_truncate(struct list_head *head, long end)
1026 {
1027         struct file_region *rg, *trg;
1028         long chg = 0;
1029
1030         /* Locate the region we are either in or before. */
1031         list_for_each_entry(rg, head, link)
1032                 if (end <= rg->to)
1033                         break;
1034         if (&rg->link == head)
1035                 return 0;
1036
1037         /* If we are in the middle of a region then adjust it. */
1038         if (end > rg->from) {
1039                 chg = rg->to - end;
1040                 rg->to = end;
1041                 rg = list_entry(rg->link.next, typeof(*rg), link);
1042         }
1043
1044         /* Drop any remaining regions. */
1045         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1046                 if (&rg->link == head)
1047                         break;
1048                 chg += rg->to - rg->from;
1049                 list_del(&rg->link);
1050                 kfree(rg);
1051         }
1052         return chg;
1053 }
1054
1055 static int hugetlb_acct_memory(long delta)
1056 {
1057         int ret = -ENOMEM;
1058
1059         spin_lock(&hugetlb_lock);
1060         /*
1061          * When cpuset is configured, it breaks the strict hugetlb page
1062          * reservation as the accounting is done on a global variable. Such
1063          * reservation is completely rubbish in the presence of cpuset because
1064          * the reservation is not checked against page availability for the
1065          * current cpuset. Application can still potentially OOM'ed by kernel
1066          * with lack of free htlb page in cpuset that the task is in.
1067          * Attempt to enforce strict accounting with cpuset is almost
1068          * impossible (or too ugly) because cpuset is too fluid that
1069          * task or memory node can be dynamically moved between cpusets.
1070          *
1071          * The change of semantics for shared hugetlb mapping with cpuset is
1072          * undesirable. However, in order to preserve some of the semantics,
1073          * we fall back to check against current free page availability as
1074          * a best attempt and hopefully to minimize the impact of changing
1075          * semantics that cpuset has.
1076          */
1077         if (delta > 0) {
1078                 if (gather_surplus_pages(delta) < 0)
1079                         goto out;
1080
1081                 if (delta > cpuset_mems_nr(free_huge_pages_node))
1082                         goto out;
1083         }
1084
1085         ret = 0;
1086         resv_huge_pages += delta;
1087         if (delta < 0)
1088                 return_unused_surplus_pages((unsigned long) -delta);
1089
1090 out:
1091         spin_unlock(&hugetlb_lock);
1092         return ret;
1093 }
1094
1095 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1096 {
1097         long ret, chg;
1098
1099         chg = region_chg(&inode->i_mapping->private_list, from, to);
1100         if (chg < 0)
1101                 return chg;
1102
1103         ret = hugetlb_acct_memory(chg);
1104         if (ret < 0)
1105                 return ret;
1106         region_add(&inode->i_mapping->private_list, from, to);
1107         return 0;
1108 }
1109
1110 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1111 {
1112         long chg = region_truncate(&inode->i_mapping->private_list, offset);
1113         hugetlb_acct_memory(freed - chg);
1114 }