]> err.no Git - linux-2.6/blob - kernel/sched_rt.c
Merge branch 'pci-for-jesse' of git://git.kernel.org/pub/scm/linux/kernel/git/x86...
[linux-2.6] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         cpu_set(rq->cpu, rq->rd->rto_mask);
16         /*
17          * Make sure the mask is visible before we set
18          * the overload count. That is checked to determine
19          * if we should look at the mask. It would be a shame
20          * if we looked at the mask, but the mask was not
21          * updated yet.
22          */
23         wmb();
24         atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29         /* the order here really doesn't matter */
30         atomic_dec(&rq->rd->rto_count);
31         cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37                 if (!rq->rt.overloaded) {
38                         rt_set_overload(rq);
39                         rq->rt.overloaded = 1;
40                 }
41         } else if (rq->rt.overloaded) {
42                 rt_clear_overload(rq);
43                 rq->rt.overloaded = 0;
44         }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50         return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55         return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_RT_GROUP_SCHED
59
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
61 {
62         if (!rt_rq->tg)
63                 return RUNTIME_INF;
64
65         return rt_rq->rt_runtime;
66 }
67
68 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69 {
70         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
71 }
72
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77 {
78         return rt_rq->rq;
79 }
80
81 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82 {
83         return rt_se->rt_rq;
84 }
85
86 #define for_each_sched_rt_entity(rt_se) \
87         for (; rt_se; rt_se = rt_se->parent)
88
89 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90 {
91         return rt_se->my_q;
92 }
93
94 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
97 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
98 {
99         struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
104                 enqueue_rt_entity(rt_se);
105                 if (rt_rq->highest_prio < curr->prio)
106                         resched_task(curr);
107         }
108 }
109
110 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
111 {
112         struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114         if (rt_se && on_rt_rq(rt_se))
115                 dequeue_rt_entity(rt_se);
116 }
117
118 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119 {
120         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121 }
122
123 static int rt_se_boosted(struct sched_rt_entity *rt_se)
124 {
125         struct rt_rq *rt_rq = group_rt_rq(rt_se);
126         struct task_struct *p;
127
128         if (rt_rq)
129                 return !!rt_rq->rt_nr_boosted;
130
131         p = rt_task_of(rt_se);
132         return p->prio != p->normal_prio;
133 }
134
135 #ifdef CONFIG_SMP
136 static inline cpumask_t sched_rt_period_mask(void)
137 {
138         return cpu_rq(smp_processor_id())->rd->span;
139 }
140 #else
141 static inline cpumask_t sched_rt_period_mask(void)
142 {
143         return cpu_online_map;
144 }
145 #endif
146
147 static inline
148 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
149 {
150         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151 }
152
153 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154 {
155         return &rt_rq->tg->rt_bandwidth;
156 }
157
158 #else
159
160 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161 {
162         return rt_rq->rt_runtime;
163 }
164
165 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166 {
167         return ktime_to_ns(def_rt_bandwidth.rt_period);
168 }
169
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174 {
175         return container_of(rt_rq, struct rq, rt);
176 }
177
178 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179 {
180         struct task_struct *p = rt_task_of(rt_se);
181         struct rq *rq = task_rq(p);
182
183         return &rq->rt;
184 }
185
186 #define for_each_sched_rt_entity(rt_se) \
187         for (; rt_se; rt_se = NULL)
188
189 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190 {
191         return NULL;
192 }
193
194 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
195 {
196 }
197
198 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
199 {
200 }
201
202 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203 {
204         return rt_rq->rt_throttled;
205 }
206
207 static inline cpumask_t sched_rt_period_mask(void)
208 {
209         return cpu_online_map;
210 }
211
212 static inline
213 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214 {
215         return &cpu_rq(cpu)->rt;
216 }
217
218 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219 {
220         return &def_rt_bandwidth;
221 }
222
223 #endif
224
225 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226 {
227         int i, idle = 1;
228         cpumask_t span;
229
230         if (rt_b->rt_runtime == RUNTIME_INF)
231                 return 1;
232
233         span = sched_rt_period_mask();
234         for_each_cpu_mask(i, span) {
235                 int enqueue = 0;
236                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237                 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239                 spin_lock(&rq->lock);
240                 if (rt_rq->rt_time) {
241                         u64 runtime;
242
243                         spin_lock(&rt_rq->rt_runtime_lock);
244                         runtime = rt_rq->rt_runtime;
245                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247                                 rt_rq->rt_throttled = 0;
248                                 enqueue = 1;
249                         }
250                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
251                                 idle = 0;
252                         spin_unlock(&rt_rq->rt_runtime_lock);
253                 }
254
255                 if (enqueue)
256                         sched_rt_rq_enqueue(rt_rq);
257                 spin_unlock(&rq->lock);
258         }
259
260         return idle;
261 }
262
263 #ifdef CONFIG_SMP
264 static int balance_runtime(struct rt_rq *rt_rq)
265 {
266         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268         int i, weight, more = 0;
269         u64 rt_period;
270
271         weight = cpus_weight(rd->span);
272
273         spin_lock(&rt_b->rt_runtime_lock);
274         rt_period = ktime_to_ns(rt_b->rt_period);
275         for_each_cpu_mask(i, rd->span) {
276                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277                 s64 diff;
278
279                 if (iter == rt_rq)
280                         continue;
281
282                 spin_lock(&iter->rt_runtime_lock);
283                 diff = iter->rt_runtime - iter->rt_time;
284                 if (diff > 0) {
285                         do_div(diff, weight);
286                         if (rt_rq->rt_runtime + diff > rt_period)
287                                 diff = rt_period - rt_rq->rt_runtime;
288                         iter->rt_runtime -= diff;
289                         rt_rq->rt_runtime += diff;
290                         more = 1;
291                         if (rt_rq->rt_runtime == rt_period) {
292                                 spin_unlock(&iter->rt_runtime_lock);
293                                 break;
294                         }
295                 }
296                 spin_unlock(&iter->rt_runtime_lock);
297         }
298         spin_unlock(&rt_b->rt_runtime_lock);
299
300         return more;
301 }
302 #endif
303
304 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305 {
306 #ifdef CONFIG_RT_GROUP_SCHED
307         struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309         if (rt_rq)
310                 return rt_rq->highest_prio;
311 #endif
312
313         return rt_task_of(rt_se)->prio;
314 }
315
316 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
317 {
318         u64 runtime = sched_rt_runtime(rt_rq);
319
320         if (runtime == RUNTIME_INF)
321                 return 0;
322
323         if (rt_rq->rt_throttled)
324                 return rt_rq_throttled(rt_rq);
325
326         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327                 return 0;
328
329 #ifdef CONFIG_SMP
330         if (rt_rq->rt_time > runtime) {
331                 int more;
332
333                 spin_unlock(&rt_rq->rt_runtime_lock);
334                 more = balance_runtime(rt_rq);
335                 spin_lock(&rt_rq->rt_runtime_lock);
336
337                 if (more)
338                         runtime = sched_rt_runtime(rt_rq);
339         }
340 #endif
341
342         if (rt_rq->rt_time > runtime) {
343                 rt_rq->rt_throttled = 1;
344                 if (rt_rq_throttled(rt_rq)) {
345                         sched_rt_rq_dequeue(rt_rq);
346                         return 1;
347                 }
348         }
349
350         return 0;
351 }
352
353 /*
354  * Update the current task's runtime statistics. Skip current tasks that
355  * are not in our scheduling class.
356  */
357 static void update_curr_rt(struct rq *rq)
358 {
359         struct task_struct *curr = rq->curr;
360         struct sched_rt_entity *rt_se = &curr->rt;
361         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
362         u64 delta_exec;
363
364         if (!task_has_rt_policy(curr))
365                 return;
366
367         delta_exec = rq->clock - curr->se.exec_start;
368         if (unlikely((s64)delta_exec < 0))
369                 delta_exec = 0;
370
371         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
372
373         curr->se.sum_exec_runtime += delta_exec;
374         curr->se.exec_start = rq->clock;
375         cpuacct_charge(curr, delta_exec);
376
377         for_each_sched_rt_entity(rt_se) {
378                 rt_rq = rt_rq_of_se(rt_se);
379
380                 spin_lock(&rt_rq->rt_runtime_lock);
381                 rt_rq->rt_time += delta_exec;
382                 if (sched_rt_runtime_exceeded(rt_rq))
383                         resched_task(curr);
384                 spin_unlock(&rt_rq->rt_runtime_lock);
385         }
386 }
387
388 static inline
389 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390 {
391         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392         rt_rq->rt_nr_running++;
393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394         if (rt_se_prio(rt_se) < rt_rq->highest_prio)
395                 rt_rq->highest_prio = rt_se_prio(rt_se);
396 #endif
397 #ifdef CONFIG_SMP
398         if (rt_se->nr_cpus_allowed > 1) {
399                 struct rq *rq = rq_of_rt_rq(rt_rq);
400                 rq->rt.rt_nr_migratory++;
401         }
402
403         update_rt_migration(rq_of_rt_rq(rt_rq));
404 #endif
405 #ifdef CONFIG_RT_GROUP_SCHED
406         if (rt_se_boosted(rt_se))
407                 rt_rq->rt_nr_boosted++;
408
409         if (rt_rq->tg)
410                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
411 #else
412         start_rt_bandwidth(&def_rt_bandwidth);
413 #endif
414 }
415
416 static inline
417 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 {
419         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
420         WARN_ON(!rt_rq->rt_nr_running);
421         rt_rq->rt_nr_running--;
422 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
423         if (rt_rq->rt_nr_running) {
424                 struct rt_prio_array *array;
425
426                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
427                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
428                         /* recalculate */
429                         array = &rt_rq->active;
430                         rt_rq->highest_prio =
431                                 sched_find_first_bit(array->bitmap);
432                 } /* otherwise leave rq->highest prio alone */
433         } else
434                 rt_rq->highest_prio = MAX_RT_PRIO;
435 #endif
436 #ifdef CONFIG_SMP
437         if (rt_se->nr_cpus_allowed > 1) {
438                 struct rq *rq = rq_of_rt_rq(rt_rq);
439                 rq->rt.rt_nr_migratory--;
440         }
441
442         update_rt_migration(rq_of_rt_rq(rt_rq));
443 #endif /* CONFIG_SMP */
444 #ifdef CONFIG_RT_GROUP_SCHED
445         if (rt_se_boosted(rt_se))
446                 rt_rq->rt_nr_boosted--;
447
448         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
449 #endif
450 }
451
452 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
453 {
454         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
455         struct rt_prio_array *array = &rt_rq->active;
456         struct rt_rq *group_rq = group_rt_rq(rt_se);
457
458         if (group_rq && rt_rq_throttled(group_rq))
459                 return;
460
461         list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
462         __set_bit(rt_se_prio(rt_se), array->bitmap);
463
464         inc_rt_tasks(rt_se, rt_rq);
465 }
466
467 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
468 {
469         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
470         struct rt_prio_array *array = &rt_rq->active;
471
472         list_del_init(&rt_se->run_list);
473         if (list_empty(array->queue + rt_se_prio(rt_se)))
474                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
475
476         dec_rt_tasks(rt_se, rt_rq);
477 }
478
479 /*
480  * Because the prio of an upper entry depends on the lower
481  * entries, we must remove entries top - down.
482  */
483 static void dequeue_rt_stack(struct task_struct *p)
484 {
485         struct sched_rt_entity *rt_se, *back = NULL;
486
487         rt_se = &p->rt;
488         for_each_sched_rt_entity(rt_se) {
489                 rt_se->back = back;
490                 back = rt_se;
491         }
492
493         for (rt_se = back; rt_se; rt_se = rt_se->back) {
494                 if (on_rt_rq(rt_se))
495                         dequeue_rt_entity(rt_se);
496         }
497 }
498
499 /*
500  * Adding/removing a task to/from a priority array:
501  */
502 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
503 {
504         struct sched_rt_entity *rt_se = &p->rt;
505
506         if (wakeup)
507                 rt_se->timeout = 0;
508
509         dequeue_rt_stack(p);
510
511         /*
512          * enqueue everybody, bottom - up.
513          */
514         for_each_sched_rt_entity(rt_se)
515                 enqueue_rt_entity(rt_se);
516 }
517
518 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
519 {
520         struct sched_rt_entity *rt_se = &p->rt;
521         struct rt_rq *rt_rq;
522
523         update_curr_rt(rq);
524
525         dequeue_rt_stack(p);
526
527         /*
528          * re-enqueue all non-empty rt_rq entities.
529          */
530         for_each_sched_rt_entity(rt_se) {
531                 rt_rq = group_rt_rq(rt_se);
532                 if (rt_rq && rt_rq->rt_nr_running)
533                         enqueue_rt_entity(rt_se);
534         }
535 }
536
537 /*
538  * Put task to the end of the run list without the overhead of dequeue
539  * followed by enqueue.
540  */
541 static
542 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
543 {
544         struct rt_prio_array *array = &rt_rq->active;
545
546         list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
547 }
548
549 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
550 {
551         struct sched_rt_entity *rt_se = &p->rt;
552         struct rt_rq *rt_rq;
553
554         for_each_sched_rt_entity(rt_se) {
555                 rt_rq = rt_rq_of_se(rt_se);
556                 requeue_rt_entity(rt_rq, rt_se);
557         }
558 }
559
560 static void yield_task_rt(struct rq *rq)
561 {
562         requeue_task_rt(rq, rq->curr);
563 }
564
565 #ifdef CONFIG_SMP
566 static int find_lowest_rq(struct task_struct *task);
567
568 static int select_task_rq_rt(struct task_struct *p, int sync)
569 {
570         struct rq *rq = task_rq(p);
571
572         /*
573          * If the current task is an RT task, then
574          * try to see if we can wake this RT task up on another
575          * runqueue. Otherwise simply start this RT task
576          * on its current runqueue.
577          *
578          * We want to avoid overloading runqueues. Even if
579          * the RT task is of higher priority than the current RT task.
580          * RT tasks behave differently than other tasks. If
581          * one gets preempted, we try to push it off to another queue.
582          * So trying to keep a preempting RT task on the same
583          * cache hot CPU will force the running RT task to
584          * a cold CPU. So we waste all the cache for the lower
585          * RT task in hopes of saving some of a RT task
586          * that is just being woken and probably will have
587          * cold cache anyway.
588          */
589         if (unlikely(rt_task(rq->curr)) &&
590             (p->rt.nr_cpus_allowed > 1)) {
591                 int cpu = find_lowest_rq(p);
592
593                 return (cpu == -1) ? task_cpu(p) : cpu;
594         }
595
596         /*
597          * Otherwise, just let it ride on the affined RQ and the
598          * post-schedule router will push the preempted task away
599          */
600         return task_cpu(p);
601 }
602 #endif /* CONFIG_SMP */
603
604 /*
605  * Preempt the current task with a newly woken task if needed:
606  */
607 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
608 {
609         if (p->prio < rq->curr->prio)
610                 resched_task(rq->curr);
611 }
612
613 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
614                                                    struct rt_rq *rt_rq)
615 {
616         struct rt_prio_array *array = &rt_rq->active;
617         struct sched_rt_entity *next = NULL;
618         struct list_head *queue;
619         int idx;
620
621         idx = sched_find_first_bit(array->bitmap);
622         BUG_ON(idx >= MAX_RT_PRIO);
623
624         queue = array->queue + idx;
625         next = list_entry(queue->next, struct sched_rt_entity, run_list);
626
627         return next;
628 }
629
630 static struct task_struct *pick_next_task_rt(struct rq *rq)
631 {
632         struct sched_rt_entity *rt_se;
633         struct task_struct *p;
634         struct rt_rq *rt_rq;
635
636         rt_rq = &rq->rt;
637
638         if (unlikely(!rt_rq->rt_nr_running))
639                 return NULL;
640
641         if (rt_rq_throttled(rt_rq))
642                 return NULL;
643
644         do {
645                 rt_se = pick_next_rt_entity(rq, rt_rq);
646                 BUG_ON(!rt_se);
647                 rt_rq = group_rt_rq(rt_se);
648         } while (rt_rq);
649
650         p = rt_task_of(rt_se);
651         p->se.exec_start = rq->clock;
652         return p;
653 }
654
655 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
656 {
657         update_curr_rt(rq);
658         p->se.exec_start = 0;
659 }
660
661 #ifdef CONFIG_SMP
662
663 /* Only try algorithms three times */
664 #define RT_MAX_TRIES 3
665
666 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
667 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
668
669 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
670 {
671         if (!task_running(rq, p) &&
672             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
673             (p->rt.nr_cpus_allowed > 1))
674                 return 1;
675         return 0;
676 }
677
678 /* Return the second highest RT task, NULL otherwise */
679 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
680 {
681         struct task_struct *next = NULL;
682         struct sched_rt_entity *rt_se;
683         struct rt_prio_array *array;
684         struct rt_rq *rt_rq;
685         int idx;
686
687         for_each_leaf_rt_rq(rt_rq, rq) {
688                 array = &rt_rq->active;
689                 idx = sched_find_first_bit(array->bitmap);
690  next_idx:
691                 if (idx >= MAX_RT_PRIO)
692                         continue;
693                 if (next && next->prio < idx)
694                         continue;
695                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
696                         struct task_struct *p = rt_task_of(rt_se);
697                         if (pick_rt_task(rq, p, cpu)) {
698                                 next = p;
699                                 break;
700                         }
701                 }
702                 if (!next) {
703                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
704                         goto next_idx;
705                 }
706         }
707
708         return next;
709 }
710
711 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
712
713 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
714 {
715         int       lowest_prio = -1;
716         int       lowest_cpu  = -1;
717         int       count       = 0;
718         int       cpu;
719
720         cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
721
722         /*
723          * Scan each rq for the lowest prio.
724          */
725         for_each_cpu_mask(cpu, *lowest_mask) {
726                 struct rq *rq = cpu_rq(cpu);
727
728                 /* We look for lowest RT prio or non-rt CPU */
729                 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
730                         /*
731                          * if we already found a low RT queue
732                          * and now we found this non-rt queue
733                          * clear the mask and set our bit.
734                          * Otherwise just return the queue as is
735                          * and the count==1 will cause the algorithm
736                          * to use the first bit found.
737                          */
738                         if (lowest_cpu != -1) {
739                                 cpus_clear(*lowest_mask);
740                                 cpu_set(rq->cpu, *lowest_mask);
741                         }
742                         return 1;
743                 }
744
745                 /* no locking for now */
746                 if ((rq->rt.highest_prio > task->prio)
747                     && (rq->rt.highest_prio >= lowest_prio)) {
748                         if (rq->rt.highest_prio > lowest_prio) {
749                                 /* new low - clear old data */
750                                 lowest_prio = rq->rt.highest_prio;
751                                 lowest_cpu = cpu;
752                                 count = 0;
753                         }
754                         count++;
755                 } else
756                         cpu_clear(cpu, *lowest_mask);
757         }
758
759         /*
760          * Clear out all the set bits that represent
761          * runqueues that were of higher prio than
762          * the lowest_prio.
763          */
764         if (lowest_cpu > 0) {
765                 /*
766                  * Perhaps we could add another cpumask op to
767                  * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
768                  * Then that could be optimized to use memset and such.
769                  */
770                 for_each_cpu_mask(cpu, *lowest_mask) {
771                         if (cpu >= lowest_cpu)
772                                 break;
773                         cpu_clear(cpu, *lowest_mask);
774                 }
775         }
776
777         return count;
778 }
779
780 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
781 {
782         int first;
783
784         /* "this_cpu" is cheaper to preempt than a remote processor */
785         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
786                 return this_cpu;
787
788         first = first_cpu(*mask);
789         if (first != NR_CPUS)
790                 return first;
791
792         return -1;
793 }
794
795 static int find_lowest_rq(struct task_struct *task)
796 {
797         struct sched_domain *sd;
798         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
799         int this_cpu = smp_processor_id();
800         int cpu      = task_cpu(task);
801         int count    = find_lowest_cpus(task, lowest_mask);
802
803         if (!count)
804                 return -1; /* No targets found */
805
806         /*
807          * There is no sense in performing an optimal search if only one
808          * target is found.
809          */
810         if (count == 1)
811                 return first_cpu(*lowest_mask);
812
813         /*
814          * At this point we have built a mask of cpus representing the
815          * lowest priority tasks in the system.  Now we want to elect
816          * the best one based on our affinity and topology.
817          *
818          * We prioritize the last cpu that the task executed on since
819          * it is most likely cache-hot in that location.
820          */
821         if (cpu_isset(cpu, *lowest_mask))
822                 return cpu;
823
824         /*
825          * Otherwise, we consult the sched_domains span maps to figure
826          * out which cpu is logically closest to our hot cache data.
827          */
828         if (this_cpu == cpu)
829                 this_cpu = -1; /* Skip this_cpu opt if the same */
830
831         for_each_domain(cpu, sd) {
832                 if (sd->flags & SD_WAKE_AFFINE) {
833                         cpumask_t domain_mask;
834                         int       best_cpu;
835
836                         cpus_and(domain_mask, sd->span, *lowest_mask);
837
838                         best_cpu = pick_optimal_cpu(this_cpu,
839                                                     &domain_mask);
840                         if (best_cpu != -1)
841                                 return best_cpu;
842                 }
843         }
844
845         /*
846          * And finally, if there were no matches within the domains
847          * just give the caller *something* to work with from the compatible
848          * locations.
849          */
850         return pick_optimal_cpu(this_cpu, lowest_mask);
851 }
852
853 /* Will lock the rq it finds */
854 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
855 {
856         struct rq *lowest_rq = NULL;
857         int tries;
858         int cpu;
859
860         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
861                 cpu = find_lowest_rq(task);
862
863                 if ((cpu == -1) || (cpu == rq->cpu))
864                         break;
865
866                 lowest_rq = cpu_rq(cpu);
867
868                 /* if the prio of this runqueue changed, try again */
869                 if (double_lock_balance(rq, lowest_rq)) {
870                         /*
871                          * We had to unlock the run queue. In
872                          * the mean time, task could have
873                          * migrated already or had its affinity changed.
874                          * Also make sure that it wasn't scheduled on its rq.
875                          */
876                         if (unlikely(task_rq(task) != rq ||
877                                      !cpu_isset(lowest_rq->cpu,
878                                                 task->cpus_allowed) ||
879                                      task_running(rq, task) ||
880                                      !task->se.on_rq)) {
881
882                                 spin_unlock(&lowest_rq->lock);
883                                 lowest_rq = NULL;
884                                 break;
885                         }
886                 }
887
888                 /* If this rq is still suitable use it. */
889                 if (lowest_rq->rt.highest_prio > task->prio)
890                         break;
891
892                 /* try again */
893                 spin_unlock(&lowest_rq->lock);
894                 lowest_rq = NULL;
895         }
896
897         return lowest_rq;
898 }
899
900 /*
901  * If the current CPU has more than one RT task, see if the non
902  * running task can migrate over to a CPU that is running a task
903  * of lesser priority.
904  */
905 static int push_rt_task(struct rq *rq)
906 {
907         struct task_struct *next_task;
908         struct rq *lowest_rq;
909         int ret = 0;
910         int paranoid = RT_MAX_TRIES;
911
912         if (!rq->rt.overloaded)
913                 return 0;
914
915         next_task = pick_next_highest_task_rt(rq, -1);
916         if (!next_task)
917                 return 0;
918
919  retry:
920         if (unlikely(next_task == rq->curr)) {
921                 WARN_ON(1);
922                 return 0;
923         }
924
925         /*
926          * It's possible that the next_task slipped in of
927          * higher priority than current. If that's the case
928          * just reschedule current.
929          */
930         if (unlikely(next_task->prio < rq->curr->prio)) {
931                 resched_task(rq->curr);
932                 return 0;
933         }
934
935         /* We might release rq lock */
936         get_task_struct(next_task);
937
938         /* find_lock_lowest_rq locks the rq if found */
939         lowest_rq = find_lock_lowest_rq(next_task, rq);
940         if (!lowest_rq) {
941                 struct task_struct *task;
942                 /*
943                  * find lock_lowest_rq releases rq->lock
944                  * so it is possible that next_task has changed.
945                  * If it has, then try again.
946                  */
947                 task = pick_next_highest_task_rt(rq, -1);
948                 if (unlikely(task != next_task) && task && paranoid--) {
949                         put_task_struct(next_task);
950                         next_task = task;
951                         goto retry;
952                 }
953                 goto out;
954         }
955
956         deactivate_task(rq, next_task, 0);
957         set_task_cpu(next_task, lowest_rq->cpu);
958         activate_task(lowest_rq, next_task, 0);
959
960         resched_task(lowest_rq->curr);
961
962         spin_unlock(&lowest_rq->lock);
963
964         ret = 1;
965 out:
966         put_task_struct(next_task);
967
968         return ret;
969 }
970
971 /*
972  * TODO: Currently we just use the second highest prio task on
973  *       the queue, and stop when it can't migrate (or there's
974  *       no more RT tasks).  There may be a case where a lower
975  *       priority RT task has a different affinity than the
976  *       higher RT task. In this case the lower RT task could
977  *       possibly be able to migrate where as the higher priority
978  *       RT task could not.  We currently ignore this issue.
979  *       Enhancements are welcome!
980  */
981 static void push_rt_tasks(struct rq *rq)
982 {
983         /* push_rt_task will return true if it moved an RT */
984         while (push_rt_task(rq))
985                 ;
986 }
987
988 static int pull_rt_task(struct rq *this_rq)
989 {
990         int this_cpu = this_rq->cpu, ret = 0, cpu;
991         struct task_struct *p, *next;
992         struct rq *src_rq;
993
994         if (likely(!rt_overloaded(this_rq)))
995                 return 0;
996
997         next = pick_next_task_rt(this_rq);
998
999         for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1000                 if (this_cpu == cpu)
1001                         continue;
1002
1003                 src_rq = cpu_rq(cpu);
1004                 /*
1005                  * We can potentially drop this_rq's lock in
1006                  * double_lock_balance, and another CPU could
1007                  * steal our next task - hence we must cause
1008                  * the caller to recalculate the next task
1009                  * in that case:
1010                  */
1011                 if (double_lock_balance(this_rq, src_rq)) {
1012                         struct task_struct *old_next = next;
1013
1014                         next = pick_next_task_rt(this_rq);
1015                         if (next != old_next)
1016                                 ret = 1;
1017                 }
1018
1019                 /*
1020                  * Are there still pullable RT tasks?
1021                  */
1022                 if (src_rq->rt.rt_nr_running <= 1)
1023                         goto skip;
1024
1025                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1026
1027                 /*
1028                  * Do we have an RT task that preempts
1029                  * the to-be-scheduled task?
1030                  */
1031                 if (p && (!next || (p->prio < next->prio))) {
1032                         WARN_ON(p == src_rq->curr);
1033                         WARN_ON(!p->se.on_rq);
1034
1035                         /*
1036                          * There's a chance that p is higher in priority
1037                          * than what's currently running on its cpu.
1038                          * This is just that p is wakeing up and hasn't
1039                          * had a chance to schedule. We only pull
1040                          * p if it is lower in priority than the
1041                          * current task on the run queue or
1042                          * this_rq next task is lower in prio than
1043                          * the current task on that rq.
1044                          */
1045                         if (p->prio < src_rq->curr->prio ||
1046                             (next && next->prio < src_rq->curr->prio))
1047                                 goto skip;
1048
1049                         ret = 1;
1050
1051                         deactivate_task(src_rq, p, 0);
1052                         set_task_cpu(p, this_cpu);
1053                         activate_task(this_rq, p, 0);
1054                         /*
1055                          * We continue with the search, just in
1056                          * case there's an even higher prio task
1057                          * in another runqueue. (low likelyhood
1058                          * but possible)
1059                          *
1060                          * Update next so that we won't pick a task
1061                          * on another cpu with a priority lower (or equal)
1062                          * than the one we just picked.
1063                          */
1064                         next = p;
1065
1066                 }
1067  skip:
1068                 spin_unlock(&src_rq->lock);
1069         }
1070
1071         return ret;
1072 }
1073
1074 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1075 {
1076         /* Try to pull RT tasks here if we lower this rq's prio */
1077         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1078                 pull_rt_task(rq);
1079 }
1080
1081 static void post_schedule_rt(struct rq *rq)
1082 {
1083         /*
1084          * If we have more than one rt_task queued, then
1085          * see if we can push the other rt_tasks off to other CPUS.
1086          * Note we may release the rq lock, and since
1087          * the lock was owned by prev, we need to release it
1088          * first via finish_lock_switch and then reaquire it here.
1089          */
1090         if (unlikely(rq->rt.overloaded)) {
1091                 spin_lock_irq(&rq->lock);
1092                 push_rt_tasks(rq);
1093                 spin_unlock_irq(&rq->lock);
1094         }
1095 }
1096
1097 /*
1098  * If we are not running and we are not going to reschedule soon, we should
1099  * try to push tasks away now
1100  */
1101 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1102 {
1103         if (!task_running(rq, p) &&
1104             !test_tsk_need_resched(rq->curr) &&
1105             rq->rt.overloaded)
1106                 push_rt_tasks(rq);
1107 }
1108
1109 static unsigned long
1110 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1111                 unsigned long max_load_move,
1112                 struct sched_domain *sd, enum cpu_idle_type idle,
1113                 int *all_pinned, int *this_best_prio)
1114 {
1115         /* don't touch RT tasks */
1116         return 0;
1117 }
1118
1119 static int
1120 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1121                  struct sched_domain *sd, enum cpu_idle_type idle)
1122 {
1123         /* don't touch RT tasks */
1124         return 0;
1125 }
1126
1127 static void set_cpus_allowed_rt(struct task_struct *p,
1128                                 const cpumask_t *new_mask)
1129 {
1130         int weight = cpus_weight(*new_mask);
1131
1132         BUG_ON(!rt_task(p));
1133
1134         /*
1135          * Update the migration status of the RQ if we have an RT task
1136          * which is running AND changing its weight value.
1137          */
1138         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1139                 struct rq *rq = task_rq(p);
1140
1141                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1142                         rq->rt.rt_nr_migratory++;
1143                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1144                         BUG_ON(!rq->rt.rt_nr_migratory);
1145                         rq->rt.rt_nr_migratory--;
1146                 }
1147
1148                 update_rt_migration(rq);
1149         }
1150
1151         p->cpus_allowed    = *new_mask;
1152         p->rt.nr_cpus_allowed = weight;
1153 }
1154
1155 /* Assumes rq->lock is held */
1156 static void join_domain_rt(struct rq *rq)
1157 {
1158         if (rq->rt.overloaded)
1159                 rt_set_overload(rq);
1160 }
1161
1162 /* Assumes rq->lock is held */
1163 static void leave_domain_rt(struct rq *rq)
1164 {
1165         if (rq->rt.overloaded)
1166                 rt_clear_overload(rq);
1167 }
1168
1169 /*
1170  * When switch from the rt queue, we bring ourselves to a position
1171  * that we might want to pull RT tasks from other runqueues.
1172  */
1173 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1174                            int running)
1175 {
1176         /*
1177          * If there are other RT tasks then we will reschedule
1178          * and the scheduling of the other RT tasks will handle
1179          * the balancing. But if we are the last RT task
1180          * we may need to handle the pulling of RT tasks
1181          * now.
1182          */
1183         if (!rq->rt.rt_nr_running)
1184                 pull_rt_task(rq);
1185 }
1186 #endif /* CONFIG_SMP */
1187
1188 /*
1189  * When switching a task to RT, we may overload the runqueue
1190  * with RT tasks. In this case we try to push them off to
1191  * other runqueues.
1192  */
1193 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1194                            int running)
1195 {
1196         int check_resched = 1;
1197
1198         /*
1199          * If we are already running, then there's nothing
1200          * that needs to be done. But if we are not running
1201          * we may need to preempt the current running task.
1202          * If that current running task is also an RT task
1203          * then see if we can move to another run queue.
1204          */
1205         if (!running) {
1206 #ifdef CONFIG_SMP
1207                 if (rq->rt.overloaded && push_rt_task(rq) &&
1208                     /* Don't resched if we changed runqueues */
1209                     rq != task_rq(p))
1210                         check_resched = 0;
1211 #endif /* CONFIG_SMP */
1212                 if (check_resched && p->prio < rq->curr->prio)
1213                         resched_task(rq->curr);
1214         }
1215 }
1216
1217 /*
1218  * Priority of the task has changed. This may cause
1219  * us to initiate a push or pull.
1220  */
1221 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1222                             int oldprio, int running)
1223 {
1224         if (running) {
1225 #ifdef CONFIG_SMP
1226                 /*
1227                  * If our priority decreases while running, we
1228                  * may need to pull tasks to this runqueue.
1229                  */
1230                 if (oldprio < p->prio)
1231                         pull_rt_task(rq);
1232                 /*
1233                  * If there's a higher priority task waiting to run
1234                  * then reschedule. Note, the above pull_rt_task
1235                  * can release the rq lock and p could migrate.
1236                  * Only reschedule if p is still on the same runqueue.
1237                  */
1238                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1239                         resched_task(p);
1240 #else
1241                 /* For UP simply resched on drop of prio */
1242                 if (oldprio < p->prio)
1243                         resched_task(p);
1244 #endif /* CONFIG_SMP */
1245         } else {
1246                 /*
1247                  * This task is not running, but if it is
1248                  * greater than the current running task
1249                  * then reschedule.
1250                  */
1251                 if (p->prio < rq->curr->prio)
1252                         resched_task(rq->curr);
1253         }
1254 }
1255
1256 static void watchdog(struct rq *rq, struct task_struct *p)
1257 {
1258         unsigned long soft, hard;
1259
1260         if (!p->signal)
1261                 return;
1262
1263         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1264         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1265
1266         if (soft != RLIM_INFINITY) {
1267                 unsigned long next;
1268
1269                 p->rt.timeout++;
1270                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1271                 if (p->rt.timeout > next)
1272                         p->it_sched_expires = p->se.sum_exec_runtime;
1273         }
1274 }
1275
1276 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1277 {
1278         update_curr_rt(rq);
1279
1280         watchdog(rq, p);
1281
1282         /*
1283          * RR tasks need a special form of timeslice management.
1284          * FIFO tasks have no timeslices.
1285          */
1286         if (p->policy != SCHED_RR)
1287                 return;
1288
1289         if (--p->rt.time_slice)
1290                 return;
1291
1292         p->rt.time_slice = DEF_TIMESLICE;
1293
1294         /*
1295          * Requeue to the end of queue if we are not the only element
1296          * on the queue:
1297          */
1298         if (p->rt.run_list.prev != p->rt.run_list.next) {
1299                 requeue_task_rt(rq, p);
1300                 set_tsk_need_resched(p);
1301         }
1302 }
1303
1304 static void set_curr_task_rt(struct rq *rq)
1305 {
1306         struct task_struct *p = rq->curr;
1307
1308         p->se.exec_start = rq->clock;
1309 }
1310
1311 static const struct sched_class rt_sched_class = {
1312         .next                   = &fair_sched_class,
1313         .enqueue_task           = enqueue_task_rt,
1314         .dequeue_task           = dequeue_task_rt,
1315         .yield_task             = yield_task_rt,
1316 #ifdef CONFIG_SMP
1317         .select_task_rq         = select_task_rq_rt,
1318 #endif /* CONFIG_SMP */
1319
1320         .check_preempt_curr     = check_preempt_curr_rt,
1321
1322         .pick_next_task         = pick_next_task_rt,
1323         .put_prev_task          = put_prev_task_rt,
1324
1325 #ifdef CONFIG_SMP
1326         .load_balance           = load_balance_rt,
1327         .move_one_task          = move_one_task_rt,
1328         .set_cpus_allowed       = set_cpus_allowed_rt,
1329         .join_domain            = join_domain_rt,
1330         .leave_domain           = leave_domain_rt,
1331         .pre_schedule           = pre_schedule_rt,
1332         .post_schedule          = post_schedule_rt,
1333         .task_wake_up           = task_wake_up_rt,
1334         .switched_from          = switched_from_rt,
1335 #endif
1336
1337         .set_curr_task          = set_curr_task_rt,
1338         .task_tick              = task_tick_rt,
1339
1340         .prio_changed           = prio_changed_rt,
1341         .switched_to            = switched_to_rt,
1342 };