4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/security.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <linux/mutex.h>
57 #include <linux/kfifo.h>
58 #include <linux/workqueue.h>
59 #include <linux/cgroup.h>
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
66 int number_of_cpusets __read_mostly;
68 /* Forward declare cgroup structures */
69 struct cgroup_subsys cpuset_subsys;
72 /* See "Frequency meter" comments, below. */
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
82 struct cgroup_subsys_state css;
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
88 struct cpuset *parent; /* my parent */
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
96 struct fmeter fmeter; /* memory_pressure filter */
98 /* partition number for rebuild_sched_domains() */
101 /* for custom sched domain */
102 int relax_domain_level;
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
108 /* Retrieve the cpuset for a cgroup */
109 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
115 /* Retrieve the cpuset for a task */
116 static inline struct cpuset *task_cs(struct task_struct *task)
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
121 struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
126 /* bits in struct cpuset flags field */
132 CS_SCHED_LOAD_BALANCE,
137 /* convenient tests for these bits */
138 static inline int is_cpu_exclusive(const struct cpuset *cs)
140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
143 static inline int is_mem_exclusive(const struct cpuset *cs)
145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
148 static inline int is_mem_hardwall(const struct cpuset *cs)
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
153 static inline int is_sched_load_balance(const struct cpuset *cs)
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
158 static inline int is_memory_migrate(const struct cpuset *cs)
160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
163 static inline int is_spread_page(const struct cpuset *cs)
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
168 static inline int is_spread_slab(const struct cpuset *cs)
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
174 * Increment this integer everytime any cpuset changes its
175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
179 * A single, global generation is needed because cpuset_attach_task() could
180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
183 * Generations are needed for mems_allowed because one task cannot
184 * modify another's memory placement. So we must enable every task,
185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
190 * there is no need to mark it atomic.
192 static int cpuset_mems_generation;
194 static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
209 * A task must hold both mutexes to modify cpusets. If a task
210 * holds cgroup_mutex, then it blocks others wanting that mutex,
211 * ensuring that it is the only task able to also acquire callback_mutex
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
214 * also allocate memory while just holding cgroup_mutex. While it is
215 * performing these checks, various callback routines can briefly
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
219 * Calls to the kernel memory allocator can not be made while holding
220 * callback_mutex, as that would risk double tripping on callback_mutex
221 * from one of the callbacks into the cpuset code from within
224 * If a task is only holding callback_mutex, then it has read-only
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
230 * The cpuset_common_file_write handler for operations that modify
231 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
232 * single threading all such cpuset modifications across the system.
234 * The cpuset_common_file_read() handlers only hold callback_mutex across
235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
242 static DEFINE_MUTEX(callback_mutex);
244 /* This is ugly, but preserves the userspace API for existing cpuset
245 * users. If someone tries to mount the "cpuset" filesystem, we
246 * silently switch it to mount "cgroup" instead */
247 static int cpuset_get_sb(struct file_system_type *fs_type,
248 int flags, const char *unused_dev_name,
249 void *data, struct vfsmount *mnt)
251 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
256 "release_agent=/sbin/cpuset_release_agent";
257 ret = cgroup_fs->get_sb(cgroup_fs, flags,
258 unused_dev_name, mountopts, mnt);
259 put_filesystem(cgroup_fs);
264 static struct file_system_type cpuset_fs_type = {
266 .get_sb = cpuset_get_sb,
270 * Return in *pmask the portion of a cpusets's cpus_allowed that
271 * are online. If none are online, walk up the cpuset hierarchy
272 * until we find one that does have some online cpus. If we get
273 * all the way to the top and still haven't found any online cpus,
274 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
275 * task, return cpu_online_map.
277 * One way or another, we guarantee to return some non-empty subset
280 * Call with callback_mutex held.
283 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
285 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
288 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
290 *pmask = cpu_online_map;
291 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
295 * Return in *pmask the portion of a cpusets's mems_allowed that
296 * are online, with memory. If none are online with memory, walk
297 * up the cpuset hierarchy until we find one that does have some
298 * online mems. If we get all the way to the top and still haven't
299 * found any online mems, return node_states[N_HIGH_MEMORY].
301 * One way or another, we guarantee to return some non-empty subset
302 * of node_states[N_HIGH_MEMORY].
304 * Call with callback_mutex held.
307 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
309 while (cs && !nodes_intersects(cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]))
313 nodes_and(*pmask, cs->mems_allowed,
314 node_states[N_HIGH_MEMORY]);
316 *pmask = node_states[N_HIGH_MEMORY];
317 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
321 * cpuset_update_task_memory_state - update task memory placement
323 * If the current tasks cpusets mems_allowed changed behind our
324 * backs, update current->mems_allowed, mems_generation and task NUMA
325 * mempolicy to the new value.
327 * Task mempolicy is updated by rebinding it relative to the
328 * current->cpuset if a task has its memory placement changed.
329 * Do not call this routine if in_interrupt().
331 * Call without callback_mutex or task_lock() held. May be
332 * called with or without cgroup_mutex held. Thanks in part to
333 * 'the_top_cpuset_hack', the task's cpuset pointer will never
334 * be NULL. This routine also might acquire callback_mutex during
337 * Reading current->cpuset->mems_generation doesn't need task_lock
338 * to guard the current->cpuset derefence, because it is guarded
339 * from concurrent freeing of current->cpuset using RCU.
341 * The rcu_dereference() is technically probably not needed,
342 * as I don't actually mind if I see a new cpuset pointer but
343 * an old value of mems_generation. However this really only
344 * matters on alpha systems using cpusets heavily. If I dropped
345 * that rcu_dereference(), it would save them a memory barrier.
346 * For all other arch's, rcu_dereference is a no-op anyway, and for
347 * alpha systems not using cpusets, another planned optimization,
348 * avoiding the rcu critical section for tasks in the root cpuset
349 * which is statically allocated, so can't vanish, will make this
350 * irrelevant. Better to use RCU as intended, than to engage in
351 * some cute trick to save a memory barrier that is impossible to
352 * test, for alpha systems using cpusets heavily, which might not
355 * This routine is needed to update the per-task mems_allowed data,
356 * within the tasks context, when it is trying to allocate memory
357 * (in various mm/mempolicy.c routines) and notices that some other
358 * task has been modifying its cpuset.
361 void cpuset_update_task_memory_state(void)
363 int my_cpusets_mem_gen;
364 struct task_struct *tsk = current;
367 if (task_cs(tsk) == &top_cpuset) {
368 /* Don't need rcu for top_cpuset. It's never freed. */
369 my_cpusets_mem_gen = top_cpuset.mems_generation;
372 my_cpusets_mem_gen = task_cs(current)->mems_generation;
376 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
377 mutex_lock(&callback_mutex);
379 cs = task_cs(tsk); /* Maybe changed when task not locked */
380 guarantee_online_mems(cs, &tsk->mems_allowed);
381 tsk->cpuset_mems_generation = cs->mems_generation;
382 if (is_spread_page(cs))
383 tsk->flags |= PF_SPREAD_PAGE;
385 tsk->flags &= ~PF_SPREAD_PAGE;
386 if (is_spread_slab(cs))
387 tsk->flags |= PF_SPREAD_SLAB;
389 tsk->flags &= ~PF_SPREAD_SLAB;
391 mutex_unlock(&callback_mutex);
392 mpol_rebind_task(tsk, &tsk->mems_allowed);
397 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
399 * One cpuset is a subset of another if all its allowed CPUs and
400 * Memory Nodes are a subset of the other, and its exclusive flags
401 * are only set if the other's are set. Call holding cgroup_mutex.
404 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
406 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
407 nodes_subset(p->mems_allowed, q->mems_allowed) &&
408 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
409 is_mem_exclusive(p) <= is_mem_exclusive(q);
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
429 * Return 0 if valid, -errno if not.
432 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
435 struct cpuset *c, *par;
437 /* Each of our child cpusets must be a subset of us */
438 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
439 if (!is_cpuset_subset(cgroup_cs(cont), trial))
443 /* Remaining checks don't apply to root cpuset */
444 if (cur == &top_cpuset)
449 /* We must be a subset of our parent cpuset */
450 if (!is_cpuset_subset(trial, par))
454 * If either I or some sibling (!= me) is exclusive, we can't
457 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
459 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
461 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
463 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
465 nodes_intersects(trial->mems_allowed, c->mems_allowed))
469 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
470 if (cgroup_task_count(cur->css.cgroup)) {
471 if (cpus_empty(trial->cpus_allowed) ||
472 nodes_empty(trial->mems_allowed)) {
481 * Helper routine for rebuild_sched_domains().
482 * Do cpusets a, b have overlapping cpus_allowed masks?
485 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
487 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
491 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
495 if (dattr->relax_domain_level < c->relax_domain_level)
496 dattr->relax_domain_level = c->relax_domain_level;
501 * rebuild_sched_domains()
503 * If the flag 'sched_load_balance' of any cpuset with non-empty
504 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
505 * which has that flag enabled, or if any cpuset with a non-empty
506 * 'cpus' is removed, then call this routine to rebuild the
507 * scheduler's dynamic sched domains.
509 * This routine builds a partial partition of the systems CPUs
510 * (the set of non-overlappping cpumask_t's in the array 'part'
511 * below), and passes that partial partition to the kernel/sched.c
512 * partition_sched_domains() routine, which will rebuild the
513 * schedulers load balancing domains (sched domains) as specified
514 * by that partial partition. A 'partial partition' is a set of
515 * non-overlapping subsets whose union is a subset of that set.
517 * See "What is sched_load_balance" in Documentation/cpusets.txt
518 * for a background explanation of this.
520 * Does not return errors, on the theory that the callers of this
521 * routine would rather not worry about failures to rebuild sched
522 * domains when operating in the severe memory shortage situations
523 * that could cause allocation failures below.
525 * Call with cgroup_mutex held. May take callback_mutex during
526 * call due to the kfifo_alloc() and kmalloc() calls. May nest
527 * a call to the get_online_cpus()/put_online_cpus() pair.
528 * Must not be called holding callback_mutex, because we must not
529 * call get_online_cpus() while holding callback_mutex. Elsewhere
530 * the kernel nests callback_mutex inside get_online_cpus() calls.
531 * So the reverse nesting would risk an ABBA deadlock.
533 * The three key local variables below are:
534 * q - a kfifo queue of cpuset pointers, used to implement a
535 * top-down scan of all cpusets. This scan loads a pointer
536 * to each cpuset marked is_sched_load_balance into the
537 * array 'csa'. For our purposes, rebuilding the schedulers
538 * sched domains, we can ignore !is_sched_load_balance cpusets.
539 * csa - (for CpuSet Array) Array of pointers to all the cpusets
540 * that need to be load balanced, for convenient iterative
541 * access by the subsequent code that finds the best partition,
542 * i.e the set of domains (subsets) of CPUs such that the
543 * cpus_allowed of every cpuset marked is_sched_load_balance
544 * is a subset of one of these domains, while there are as
545 * many such domains as possible, each as small as possible.
546 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
547 * the kernel/sched.c routine partition_sched_domains() in a
548 * convenient format, that can be easily compared to the prior
549 * value to determine what partition elements (sched domains)
550 * were changed (added or removed.)
552 * Finding the best partition (set of domains):
553 * The triple nested loops below over i, j, k scan over the
554 * load balanced cpusets (using the array of cpuset pointers in
555 * csa[]) looking for pairs of cpusets that have overlapping
556 * cpus_allowed, but which don't have the same 'pn' partition
557 * number and gives them in the same partition number. It keeps
558 * looping on the 'restart' label until it can no longer find
561 * The union of the cpus_allowed masks from the set of
562 * all cpusets having the same 'pn' value then form the one
563 * element of the partition (one sched domain) to be passed to
564 * partition_sched_domains().
567 static void rebuild_sched_domains(void)
569 struct kfifo *q; /* queue of cpusets to be scanned */
570 struct cpuset *cp; /* scans q */
571 struct cpuset **csa; /* array of all cpuset ptrs */
572 int csn; /* how many cpuset ptrs in csa so far */
573 int i, j, k; /* indices for partition finding loops */
574 cpumask_t *doms; /* resulting partition; i.e. sched domains */
575 struct sched_domain_attr *dattr; /* attributes for custom domains */
576 int ndoms; /* number of sched domains in result */
577 int nslot; /* next empty doms[] cpumask_t slot */
584 /* Special case for the 99% of systems with one, full, sched domain */
585 if (is_sched_load_balance(&top_cpuset)) {
587 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
590 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
592 *dattr = SD_ATTR_INIT;
593 update_domain_attr(dattr, &top_cpuset);
595 *doms = top_cpuset.cpus_allowed;
599 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
602 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
608 __kfifo_put(q, (void *)&cp, sizeof(cp));
609 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
611 struct cpuset *child; /* scans child cpusets of cp */
612 if (is_sched_load_balance(cp))
614 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
615 child = cgroup_cs(cont);
616 __kfifo_put(q, (void *)&child, sizeof(cp));
620 for (i = 0; i < csn; i++)
625 /* Find the best partition (set of sched domains) */
626 for (i = 0; i < csn; i++) {
627 struct cpuset *a = csa[i];
630 for (j = 0; j < csn; j++) {
631 struct cpuset *b = csa[j];
634 if (apn != bpn && cpusets_overlap(a, b)) {
635 for (k = 0; k < csn; k++) {
636 struct cpuset *c = csa[k];
641 ndoms--; /* one less element */
647 /* Convert <csn, csa> to <ndoms, doms> */
648 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
651 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
653 for (nslot = 0, i = 0; i < csn; i++) {
654 struct cpuset *a = csa[i];
658 cpumask_t *dp = doms + nslot;
660 if (nslot == ndoms) {
661 static int warnings = 10;
664 "rebuild_sched_domains confused:"
665 " nslot %d, ndoms %d, csn %d, i %d,"
667 nslot, ndoms, csn, i, apn);
675 *(dattr + nslot) = SD_ATTR_INIT;
676 for (j = i; j < csn; j++) {
677 struct cpuset *b = csa[j];
680 cpus_or(*dp, *dp, b->cpus_allowed);
682 update_domain_attr(dattr, b);
688 BUG_ON(nslot != ndoms);
691 /* Have scheduler rebuild sched domains */
693 partition_sched_domains(ndoms, doms, dattr);
700 /* Don't kfree(doms) -- partition_sched_domains() does that. */
701 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
704 static inline int started_after_time(struct task_struct *t1,
705 struct timespec *time,
706 struct task_struct *t2)
708 int start_diff = timespec_compare(&t1->start_time, time);
709 if (start_diff > 0) {
711 } else if (start_diff < 0) {
715 * Arbitrarily, if two processes started at the same
716 * time, we'll say that the lower pointer value
717 * started first. Note that t2 may have exited by now
718 * so this may not be a valid pointer any longer, but
719 * that's fine - it still serves to distinguish
720 * between two tasks started (effectively)
727 static inline int started_after(void *p1, void *p2)
729 struct task_struct *t1 = p1;
730 struct task_struct *t2 = p2;
731 return started_after_time(t1, &t2->start_time, t2);
735 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
737 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
739 * Call with cgroup_mutex held. May take callback_mutex during call.
740 * Called for each task in a cgroup by cgroup_scan_tasks().
741 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
742 * words, if its mask is not equal to its cpuset's mask).
744 static int cpuset_test_cpumask(struct task_struct *tsk,
745 struct cgroup_scanner *scan)
747 return !cpus_equal(tsk->cpus_allowed,
748 (cgroup_cs(scan->cg))->cpus_allowed);
752 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
754 * @scan: struct cgroup_scanner containing the cgroup of the task
756 * Called by cgroup_scan_tasks() for each task in a cgroup whose
757 * cpus_allowed mask needs to be changed.
759 * We don't need to re-check for the cgroup/cpuset membership, since we're
760 * holding cgroup_lock() at this point.
762 static void cpuset_change_cpumask(struct task_struct *tsk,
763 struct cgroup_scanner *scan)
765 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
769 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
770 * @cs: the cpuset to consider
771 * @buf: buffer of cpu numbers written to this cpuset
773 static int update_cpumask(struct cpuset *cs, char *buf)
775 struct cpuset trialcs;
776 struct cgroup_scanner scan;
777 struct ptr_heap heap;
779 int is_load_balanced;
781 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
782 if (cs == &top_cpuset)
788 * An empty cpus_allowed is ok only if the cpuset has no tasks.
789 * Since cpulist_parse() fails on an empty mask, we special case
790 * that parsing. The validate_change() call ensures that cpusets
791 * with tasks have cpus.
795 cpus_clear(trialcs.cpus_allowed);
797 retval = cpulist_parse(buf, trialcs.cpus_allowed);
801 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
802 retval = validate_change(cs, &trialcs);
806 /* Nothing to do if the cpus didn't change */
807 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
810 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
814 is_load_balanced = is_sched_load_balance(&trialcs);
816 mutex_lock(&callback_mutex);
817 cs->cpus_allowed = trialcs.cpus_allowed;
818 mutex_unlock(&callback_mutex);
821 * Scan tasks in the cpuset, and update the cpumasks of any
822 * that need an update.
824 scan.cg = cs->css.cgroup;
825 scan.test_task = cpuset_test_cpumask;
826 scan.process_task = cpuset_change_cpumask;
828 cgroup_scan_tasks(&scan);
831 if (is_load_balanced)
832 rebuild_sched_domains();
839 * Migrate memory region from one set of nodes to another.
841 * Temporarilly set tasks mems_allowed to target nodes of migration,
842 * so that the migration code can allocate pages on these nodes.
844 * Call holding cgroup_mutex, so current's cpuset won't change
845 * during this call, as manage_mutex holds off any cpuset_attach()
846 * calls. Therefore we don't need to take task_lock around the
847 * call to guarantee_online_mems(), as we know no one is changing
850 * Hold callback_mutex around the two modifications of our tasks
851 * mems_allowed to synchronize with cpuset_mems_allowed().
853 * While the mm_struct we are migrating is typically from some
854 * other task, the task_struct mems_allowed that we are hacking
855 * is for our current task, which must allocate new pages for that
856 * migrating memory region.
858 * We call cpuset_update_task_memory_state() before hacking
859 * our tasks mems_allowed, so that we are assured of being in
860 * sync with our tasks cpuset, and in particular, callbacks to
861 * cpuset_update_task_memory_state() from nested page allocations
862 * won't see any mismatch of our cpuset and task mems_generation
863 * values, so won't overwrite our hacked tasks mems_allowed
867 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
868 const nodemask_t *to)
870 struct task_struct *tsk = current;
872 cpuset_update_task_memory_state();
874 mutex_lock(&callback_mutex);
875 tsk->mems_allowed = *to;
876 mutex_unlock(&callback_mutex);
878 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
880 mutex_lock(&callback_mutex);
881 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
882 mutex_unlock(&callback_mutex);
886 * Handle user request to change the 'mems' memory placement
887 * of a cpuset. Needs to validate the request, update the
888 * cpusets mems_allowed and mems_generation, and for each
889 * task in the cpuset, rebind any vma mempolicies and if
890 * the cpuset is marked 'memory_migrate', migrate the tasks
891 * pages to the new memory.
893 * Call with cgroup_mutex held. May take callback_mutex during call.
894 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
895 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
896 * their mempolicies to the cpusets new mems_allowed.
899 static void *cpuset_being_rebound;
901 static int update_nodemask(struct cpuset *cs, char *buf)
903 struct cpuset trialcs;
905 struct task_struct *p;
906 struct mm_struct **mmarray;
911 struct cgroup_iter it;
914 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
917 if (cs == &top_cpuset)
923 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
924 * Since nodelist_parse() fails on an empty mask, we special case
925 * that parsing. The validate_change() call ensures that cpusets
926 * with tasks have memory.
930 nodes_clear(trialcs.mems_allowed);
932 retval = nodelist_parse(buf, trialcs.mems_allowed);
936 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
937 node_states[N_HIGH_MEMORY]);
938 oldmem = cs->mems_allowed;
939 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
940 retval = 0; /* Too easy - nothing to do */
943 retval = validate_change(cs, &trialcs);
947 mutex_lock(&callback_mutex);
948 cs->mems_allowed = trialcs.mems_allowed;
949 cs->mems_generation = cpuset_mems_generation++;
950 mutex_unlock(&callback_mutex);
952 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
954 fudge = 10; /* spare mmarray[] slots */
955 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
959 * Allocate mmarray[] to hold mm reference for each task
960 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
961 * tasklist_lock. We could use GFP_ATOMIC, but with a
962 * few more lines of code, we can retry until we get a big
963 * enough mmarray[] w/o using GFP_ATOMIC.
966 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
968 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
971 read_lock(&tasklist_lock); /* block fork */
972 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
973 break; /* got enough */
974 read_unlock(&tasklist_lock); /* try again */
980 /* Load up mmarray[] with mm reference for each task in cpuset. */
981 cgroup_iter_start(cs->css.cgroup, &it);
982 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
983 struct mm_struct *mm;
987 "Cpuset mempolicy rebind incomplete.\n");
995 cgroup_iter_end(cs->css.cgroup, &it);
996 read_unlock(&tasklist_lock);
999 * Now that we've dropped the tasklist spinlock, we can
1000 * rebind the vma mempolicies of each mm in mmarray[] to their
1001 * new cpuset, and release that mm. The mpol_rebind_mm()
1002 * call takes mmap_sem, which we couldn't take while holding
1003 * tasklist_lock. Forks can happen again now - the mpol_dup()
1004 * cpuset_being_rebound check will catch such forks, and rebind
1005 * their vma mempolicies too. Because we still hold the global
1006 * cgroup_mutex, we know that no other rebind effort will
1007 * be contending for the global variable cpuset_being_rebound.
1008 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1009 * is idempotent. Also migrate pages in each mm to new nodes.
1011 migrate = is_memory_migrate(cs);
1012 for (i = 0; i < n; i++) {
1013 struct mm_struct *mm = mmarray[i];
1015 mpol_rebind_mm(mm, &cs->mems_allowed);
1017 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1021 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1023 cpuset_being_rebound = NULL;
1029 int current_cpuset_is_being_rebound(void)
1031 return task_cs(current) == cpuset_being_rebound;
1034 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1039 if (val != cs->relax_domain_level) {
1040 cs->relax_domain_level = val;
1041 rebuild_sched_domains();
1048 * update_flag - read a 0 or a 1 in a file and update associated flag
1049 * bit: the bit to update (see cpuset_flagbits_t)
1050 * cs: the cpuset to update
1051 * turning_on: whether the flag is being set or cleared
1053 * Call with cgroup_mutex held.
1056 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1059 struct cpuset trialcs;
1061 int cpus_nonempty, balance_flag_changed;
1065 set_bit(bit, &trialcs.flags);
1067 clear_bit(bit, &trialcs.flags);
1069 err = validate_change(cs, &trialcs);
1073 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1074 balance_flag_changed = (is_sched_load_balance(cs) !=
1075 is_sched_load_balance(&trialcs));
1077 mutex_lock(&callback_mutex);
1078 cs->flags = trialcs.flags;
1079 mutex_unlock(&callback_mutex);
1081 if (cpus_nonempty && balance_flag_changed)
1082 rebuild_sched_domains();
1088 * Frequency meter - How fast is some event occurring?
1090 * These routines manage a digitally filtered, constant time based,
1091 * event frequency meter. There are four routines:
1092 * fmeter_init() - initialize a frequency meter.
1093 * fmeter_markevent() - called each time the event happens.
1094 * fmeter_getrate() - returns the recent rate of such events.
1095 * fmeter_update() - internal routine used to update fmeter.
1097 * A common data structure is passed to each of these routines,
1098 * which is used to keep track of the state required to manage the
1099 * frequency meter and its digital filter.
1101 * The filter works on the number of events marked per unit time.
1102 * The filter is single-pole low-pass recursive (IIR). The time unit
1103 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1104 * simulate 3 decimal digits of precision (multiplied by 1000).
1106 * With an FM_COEF of 933, and a time base of 1 second, the filter
1107 * has a half-life of 10 seconds, meaning that if the events quit
1108 * happening, then the rate returned from the fmeter_getrate()
1109 * will be cut in half each 10 seconds, until it converges to zero.
1111 * It is not worth doing a real infinitely recursive filter. If more
1112 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1113 * just compute FM_MAXTICKS ticks worth, by which point the level
1116 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1117 * arithmetic overflow in the fmeter_update() routine.
1119 * Given the simple 32 bit integer arithmetic used, this meter works
1120 * best for reporting rates between one per millisecond (msec) and
1121 * one per 32 (approx) seconds. At constant rates faster than one
1122 * per msec it maxes out at values just under 1,000,000. At constant
1123 * rates between one per msec, and one per second it will stabilize
1124 * to a value N*1000, where N is the rate of events per second.
1125 * At constant rates between one per second and one per 32 seconds,
1126 * it will be choppy, moving up on the seconds that have an event,
1127 * and then decaying until the next event. At rates slower than
1128 * about one in 32 seconds, it decays all the way back to zero between
1132 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1133 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1134 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1135 #define FM_SCALE 1000 /* faux fixed point scale */
1137 /* Initialize a frequency meter */
1138 static void fmeter_init(struct fmeter *fmp)
1143 spin_lock_init(&fmp->lock);
1146 /* Internal meter update - process cnt events and update value */
1147 static void fmeter_update(struct fmeter *fmp)
1149 time_t now = get_seconds();
1150 time_t ticks = now - fmp->time;
1155 ticks = min(FM_MAXTICKS, ticks);
1157 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1160 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1164 /* Process any previous ticks, then bump cnt by one (times scale). */
1165 static void fmeter_markevent(struct fmeter *fmp)
1167 spin_lock(&fmp->lock);
1169 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1170 spin_unlock(&fmp->lock);
1173 /* Process any previous ticks, then return current value. */
1174 static int fmeter_getrate(struct fmeter *fmp)
1178 spin_lock(&fmp->lock);
1181 spin_unlock(&fmp->lock);
1185 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1186 static int cpuset_can_attach(struct cgroup_subsys *ss,
1187 struct cgroup *cont, struct task_struct *tsk)
1189 struct cpuset *cs = cgroup_cs(cont);
1191 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1194 return security_task_setscheduler(tsk, 0, NULL);
1197 static void cpuset_attach(struct cgroup_subsys *ss,
1198 struct cgroup *cont, struct cgroup *oldcont,
1199 struct task_struct *tsk)
1202 nodemask_t from, to;
1203 struct mm_struct *mm;
1204 struct cpuset *cs = cgroup_cs(cont);
1205 struct cpuset *oldcs = cgroup_cs(oldcont);
1207 mutex_lock(&callback_mutex);
1208 guarantee_online_cpus(cs, &cpus);
1209 set_cpus_allowed_ptr(tsk, &cpus);
1210 mutex_unlock(&callback_mutex);
1212 from = oldcs->mems_allowed;
1213 to = cs->mems_allowed;
1214 mm = get_task_mm(tsk);
1216 mpol_rebind_mm(mm, &to);
1217 if (is_memory_migrate(cs))
1218 cpuset_migrate_mm(mm, &from, &to);
1224 /* The various types of files and directories in a cpuset file system */
1227 FILE_MEMORY_MIGRATE,
1233 FILE_SCHED_LOAD_BALANCE,
1234 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1235 FILE_MEMORY_PRESSURE_ENABLED,
1236 FILE_MEMORY_PRESSURE,
1239 } cpuset_filetype_t;
1241 static ssize_t cpuset_common_file_write(struct cgroup *cont,
1244 const char __user *userbuf,
1245 size_t nbytes, loff_t *unused_ppos)
1247 struct cpuset *cs = cgroup_cs(cont);
1248 cpuset_filetype_t type = cft->private;
1252 /* Crude upper limit on largest legitimate cpulist user might write. */
1253 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
1256 /* +1 for nul-terminator */
1257 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1261 if (copy_from_user(buffer, userbuf, nbytes)) {
1265 buffer[nbytes] = 0; /* nul-terminate */
1269 if (cgroup_is_removed(cont)) {
1276 retval = update_cpumask(cs, buffer);
1279 retval = update_nodemask(cs, buffer);
1295 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1298 struct cpuset *cs = cgroup_cs(cgrp);
1299 cpuset_filetype_t type = cft->private;
1303 if (cgroup_is_removed(cgrp)) {
1309 case FILE_CPU_EXCLUSIVE:
1310 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1312 case FILE_MEM_EXCLUSIVE:
1313 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1315 case FILE_MEM_HARDWALL:
1316 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1318 case FILE_SCHED_LOAD_BALANCE:
1319 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1321 case FILE_MEMORY_MIGRATE:
1322 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1324 case FILE_MEMORY_PRESSURE_ENABLED:
1325 cpuset_memory_pressure_enabled = !!val;
1327 case FILE_MEMORY_PRESSURE:
1330 case FILE_SPREAD_PAGE:
1331 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1332 cs->mems_generation = cpuset_mems_generation++;
1334 case FILE_SPREAD_SLAB:
1335 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1336 cs->mems_generation = cpuset_mems_generation++;
1346 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1349 struct cpuset *cs = cgroup_cs(cgrp);
1350 cpuset_filetype_t type = cft->private;
1354 if (cgroup_is_removed(cgrp)) {
1359 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1360 retval = update_relax_domain_level(cs, val);
1371 * These ascii lists should be read in a single call, by using a user
1372 * buffer large enough to hold the entire map. If read in smaller
1373 * chunks, there is no guarantee of atomicity. Since the display format
1374 * used, list of ranges of sequential numbers, is variable length,
1375 * and since these maps can change value dynamically, one could read
1376 * gibberish by doing partial reads while a list was changing.
1377 * A single large read to a buffer that crosses a page boundary is
1378 * ok, because the result being copied to user land is not recomputed
1379 * across a page fault.
1382 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1386 mutex_lock(&callback_mutex);
1387 mask = cs->cpus_allowed;
1388 mutex_unlock(&callback_mutex);
1390 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1393 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1397 mutex_lock(&callback_mutex);
1398 mask = cs->mems_allowed;
1399 mutex_unlock(&callback_mutex);
1401 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1404 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1408 size_t nbytes, loff_t *ppos)
1410 struct cpuset *cs = cgroup_cs(cont);
1411 cpuset_filetype_t type = cft->private;
1416 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1423 s += cpuset_sprintf_cpulist(s, cs);
1426 s += cpuset_sprintf_memlist(s, cs);
1434 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1436 free_page((unsigned long)page);
1440 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1442 struct cpuset *cs = cgroup_cs(cont);
1443 cpuset_filetype_t type = cft->private;
1445 case FILE_CPU_EXCLUSIVE:
1446 return is_cpu_exclusive(cs);
1447 case FILE_MEM_EXCLUSIVE:
1448 return is_mem_exclusive(cs);
1449 case FILE_MEM_HARDWALL:
1450 return is_mem_hardwall(cs);
1451 case FILE_SCHED_LOAD_BALANCE:
1452 return is_sched_load_balance(cs);
1453 case FILE_MEMORY_MIGRATE:
1454 return is_memory_migrate(cs);
1455 case FILE_MEMORY_PRESSURE_ENABLED:
1456 return cpuset_memory_pressure_enabled;
1457 case FILE_MEMORY_PRESSURE:
1458 return fmeter_getrate(&cs->fmeter);
1459 case FILE_SPREAD_PAGE:
1460 return is_spread_page(cs);
1461 case FILE_SPREAD_SLAB:
1462 return is_spread_slab(cs);
1468 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1470 struct cpuset *cs = cgroup_cs(cont);
1471 cpuset_filetype_t type = cft->private;
1473 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1474 return cs->relax_domain_level;
1482 * for the common functions, 'private' gives the type of file
1485 static struct cftype files[] = {
1488 .read = cpuset_common_file_read,
1489 .write = cpuset_common_file_write,
1490 .private = FILE_CPULIST,
1495 .read = cpuset_common_file_read,
1496 .write = cpuset_common_file_write,
1497 .private = FILE_MEMLIST,
1501 .name = "cpu_exclusive",
1502 .read_u64 = cpuset_read_u64,
1503 .write_u64 = cpuset_write_u64,
1504 .private = FILE_CPU_EXCLUSIVE,
1508 .name = "mem_exclusive",
1509 .read_u64 = cpuset_read_u64,
1510 .write_u64 = cpuset_write_u64,
1511 .private = FILE_MEM_EXCLUSIVE,
1515 .name = "mem_hardwall",
1516 .read_u64 = cpuset_read_u64,
1517 .write_u64 = cpuset_write_u64,
1518 .private = FILE_MEM_HARDWALL,
1522 .name = "sched_load_balance",
1523 .read_u64 = cpuset_read_u64,
1524 .write_u64 = cpuset_write_u64,
1525 .private = FILE_SCHED_LOAD_BALANCE,
1529 .name = "sched_relax_domain_level",
1530 .read_s64 = cpuset_read_s64,
1531 .write_s64 = cpuset_write_s64,
1532 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1536 .name = "memory_migrate",
1537 .read_u64 = cpuset_read_u64,
1538 .write_u64 = cpuset_write_u64,
1539 .private = FILE_MEMORY_MIGRATE,
1543 .name = "memory_pressure",
1544 .read_u64 = cpuset_read_u64,
1545 .write_u64 = cpuset_write_u64,
1546 .private = FILE_MEMORY_PRESSURE,
1550 .name = "memory_spread_page",
1551 .read_u64 = cpuset_read_u64,
1552 .write_u64 = cpuset_write_u64,
1553 .private = FILE_SPREAD_PAGE,
1557 .name = "memory_spread_slab",
1558 .read_u64 = cpuset_read_u64,
1559 .write_u64 = cpuset_write_u64,
1560 .private = FILE_SPREAD_SLAB,
1564 static struct cftype cft_memory_pressure_enabled = {
1565 .name = "memory_pressure_enabled",
1566 .read_u64 = cpuset_read_u64,
1567 .write_u64 = cpuset_write_u64,
1568 .private = FILE_MEMORY_PRESSURE_ENABLED,
1571 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1575 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1578 /* memory_pressure_enabled is in root cpuset only */
1580 err = cgroup_add_file(cont, ss,
1581 &cft_memory_pressure_enabled);
1586 * post_clone() is called at the end of cgroup_clone().
1587 * 'cgroup' was just created automatically as a result of
1588 * a cgroup_clone(), and the current task is about to
1589 * be moved into 'cgroup'.
1591 * Currently we refuse to set up the cgroup - thereby
1592 * refusing the task to be entered, and as a result refusing
1593 * the sys_unshare() or clone() which initiated it - if any
1594 * sibling cpusets have exclusive cpus or mem.
1596 * If this becomes a problem for some users who wish to
1597 * allow that scenario, then cpuset_post_clone() could be
1598 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1599 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1602 static void cpuset_post_clone(struct cgroup_subsys *ss,
1603 struct cgroup *cgroup)
1605 struct cgroup *parent, *child;
1606 struct cpuset *cs, *parent_cs;
1608 parent = cgroup->parent;
1609 list_for_each_entry(child, &parent->children, sibling) {
1610 cs = cgroup_cs(child);
1611 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1614 cs = cgroup_cs(cgroup);
1615 parent_cs = cgroup_cs(parent);
1617 cs->mems_allowed = parent_cs->mems_allowed;
1618 cs->cpus_allowed = parent_cs->cpus_allowed;
1623 * cpuset_create - create a cpuset
1624 * ss: cpuset cgroup subsystem
1625 * cont: control group that the new cpuset will be part of
1628 static struct cgroup_subsys_state *cpuset_create(
1629 struct cgroup_subsys *ss,
1630 struct cgroup *cont)
1633 struct cpuset *parent;
1635 if (!cont->parent) {
1636 /* This is early initialization for the top cgroup */
1637 top_cpuset.mems_generation = cpuset_mems_generation++;
1638 return &top_cpuset.css;
1640 parent = cgroup_cs(cont->parent);
1641 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1643 return ERR_PTR(-ENOMEM);
1645 cpuset_update_task_memory_state();
1647 if (is_spread_page(parent))
1648 set_bit(CS_SPREAD_PAGE, &cs->flags);
1649 if (is_spread_slab(parent))
1650 set_bit(CS_SPREAD_SLAB, &cs->flags);
1651 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1652 cpus_clear(cs->cpus_allowed);
1653 nodes_clear(cs->mems_allowed);
1654 cs->mems_generation = cpuset_mems_generation++;
1655 fmeter_init(&cs->fmeter);
1656 cs->relax_domain_level = -1;
1658 cs->parent = parent;
1659 number_of_cpusets++;
1664 * Locking note on the strange update_flag() call below:
1666 * If the cpuset being removed has its flag 'sched_load_balance'
1667 * enabled, then simulate turning sched_load_balance off, which
1668 * will call rebuild_sched_domains(). The get_online_cpus()
1669 * call in rebuild_sched_domains() must not be made while holding
1670 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1671 * get_online_cpus() calls. So the reverse nesting would risk an
1675 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1677 struct cpuset *cs = cgroup_cs(cont);
1679 cpuset_update_task_memory_state();
1681 if (is_sched_load_balance(cs))
1682 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1684 number_of_cpusets--;
1688 struct cgroup_subsys cpuset_subsys = {
1690 .create = cpuset_create,
1691 .destroy = cpuset_destroy,
1692 .can_attach = cpuset_can_attach,
1693 .attach = cpuset_attach,
1694 .populate = cpuset_populate,
1695 .post_clone = cpuset_post_clone,
1696 .subsys_id = cpuset_subsys_id,
1701 * cpuset_init_early - just enough so that the calls to
1702 * cpuset_update_task_memory_state() in early init code
1706 int __init cpuset_init_early(void)
1708 top_cpuset.mems_generation = cpuset_mems_generation++;
1714 * cpuset_init - initialize cpusets at system boot
1716 * Description: Initialize top_cpuset and the cpuset internal file system,
1719 int __init cpuset_init(void)
1723 cpus_setall(top_cpuset.cpus_allowed);
1724 nodes_setall(top_cpuset.mems_allowed);
1726 fmeter_init(&top_cpuset.fmeter);
1727 top_cpuset.mems_generation = cpuset_mems_generation++;
1728 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1729 top_cpuset.relax_domain_level = -1;
1731 err = register_filesystem(&cpuset_fs_type);
1735 number_of_cpusets = 1;
1740 * cpuset_do_move_task - move a given task to another cpuset
1741 * @tsk: pointer to task_struct the task to move
1742 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1744 * Called by cgroup_scan_tasks() for each task in a cgroup.
1745 * Return nonzero to stop the walk through the tasks.
1747 static void cpuset_do_move_task(struct task_struct *tsk,
1748 struct cgroup_scanner *scan)
1750 struct cpuset_hotplug_scanner *chsp;
1752 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1753 cgroup_attach_task(chsp->to, tsk);
1757 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1758 * @from: cpuset in which the tasks currently reside
1759 * @to: cpuset to which the tasks will be moved
1761 * Called with cgroup_mutex held
1762 * callback_mutex must not be held, as cpuset_attach() will take it.
1764 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1765 * calling callback functions for each.
1767 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1769 struct cpuset_hotplug_scanner scan;
1771 scan.scan.cg = from->css.cgroup;
1772 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1773 scan.scan.process_task = cpuset_do_move_task;
1774 scan.scan.heap = NULL;
1775 scan.to = to->css.cgroup;
1777 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1778 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1779 "cgroup_scan_tasks failed\n");
1783 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1784 * or memory nodes, we need to walk over the cpuset hierarchy,
1785 * removing that CPU or node from all cpusets. If this removes the
1786 * last CPU or node from a cpuset, then move the tasks in the empty
1787 * cpuset to its next-highest non-empty parent.
1789 * Called with cgroup_mutex held
1790 * callback_mutex must not be held, as cpuset_attach() will take it.
1792 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1794 struct cpuset *parent;
1797 * The cgroup's css_sets list is in use if there are tasks
1798 * in the cpuset; the list is empty if there are none;
1799 * the cs->css.refcnt seems always 0.
1801 if (list_empty(&cs->css.cgroup->css_sets))
1805 * Find its next-highest non-empty parent, (top cpuset
1806 * has online cpus, so can't be empty).
1808 parent = cs->parent;
1809 while (cpus_empty(parent->cpus_allowed) ||
1810 nodes_empty(parent->mems_allowed))
1811 parent = parent->parent;
1813 move_member_tasks_to_cpuset(cs, parent);
1817 * Walk the specified cpuset subtree and look for empty cpusets.
1818 * The tasks of such cpuset must be moved to a parent cpuset.
1820 * Called with cgroup_mutex held. We take callback_mutex to modify
1821 * cpus_allowed and mems_allowed.
1823 * This walk processes the tree from top to bottom, completing one layer
1824 * before dropping down to the next. It always processes a node before
1825 * any of its children.
1827 * For now, since we lack memory hot unplug, we'll never see a cpuset
1828 * that has tasks along with an empty 'mems'. But if we did see such
1829 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1831 static void scan_for_empty_cpusets(const struct cpuset *root)
1833 struct cpuset *cp; /* scans cpusets being updated */
1834 struct cpuset *child; /* scans child cpusets of cp */
1835 struct list_head queue;
1836 struct cgroup *cont;
1838 INIT_LIST_HEAD(&queue);
1840 list_add_tail((struct list_head *)&root->stack_list, &queue);
1842 while (!list_empty(&queue)) {
1843 cp = container_of(queue.next, struct cpuset, stack_list);
1844 list_del(queue.next);
1845 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1846 child = cgroup_cs(cont);
1847 list_add_tail(&child->stack_list, &queue);
1849 cont = cp->css.cgroup;
1851 /* Continue past cpusets with all cpus, mems online */
1852 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1853 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1856 /* Remove offline cpus and mems from this cpuset. */
1857 mutex_lock(&callback_mutex);
1858 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1859 nodes_and(cp->mems_allowed, cp->mems_allowed,
1860 node_states[N_HIGH_MEMORY]);
1861 mutex_unlock(&callback_mutex);
1863 /* Move tasks from the empty cpuset to a parent */
1864 if (cpus_empty(cp->cpus_allowed) ||
1865 nodes_empty(cp->mems_allowed))
1866 remove_tasks_in_empty_cpuset(cp);
1871 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1872 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1873 * track what's online after any CPU or memory node hotplug or unplug event.
1875 * Since there are two callers of this routine, one for CPU hotplug
1876 * events and one for memory node hotplug events, we could have coded
1877 * two separate routines here. We code it as a single common routine
1878 * in order to minimize text size.
1881 static void common_cpu_mem_hotplug_unplug(void)
1885 top_cpuset.cpus_allowed = cpu_online_map;
1886 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1887 scan_for_empty_cpusets(&top_cpuset);
1893 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1894 * period. This is necessary in order to make cpusets transparent
1895 * (of no affect) on systems that are actively using CPU hotplug
1896 * but making no active use of cpusets.
1898 * This routine ensures that top_cpuset.cpus_allowed tracks
1899 * cpu_online_map on each CPU hotplug (cpuhp) event.
1902 static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1903 unsigned long phase, void *unused_cpu)
1905 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
1908 common_cpu_mem_hotplug_unplug();
1912 #ifdef CONFIG_MEMORY_HOTPLUG
1914 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1915 * Call this routine anytime after you change
1916 * node_states[N_HIGH_MEMORY].
1917 * See also the previous routine cpuset_handle_cpuhp().
1920 void cpuset_track_online_nodes(void)
1922 common_cpu_mem_hotplug_unplug();
1927 * cpuset_init_smp - initialize cpus_allowed
1929 * Description: Finish top cpuset after cpu, node maps are initialized
1932 void __init cpuset_init_smp(void)
1934 top_cpuset.cpus_allowed = cpu_online_map;
1935 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1937 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1942 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1943 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1944 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1946 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1947 * attached to the specified @tsk. Guaranteed to return some non-empty
1948 * subset of cpu_online_map, even if this means going outside the
1952 void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1954 mutex_lock(&callback_mutex);
1955 cpuset_cpus_allowed_locked(tsk, pmask);
1956 mutex_unlock(&callback_mutex);
1960 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1961 * Must be called with callback_mutex held.
1963 void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
1966 guarantee_online_cpus(task_cs(tsk), pmask);
1970 void cpuset_init_current_mems_allowed(void)
1972 nodes_setall(current->mems_allowed);
1976 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1977 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1979 * Description: Returns the nodemask_t mems_allowed of the cpuset
1980 * attached to the specified @tsk. Guaranteed to return some non-empty
1981 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1985 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1989 mutex_lock(&callback_mutex);
1991 guarantee_online_mems(task_cs(tsk), &mask);
1993 mutex_unlock(&callback_mutex);
1999 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2000 * @nodemask: the nodemask to be checked
2002 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2004 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2006 return nodes_intersects(*nodemask, current->mems_allowed);
2010 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2011 * mem_hardwall ancestor to the specified cpuset. Call holding
2012 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2013 * (an unusual configuration), then returns the root cpuset.
2015 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2017 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2023 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2024 * @z: is this zone on an allowed node?
2025 * @gfp_mask: memory allocation flags
2027 * If we're in interrupt, yes, we can always allocate. If
2028 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2029 * z's node is in our tasks mems_allowed, yes. If it's not a
2030 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2031 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2032 * If the task has been OOM killed and has access to memory reserves
2033 * as specified by the TIF_MEMDIE flag, yes.
2036 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2037 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2038 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2039 * from an enclosing cpuset.
2041 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2042 * hardwall cpusets, and never sleeps.
2044 * The __GFP_THISNODE placement logic is really handled elsewhere,
2045 * by forcibly using a zonelist starting at a specified node, and by
2046 * (in get_page_from_freelist()) refusing to consider the zones for
2047 * any node on the zonelist except the first. By the time any such
2048 * calls get to this routine, we should just shut up and say 'yes'.
2050 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2051 * and do not allow allocations outside the current tasks cpuset
2052 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2053 * GFP_KERNEL allocations are not so marked, so can escape to the
2054 * nearest enclosing hardwalled ancestor cpuset.
2056 * Scanning up parent cpusets requires callback_mutex. The
2057 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2058 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2059 * current tasks mems_allowed came up empty on the first pass over
2060 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2061 * cpuset are short of memory, might require taking the callback_mutex
2064 * The first call here from mm/page_alloc:get_page_from_freelist()
2065 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2066 * so no allocation on a node outside the cpuset is allowed (unless
2067 * in interrupt, of course).
2069 * The second pass through get_page_from_freelist() doesn't even call
2070 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2071 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2072 * in alloc_flags. That logic and the checks below have the combined
2074 * in_interrupt - any node ok (current task context irrelevant)
2075 * GFP_ATOMIC - any node ok
2076 * TIF_MEMDIE - any node ok
2077 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2078 * GFP_USER - only nodes in current tasks mems allowed ok.
2081 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2082 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2083 * the code that might scan up ancestor cpusets and sleep.
2086 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2088 int node; /* node that zone z is on */
2089 const struct cpuset *cs; /* current cpuset ancestors */
2090 int allowed; /* is allocation in zone z allowed? */
2092 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2094 node = zone_to_nid(z);
2095 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2096 if (node_isset(node, current->mems_allowed))
2099 * Allow tasks that have access to memory reserves because they have
2100 * been OOM killed to get memory anywhere.
2102 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2104 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2107 if (current->flags & PF_EXITING) /* Let dying task have memory */
2110 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2111 mutex_lock(&callback_mutex);
2114 cs = nearest_hardwall_ancestor(task_cs(current));
2115 task_unlock(current);
2117 allowed = node_isset(node, cs->mems_allowed);
2118 mutex_unlock(&callback_mutex);
2123 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2124 * @z: is this zone on an allowed node?
2125 * @gfp_mask: memory allocation flags
2127 * If we're in interrupt, yes, we can always allocate.
2128 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2129 * z's node is in our tasks mems_allowed, yes. If the task has been
2130 * OOM killed and has access to memory reserves as specified by the
2131 * TIF_MEMDIE flag, yes. Otherwise, no.
2133 * The __GFP_THISNODE placement logic is really handled elsewhere,
2134 * by forcibly using a zonelist starting at a specified node, and by
2135 * (in get_page_from_freelist()) refusing to consider the zones for
2136 * any node on the zonelist except the first. By the time any such
2137 * calls get to this routine, we should just shut up and say 'yes'.
2139 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2140 * this variant requires that the zone be in the current tasks
2141 * mems_allowed or that we're in interrupt. It does not scan up the
2142 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2146 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2148 int node; /* node that zone z is on */
2150 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2152 node = zone_to_nid(z);
2153 if (node_isset(node, current->mems_allowed))
2156 * Allow tasks that have access to memory reserves because they have
2157 * been OOM killed to get memory anywhere.
2159 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2165 * cpuset_lock - lock out any changes to cpuset structures
2167 * The out of memory (oom) code needs to mutex_lock cpusets
2168 * from being changed while it scans the tasklist looking for a
2169 * task in an overlapping cpuset. Expose callback_mutex via this
2170 * cpuset_lock() routine, so the oom code can lock it, before
2171 * locking the task list. The tasklist_lock is a spinlock, so
2172 * must be taken inside callback_mutex.
2175 void cpuset_lock(void)
2177 mutex_lock(&callback_mutex);
2181 * cpuset_unlock - release lock on cpuset changes
2183 * Undo the lock taken in a previous cpuset_lock() call.
2186 void cpuset_unlock(void)
2188 mutex_unlock(&callback_mutex);
2192 * cpuset_mem_spread_node() - On which node to begin search for a page
2194 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2195 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2196 * and if the memory allocation used cpuset_mem_spread_node()
2197 * to determine on which node to start looking, as it will for
2198 * certain page cache or slab cache pages such as used for file
2199 * system buffers and inode caches, then instead of starting on the
2200 * local node to look for a free page, rather spread the starting
2201 * node around the tasks mems_allowed nodes.
2203 * We don't have to worry about the returned node being offline
2204 * because "it can't happen", and even if it did, it would be ok.
2206 * The routines calling guarantee_online_mems() are careful to
2207 * only set nodes in task->mems_allowed that are online. So it
2208 * should not be possible for the following code to return an
2209 * offline node. But if it did, that would be ok, as this routine
2210 * is not returning the node where the allocation must be, only
2211 * the node where the search should start. The zonelist passed to
2212 * __alloc_pages() will include all nodes. If the slab allocator
2213 * is passed an offline node, it will fall back to the local node.
2214 * See kmem_cache_alloc_node().
2217 int cpuset_mem_spread_node(void)
2221 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2222 if (node == MAX_NUMNODES)
2223 node = first_node(current->mems_allowed);
2224 current->cpuset_mem_spread_rotor = node;
2227 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2230 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2231 * @tsk1: pointer to task_struct of some task.
2232 * @tsk2: pointer to task_struct of some other task.
2234 * Description: Return true if @tsk1's mems_allowed intersects the
2235 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2236 * one of the task's memory usage might impact the memory available
2240 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2241 const struct task_struct *tsk2)
2243 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2247 * Collection of memory_pressure is suppressed unless
2248 * this flag is enabled by writing "1" to the special
2249 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2252 int cpuset_memory_pressure_enabled __read_mostly;
2255 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2257 * Keep a running average of the rate of synchronous (direct)
2258 * page reclaim efforts initiated by tasks in each cpuset.
2260 * This represents the rate at which some task in the cpuset
2261 * ran low on memory on all nodes it was allowed to use, and
2262 * had to enter the kernels page reclaim code in an effort to
2263 * create more free memory by tossing clean pages or swapping
2264 * or writing dirty pages.
2266 * Display to user space in the per-cpuset read-only file
2267 * "memory_pressure". Value displayed is an integer
2268 * representing the recent rate of entry into the synchronous
2269 * (direct) page reclaim by any task attached to the cpuset.
2272 void __cpuset_memory_pressure_bump(void)
2275 fmeter_markevent(&task_cs(current)->fmeter);
2276 task_unlock(current);
2279 #ifdef CONFIG_PROC_PID_CPUSET
2281 * proc_cpuset_show()
2282 * - Print tasks cpuset path into seq_file.
2283 * - Used for /proc/<pid>/cpuset.
2284 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2285 * doesn't really matter if tsk->cpuset changes after we read it,
2286 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2289 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2292 struct task_struct *tsk;
2294 struct cgroup_subsys_state *css;
2298 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2304 tsk = get_pid_task(pid, PIDTYPE_PID);
2310 css = task_subsys_state(tsk, cpuset_subsys_id);
2311 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2318 put_task_struct(tsk);
2325 static int cpuset_open(struct inode *inode, struct file *file)
2327 struct pid *pid = PROC_I(inode)->pid;
2328 return single_open(file, proc_cpuset_show, pid);
2331 const struct file_operations proc_cpuset_operations = {
2332 .open = cpuset_open,
2334 .llseek = seq_lseek,
2335 .release = single_release,
2337 #endif /* CONFIG_PROC_PID_CPUSET */
2339 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2340 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2342 seq_printf(m, "Cpus_allowed:\t");
2343 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2344 task->cpus_allowed);
2345 seq_printf(m, "\n");
2346 seq_printf(m, "Cpus_allowed_list:\t");
2347 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2348 task->cpus_allowed);
2349 seq_printf(m, "\n");
2350 seq_printf(m, "Mems_allowed:\t");
2351 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2352 task->mems_allowed);
2353 seq_printf(m, "\n");
2354 seq_printf(m, "Mems_allowed_list:\t");
2355 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2356 task->mems_allowed);
2357 seq_printf(m, "\n");