2 v4l2 common internal API header
4 This header contains internal shared ioctl definitions for use by the
5 internal low-level v4l2 drivers.
6 Each ioctl begins with VIDIOC_INT_ to clearly mark that it is an internal
9 Copyright (C) 2005 Hans Verkuil <hverkuil@xs4all.nl>
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 #ifndef V4L2_COMMON_H_
27 #define V4L2_COMMON_H_
29 #include <media/v4l2-dev.h>
31 /* v4l debugging and diagnostics */
33 /* Debug bitmask flags to be used on V4L2 */
34 #define V4L2_DEBUG_IOCTL 0x01
35 #define V4L2_DEBUG_IOCTL_ARG 0x02
37 /* Common printk constucts for v4l-i2c drivers. These macros create a unique
38 prefix consisting of the driver name, the adapter number and the i2c
40 #define v4l_printk(level, name, adapter, addr, fmt, arg...) \
41 printk(level "%s %d-%04x: " fmt, name, i2c_adapter_id(adapter), addr , ## arg)
43 #define v4l_client_printk(level, client, fmt, arg...) \
44 v4l_printk(level, (client)->driver->driver.name, (client)->adapter, \
45 (client)->addr, fmt , ## arg)
47 #define v4l_err(client, fmt, arg...) \
48 v4l_client_printk(KERN_ERR, client, fmt , ## arg)
50 #define v4l_warn(client, fmt, arg...) \
51 v4l_client_printk(KERN_WARNING, client, fmt , ## arg)
53 #define v4l_info(client, fmt, arg...) \
54 v4l_client_printk(KERN_INFO, client, fmt , ## arg)
56 /* These three macros assume that the debug level is set with a module
57 parameter called 'debug'. */
58 #define v4l_dbg(level, debug, client, fmt, arg...) \
60 if (debug >= (level)) \
61 v4l_client_printk(KERN_DEBUG, client, fmt , ## arg); \
64 /* Prints the ioctl in a human-readable format */
65 extern void v4l_printk_ioctl(unsigned int cmd);
67 /* Use this macro for non-I2C drivers. Pass the driver name as the first arg. */
68 #define v4l_print_ioctl(name, cmd) \
70 printk(KERN_DEBUG "%s: ", name); \
71 v4l_printk_ioctl(cmd); \
74 /* Use this macro in I2C drivers where 'client' is the struct i2c_client
76 #define v4l_i2c_print_ioctl(client, cmd) \
78 v4l_client_printk(KERN_DEBUG, client, ""); \
79 v4l_printk_ioctl(cmd); \
82 /* ------------------------------------------------------------------------- */
84 /* Control helper functions */
86 int v4l2_ctrl_check(struct v4l2_ext_control *ctrl, struct v4l2_queryctrl *qctrl,
87 const char **menu_items);
88 const char **v4l2_ctrl_get_menu(u32 id);
89 int v4l2_ctrl_query_fill(struct v4l2_queryctrl *qctrl, s32 min, s32 max, s32 step, s32 def);
90 int v4l2_ctrl_query_fill_std(struct v4l2_queryctrl *qctrl);
91 int v4l2_ctrl_query_menu(struct v4l2_querymenu *qmenu,
92 struct v4l2_queryctrl *qctrl, const char **menu_items);
93 u32 v4l2_ctrl_next(const u32 * const *ctrl_classes, u32 id);
95 /* ------------------------------------------------------------------------- */
97 /* Register/chip ident helper function */
99 struct i2c_client; /* forward reference */
100 int v4l2_chip_match_i2c_client(struct i2c_client *c, u32 id_type, u32 chip_id);
101 int v4l2_chip_ident_i2c_client(struct i2c_client *c, struct v4l2_chip_ident *chip,
102 u32 ident, u32 revision);
103 int v4l2_chip_match_host(u32 id_type, u32 chip_id);
105 /* ------------------------------------------------------------------------- */
107 /* Internal ioctls */
109 /* VIDIOC_INT_DECODE_VBI_LINE */
110 struct v4l2_decode_vbi_line {
111 u32 is_second_field; /* Set to 0 for the first (odd) field,
112 set to 1 for the second (even) field. */
113 u8 *p; /* Pointer to the sliced VBI data from the decoder.
114 On exit points to the start of the payload. */
115 u32 line; /* Line number of the sliced VBI data (1-23) */
116 u32 type; /* VBI service type (V4L2_SLICED_*). 0 if no service found */
119 struct v4l2_priv_tun_config {
126 /* v4l device was opened in Radio mode, to be replaced by VIDIOC_INT_S_TUNER_MODE */
127 #define AUDC_SET_RADIO _IO('d',88)
131 /* Sets tuner type and its I2C addr */
132 #define TUNER_SET_TYPE_ADDR _IOW('d', 90, int)
134 /* Puts tuner on powersaving state, disabling it, except for i2c. To be replaced
135 by VIDIOC_INT_S_STANDBY. */
136 #define TUNER_SET_STANDBY _IOW('d', 91, int)
138 /* Sets tda9887 specific stuff, like port1, port2 and qss */
139 #define TUNER_SET_CONFIG _IOW('d', 92, struct v4l2_priv_tun_config)
141 /* Switch the tuner to a specific tuner mode. Replacement of AUDC_SET_RADIO */
142 #define VIDIOC_INT_S_TUNER_MODE _IOW('d', 93, enum v4l2_tuner_type)
144 /* Generic standby command. Passing -1 (all bits set to 1) will put the whole
145 chip into standby mode, value 0 will make the chip fully active. Specific
146 bits can be used by certain chips to enable/disable specific subsystems.
147 Replacement of TUNER_SET_STANDBY. */
148 #define VIDIOC_INT_S_STANDBY _IOW('d', 94, u32)
150 /* 100, 101 used by VIDIOC_DBG_[SG]_REGISTER */
152 /* Generic reset command. The argument selects which subsystems to reset.
153 Passing 0 will always reset the whole chip. */
154 #define VIDIOC_INT_RESET _IOW ('d', 102, u32)
156 /* Set the frequency (in Hz) of the audio clock output.
157 Used to slave an audio processor to the video decoder, ensuring that audio
158 and video remain synchronized.
159 Usual values for the frequency are 48000, 44100 or 32000 Hz.
160 If the frequency is not supported, then -EINVAL is returned. */
161 #define VIDIOC_INT_AUDIO_CLOCK_FREQ _IOW ('d', 103, u32)
163 /* Video decoders that support sliced VBI need to implement this ioctl.
164 Field p of the v4l2_sliced_vbi_line struct is set to the start of the VBI
165 data that was generated by the decoder. The driver then parses the sliced
166 VBI data and sets the other fields in the struct accordingly. The pointer p
167 is updated to point to the start of the payload which can be copied
168 verbatim into the data field of the v4l2_sliced_vbi_data struct. If no
169 valid VBI data was found, then the type field is set to 0 on return. */
170 #define VIDIOC_INT_DECODE_VBI_LINE _IOWR('d', 104, struct v4l2_decode_vbi_line)
172 /* Used to generate VBI signals on a video signal. v4l2_sliced_vbi_data is
173 filled with the data packets that should be output. Note that if you set
174 the line field to 0, then that VBI signal is disabled. If no
175 valid VBI data was found, then the type field is set to 0 on return. */
176 #define VIDIOC_INT_S_VBI_DATA _IOW ('d', 105, struct v4l2_sliced_vbi_data)
178 /* Used to obtain the sliced VBI packet from a readback register. Not all
179 video decoders support this. If no data is available because the readback
180 register contains invalid or erroneous data -EIO is returned. Note that
181 you must fill in the 'id' member and the 'field' member (to determine
182 whether CC data from the first or second field should be obtained). */
183 #define VIDIOC_INT_G_VBI_DATA _IOWR('d', 106, struct v4l2_sliced_vbi_data)
185 /* Sets I2S speed in bps. This is used to provide a standard way to select I2S
186 clock used by driving digital audio streams at some board designs.
187 Usual values for the frequency are 1024000 and 2048000.
188 If the frequency is not supported, then -EINVAL is returned. */
189 #define VIDIOC_INT_I2S_CLOCK_FREQ _IOW ('d', 108, u32)
191 /* Routing definition, device dependent. It specifies which inputs (if any)
192 should be routed to which outputs (if any). */
193 struct v4l2_routing {
198 /* These internal commands should be used to define the inputs and outputs
199 of an audio/video chip. They will replace the v4l2 API commands
200 VIDIOC_S/G_INPUT, VIDIOC_S/G_OUTPUT, VIDIOC_S/G_AUDIO and VIDIOC_S/G_AUDOUT
201 that are meant to be used by the user.
202 The internal commands should be used to switch inputs/outputs
203 because only the driver knows how to map a 'Television' input to the precise
204 input/output routing of an A/D converter, or a DSP, or a video digitizer.
205 These four commands should only be sent directly to an i2c device, they
206 should not be broadcast as the routing is very device specific. */
207 #define VIDIOC_INT_S_AUDIO_ROUTING _IOW ('d', 109, struct v4l2_routing)
208 #define VIDIOC_INT_G_AUDIO_ROUTING _IOR ('d', 110, struct v4l2_routing)
209 #define VIDIOC_INT_S_VIDEO_ROUTING _IOW ('d', 111, struct v4l2_routing)
210 #define VIDIOC_INT_G_VIDEO_ROUTING _IOR ('d', 112, struct v4l2_routing)
212 struct v4l2_crystal_freq {
213 u32 freq; /* frequency in Hz of the crystal */
214 u32 flags; /* device specific flags */
217 /* Sets the frequency of the crystal used to generate the clocks.
218 An extra flags field allows device specific configuration regarding
219 clock frequency dividers, etc. If not used, then set flags to 0.
220 If the frequency is not supported, then -EINVAL is returned. */
221 #define VIDIOC_INT_S_CRYSTAL_FREQ _IOW ('d', 113, struct v4l2_crystal_freq)
223 /* Initialize the sensor registors to some sort of reasonable
225 #define VIDIOC_INT_INIT _IOW ('d', 114, u32)
227 /* Set v4l2_std_id for video OUTPUT devices. This is ignored by
228 video input devices. */
229 #define VIDIOC_INT_S_STD_OUTPUT _IOW ('d', 115, v4l2_std_id)
231 /* Get v4l2_std_id for video OUTPUT devices. This is ignored by
232 video input devices. */
233 #define VIDIOC_INT_G_STD_OUTPUT _IOW ('d', 116, v4l2_std_id)
235 #endif /* V4L2_COMMON_H_ */