2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 2
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
65 * B. Checksumming on output.
67 * NONE: skb is checksummed by protocol or csum is not required.
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
83 * Any questions? No questions, good. --ANK
88 #ifdef CONFIG_NETFILTER
91 void (*destroy)(struct nf_conntrack *);
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
103 unsigned long data[32 / sizeof(unsigned long)];
109 struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 typedef struct skb_frag_struct skb_frag_t;
125 struct skb_frag_struct {
131 /* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
134 struct skb_shared_info {
136 unsigned short nr_frags;
137 unsigned short gso_size;
138 /* Warning: this field is not always filled in (UFO)! */
139 unsigned short gso_segs;
140 unsigned short gso_type;
141 unsigned int ip6_frag_id;
142 struct sk_buff *frag_list;
143 skb_frag_t frags[MAX_SKB_FRAGS];
146 /* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
167 SKB_FCLONE_UNAVAILABLE,
173 SKB_GSO_TCPV4 = 1 << 0,
174 SKB_GSO_UDP = 1 << 1,
176 /* This indicates the skb is from an untrusted source. */
177 SKB_GSO_DODGY = 1 << 2,
179 /* This indicates the tcp segment has CWR set. */
180 SKB_GSO_TCP_ECN = 1 << 3,
182 SKB_GSO_TCPV6 = 1 << 4,
186 * struct sk_buff - socket buffer
187 * @next: Next buffer in list
188 * @prev: Previous buffer in list
189 * @sk: Socket we are owned by
190 * @tstamp: Time we arrived
191 * @dev: Device we arrived on/are leaving by
192 * @input_dev: Device we arrived on
193 * @h: Transport layer header
194 * @nh: Network layer header
195 * @mac: Link layer header
196 * @dst: destination entry
197 * @sp: the security path, used for xfrm
198 * @cb: Control buffer. Free for use by every layer. Put private vars here
199 * @len: Length of actual data
200 * @data_len: Data length
201 * @mac_len: Length of link layer header
203 * @local_df: allow local fragmentation
204 * @cloned: Head may be cloned (check refcnt to be sure)
205 * @nohdr: Payload reference only, must not modify header
206 * @pkt_type: Packet class
207 * @fclone: skbuff clone status
208 * @ip_summed: Driver fed us an IP checksum
209 * @priority: Packet queueing priority
210 * @users: User count - see {datagram,tcp}.c
211 * @protocol: Packet protocol from driver
212 * @truesize: Buffer size
213 * @head: Head of buffer
214 * @data: Data head pointer
215 * @tail: Tail pointer
217 * @destructor: Destruct function
218 * @nfmark: Can be used for communication between hooks
219 * @nfct: Associated connection, if any
220 * @ipvs_property: skbuff is owned by ipvs
221 * @nfctinfo: Relationship of this skb to the connection
222 * @nfct_reasm: netfilter conntrack re-assembly pointer
223 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
224 * @tc_index: Traffic control index
225 * @tc_verd: traffic control verdict
226 * @dma_cookie: a cookie to one of several possible DMA operations
227 * done by skb DMA functions
228 * @secmark: security marking
232 /* These two members must be first. */
233 struct sk_buff *next;
234 struct sk_buff *prev;
237 struct skb_timeval tstamp;
238 struct net_device *dev;
239 struct net_device *input_dev;
244 struct icmphdr *icmph;
245 struct igmphdr *igmph;
247 struct ipv6hdr *ipv6h;
253 struct ipv6hdr *ipv6h;
262 struct dst_entry *dst;
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
288 void (*destructor)(struct sk_buff *skb);
289 #ifdef CONFIG_NETFILTER
290 struct nf_conntrack *nfct;
291 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
292 struct sk_buff *nfct_reasm;
294 #ifdef CONFIG_BRIDGE_NETFILTER
295 struct nf_bridge_info *nf_bridge;
298 #endif /* CONFIG_NETFILTER */
299 #ifdef CONFIG_NET_SCHED
300 __u16 tc_index; /* traffic control index */
301 #ifdef CONFIG_NET_CLS_ACT
302 __u16 tc_verd; /* traffic control verdict */
305 #ifdef CONFIG_NET_DMA
306 dma_cookie_t dma_cookie;
308 #ifdef CONFIG_NETWORK_SECMARK
313 /* These elements must be at the end, see alloc_skb() for details. */
314 unsigned int truesize;
324 * Handling routines are only of interest to the kernel
326 #include <linux/slab.h>
328 #include <asm/system.h>
330 extern void kfree_skb(struct sk_buff *skb);
331 extern void __kfree_skb(struct sk_buff *skb);
332 extern struct sk_buff *__alloc_skb(unsigned int size,
333 gfp_t priority, int fclone);
334 static inline struct sk_buff *alloc_skb(unsigned int size,
337 return __alloc_skb(size, priority, 0);
340 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
343 return __alloc_skb(size, priority, 1);
346 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
349 extern void kfree_skbmem(struct sk_buff *skb);
350 extern struct sk_buff *skb_clone(struct sk_buff *skb,
352 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
354 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
356 extern int pskb_expand_head(struct sk_buff *skb,
357 int nhead, int ntail,
359 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
360 unsigned int headroom);
361 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
362 int newheadroom, int newtailroom,
364 extern int skb_pad(struct sk_buff *skb, int pad);
365 #define dev_kfree_skb(a) kfree_skb(a)
366 extern void skb_over_panic(struct sk_buff *skb, int len,
368 extern void skb_under_panic(struct sk_buff *skb, int len,
370 extern void skb_truesize_bug(struct sk_buff *skb);
372 static inline void skb_truesize_check(struct sk_buff *skb)
374 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
375 skb_truesize_bug(skb);
378 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
379 int getfrag(void *from, char *to, int offset,
380 int len,int odd, struct sk_buff *skb),
381 void *from, int length);
388 __u32 stepped_offset;
389 struct sk_buff *root_skb;
390 struct sk_buff *cur_skb;
394 extern void skb_prepare_seq_read(struct sk_buff *skb,
395 unsigned int from, unsigned int to,
396 struct skb_seq_state *st);
397 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
398 struct skb_seq_state *st);
399 extern void skb_abort_seq_read(struct skb_seq_state *st);
401 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
402 unsigned int to, struct ts_config *config,
403 struct ts_state *state);
406 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
409 * skb_queue_empty - check if a queue is empty
412 * Returns true if the queue is empty, false otherwise.
414 static inline int skb_queue_empty(const struct sk_buff_head *list)
416 return list->next == (struct sk_buff *)list;
420 * skb_get - reference buffer
421 * @skb: buffer to reference
423 * Makes another reference to a socket buffer and returns a pointer
426 static inline struct sk_buff *skb_get(struct sk_buff *skb)
428 atomic_inc(&skb->users);
433 * If users == 1, we are the only owner and are can avoid redundant
438 * skb_cloned - is the buffer a clone
439 * @skb: buffer to check
441 * Returns true if the buffer was generated with skb_clone() and is
442 * one of multiple shared copies of the buffer. Cloned buffers are
443 * shared data so must not be written to under normal circumstances.
445 static inline int skb_cloned(const struct sk_buff *skb)
447 return skb->cloned &&
448 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
452 * skb_header_cloned - is the header a clone
453 * @skb: buffer to check
455 * Returns true if modifying the header part of the buffer requires
456 * the data to be copied.
458 static inline int skb_header_cloned(const struct sk_buff *skb)
465 dataref = atomic_read(&skb_shinfo(skb)->dataref);
466 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
471 * skb_header_release - release reference to header
472 * @skb: buffer to operate on
474 * Drop a reference to the header part of the buffer. This is done
475 * by acquiring a payload reference. You must not read from the header
476 * part of skb->data after this.
478 static inline void skb_header_release(struct sk_buff *skb)
482 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
486 * skb_shared - is the buffer shared
487 * @skb: buffer to check
489 * Returns true if more than one person has a reference to this
492 static inline int skb_shared(const struct sk_buff *skb)
494 return atomic_read(&skb->users) != 1;
498 * skb_share_check - check if buffer is shared and if so clone it
499 * @skb: buffer to check
500 * @pri: priority for memory allocation
502 * If the buffer is shared the buffer is cloned and the old copy
503 * drops a reference. A new clone with a single reference is returned.
504 * If the buffer is not shared the original buffer is returned. When
505 * being called from interrupt status or with spinlocks held pri must
508 * NULL is returned on a memory allocation failure.
510 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
513 might_sleep_if(pri & __GFP_WAIT);
514 if (skb_shared(skb)) {
515 struct sk_buff *nskb = skb_clone(skb, pri);
523 * Copy shared buffers into a new sk_buff. We effectively do COW on
524 * packets to handle cases where we have a local reader and forward
525 * and a couple of other messy ones. The normal one is tcpdumping
526 * a packet thats being forwarded.
530 * skb_unshare - make a copy of a shared buffer
531 * @skb: buffer to check
532 * @pri: priority for memory allocation
534 * If the socket buffer is a clone then this function creates a new
535 * copy of the data, drops a reference count on the old copy and returns
536 * the new copy with the reference count at 1. If the buffer is not a clone
537 * the original buffer is returned. When called with a spinlock held or
538 * from interrupt state @pri must be %GFP_ATOMIC
540 * %NULL is returned on a memory allocation failure.
542 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
545 might_sleep_if(pri & __GFP_WAIT);
546 if (skb_cloned(skb)) {
547 struct sk_buff *nskb = skb_copy(skb, pri);
548 kfree_skb(skb); /* Free our shared copy */
556 * @list_: list to peek at
558 * Peek an &sk_buff. Unlike most other operations you _MUST_
559 * be careful with this one. A peek leaves the buffer on the
560 * list and someone else may run off with it. You must hold
561 * the appropriate locks or have a private queue to do this.
563 * Returns %NULL for an empty list or a pointer to the head element.
564 * The reference count is not incremented and the reference is therefore
565 * volatile. Use with caution.
567 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
569 struct sk_buff *list = ((struct sk_buff *)list_)->next;
570 if (list == (struct sk_buff *)list_)
577 * @list_: list to peek at
579 * Peek an &sk_buff. Unlike most other operations you _MUST_
580 * be careful with this one. A peek leaves the buffer on the
581 * list and someone else may run off with it. You must hold
582 * the appropriate locks or have a private queue to do this.
584 * Returns %NULL for an empty list or a pointer to the tail element.
585 * The reference count is not incremented and the reference is therefore
586 * volatile. Use with caution.
588 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
590 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
591 if (list == (struct sk_buff *)list_)
597 * skb_queue_len - get queue length
598 * @list_: list to measure
600 * Return the length of an &sk_buff queue.
602 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
607 extern struct lock_class_key skb_queue_lock_key;
609 static inline void skb_queue_head_init(struct sk_buff_head *list)
611 spin_lock_init(&list->lock);
612 lockdep_set_class(&list->lock, &skb_queue_lock_key);
613 list->prev = list->next = (struct sk_buff *)list;
618 * Insert an sk_buff at the start of a list.
620 * The "__skb_xxxx()" functions are the non-atomic ones that
621 * can only be called with interrupts disabled.
625 * __skb_queue_after - queue a buffer at the list head
627 * @prev: place after this buffer
628 * @newsk: buffer to queue
630 * Queue a buffer int the middle of a list. This function takes no locks
631 * and you must therefore hold required locks before calling it.
633 * A buffer cannot be placed on two lists at the same time.
635 static inline void __skb_queue_after(struct sk_buff_head *list,
636 struct sk_buff *prev,
637 struct sk_buff *newsk)
639 struct sk_buff *next;
645 next->prev = prev->next = newsk;
649 * __skb_queue_head - queue a buffer at the list head
651 * @newsk: buffer to queue
653 * Queue a buffer at the start of a list. This function takes no locks
654 * and you must therefore hold required locks before calling it.
656 * A buffer cannot be placed on two lists at the same time.
658 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
659 static inline void __skb_queue_head(struct sk_buff_head *list,
660 struct sk_buff *newsk)
662 __skb_queue_after(list, (struct sk_buff *)list, newsk);
666 * __skb_queue_tail - queue a buffer at the list tail
668 * @newsk: buffer to queue
670 * Queue a buffer at the end of a list. This function takes no locks
671 * and you must therefore hold required locks before calling it.
673 * A buffer cannot be placed on two lists at the same time.
675 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
676 static inline void __skb_queue_tail(struct sk_buff_head *list,
677 struct sk_buff *newsk)
679 struct sk_buff *prev, *next;
682 next = (struct sk_buff *)list;
686 next->prev = prev->next = newsk;
691 * __skb_dequeue - remove from the head of the queue
692 * @list: list to dequeue from
694 * Remove the head of the list. This function does not take any locks
695 * so must be used with appropriate locks held only. The head item is
696 * returned or %NULL if the list is empty.
698 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
699 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
701 struct sk_buff *next, *prev, *result;
703 prev = (struct sk_buff *) list;
712 result->next = result->prev = NULL;
719 * Insert a packet on a list.
721 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
722 static inline void __skb_insert(struct sk_buff *newsk,
723 struct sk_buff *prev, struct sk_buff *next,
724 struct sk_buff_head *list)
728 next->prev = prev->next = newsk;
733 * Place a packet after a given packet in a list.
735 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
736 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
738 __skb_insert(newsk, old, old->next, list);
742 * remove sk_buff from list. _Must_ be called atomically, and with
745 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
746 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
748 struct sk_buff *next, *prev;
753 skb->next = skb->prev = NULL;
759 /* XXX: more streamlined implementation */
762 * __skb_dequeue_tail - remove from the tail of the queue
763 * @list: list to dequeue from
765 * Remove the tail of the list. This function does not take any locks
766 * so must be used with appropriate locks held only. The tail item is
767 * returned or %NULL if the list is empty.
769 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
770 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
772 struct sk_buff *skb = skb_peek_tail(list);
774 __skb_unlink(skb, list);
779 static inline int skb_is_nonlinear(const struct sk_buff *skb)
781 return skb->data_len;
784 static inline unsigned int skb_headlen(const struct sk_buff *skb)
786 return skb->len - skb->data_len;
789 static inline int skb_pagelen(const struct sk_buff *skb)
793 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
794 len += skb_shinfo(skb)->frags[i].size;
795 return len + skb_headlen(skb);
798 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
799 struct page *page, int off, int size)
801 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
804 frag->page_offset = off;
806 skb_shinfo(skb)->nr_frags = i + 1;
809 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
810 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
811 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
814 * Add data to an sk_buff
816 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
818 unsigned char *tmp = skb->tail;
819 SKB_LINEAR_ASSERT(skb);
826 * skb_put - add data to a buffer
827 * @skb: buffer to use
828 * @len: amount of data to add
830 * This function extends the used data area of the buffer. If this would
831 * exceed the total buffer size the kernel will panic. A pointer to the
832 * first byte of the extra data is returned.
834 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
836 unsigned char *tmp = skb->tail;
837 SKB_LINEAR_ASSERT(skb);
840 if (unlikely(skb->tail>skb->end))
841 skb_over_panic(skb, len, current_text_addr());
845 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
853 * skb_push - add data to the start of a buffer
854 * @skb: buffer to use
855 * @len: amount of data to add
857 * This function extends the used data area of the buffer at the buffer
858 * start. If this would exceed the total buffer headroom the kernel will
859 * panic. A pointer to the first byte of the extra data is returned.
861 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
865 if (unlikely(skb->data<skb->head))
866 skb_under_panic(skb, len, current_text_addr());
870 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
873 BUG_ON(skb->len < skb->data_len);
874 return skb->data += len;
878 * skb_pull - remove data from the start of a buffer
879 * @skb: buffer to use
880 * @len: amount of data to remove
882 * This function removes data from the start of a buffer, returning
883 * the memory to the headroom. A pointer to the next data in the buffer
884 * is returned. Once the data has been pulled future pushes will overwrite
887 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
889 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
892 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
894 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
896 if (len > skb_headlen(skb) &&
897 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
900 return skb->data += len;
903 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
905 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
908 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
910 if (likely(len <= skb_headlen(skb)))
912 if (unlikely(len > skb->len))
914 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
918 * skb_headroom - bytes at buffer head
919 * @skb: buffer to check
921 * Return the number of bytes of free space at the head of an &sk_buff.
923 static inline int skb_headroom(const struct sk_buff *skb)
925 return skb->data - skb->head;
929 * skb_tailroom - bytes at buffer end
930 * @skb: buffer to check
932 * Return the number of bytes of free space at the tail of an sk_buff
934 static inline int skb_tailroom(const struct sk_buff *skb)
936 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
940 * skb_reserve - adjust headroom
941 * @skb: buffer to alter
942 * @len: bytes to move
944 * Increase the headroom of an empty &sk_buff by reducing the tail
945 * room. This is only allowed for an empty buffer.
947 static inline void skb_reserve(struct sk_buff *skb, int len)
954 * CPUs often take a performance hit when accessing unaligned memory
955 * locations. The actual performance hit varies, it can be small if the
956 * hardware handles it or large if we have to take an exception and fix it
959 * Since an ethernet header is 14 bytes network drivers often end up with
960 * the IP header at an unaligned offset. The IP header can be aligned by
961 * shifting the start of the packet by 2 bytes. Drivers should do this
964 * skb_reserve(NET_IP_ALIGN);
966 * The downside to this alignment of the IP header is that the DMA is now
967 * unaligned. On some architectures the cost of an unaligned DMA is high
968 * and this cost outweighs the gains made by aligning the IP header.
970 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
974 #define NET_IP_ALIGN 2
978 * The networking layer reserves some headroom in skb data (via
979 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
980 * the header has to grow. In the default case, if the header has to grow
981 * 16 bytes or less we avoid the reallocation.
983 * Unfortunately this headroom changes the DMA alignment of the resulting
984 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
985 * on some architectures. An architecture can override this value,
986 * perhaps setting it to a cacheline in size (since that will maintain
987 * cacheline alignment of the DMA). It must be a power of 2.
989 * Various parts of the networking layer expect at least 16 bytes of
990 * headroom, you should not reduce this.
993 #define NET_SKB_PAD 16
996 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
998 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1000 if (unlikely(skb->data_len)) {
1005 skb->tail = skb->data + len;
1009 * skb_trim - remove end from a buffer
1010 * @skb: buffer to alter
1013 * Cut the length of a buffer down by removing data from the tail. If
1014 * the buffer is already under the length specified it is not modified.
1015 * The skb must be linear.
1017 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1020 __skb_trim(skb, len);
1024 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1027 return ___pskb_trim(skb, len);
1028 __skb_trim(skb, len);
1032 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1034 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1038 * skb_orphan - orphan a buffer
1039 * @skb: buffer to orphan
1041 * If a buffer currently has an owner then we call the owner's
1042 * destructor function and make the @skb unowned. The buffer continues
1043 * to exist but is no longer charged to its former owner.
1045 static inline void skb_orphan(struct sk_buff *skb)
1047 if (skb->destructor)
1048 skb->destructor(skb);
1049 skb->destructor = NULL;
1054 * __skb_queue_purge - empty a list
1055 * @list: list to empty
1057 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1058 * the list and one reference dropped. This function does not take the
1059 * list lock and the caller must hold the relevant locks to use it.
1061 extern void skb_queue_purge(struct sk_buff_head *list);
1062 static inline void __skb_queue_purge(struct sk_buff_head *list)
1064 struct sk_buff *skb;
1065 while ((skb = __skb_dequeue(list)) != NULL)
1070 * __dev_alloc_skb - allocate an skbuff for receiving
1071 * @length: length to allocate
1072 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1074 * Allocate a new &sk_buff and assign it a usage count of one. The
1075 * buffer has unspecified headroom built in. Users should allocate
1076 * the headroom they think they need without accounting for the
1077 * built in space. The built in space is used for optimisations.
1079 * %NULL is returned in there is no free memory.
1081 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1084 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1086 skb_reserve(skb, NET_SKB_PAD);
1091 * dev_alloc_skb - allocate an skbuff for receiving
1092 * @length: length to allocate
1094 * Allocate a new &sk_buff and assign it a usage count of one. The
1095 * buffer has unspecified headroom built in. Users should allocate
1096 * the headroom they think they need without accounting for the
1097 * built in space. The built in space is used for optimisations.
1099 * %NULL is returned in there is no free memory. Although this function
1100 * allocates memory it can be called from an interrupt.
1102 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1104 return __dev_alloc_skb(length, GFP_ATOMIC);
1107 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1108 unsigned int length, gfp_t gfp_mask);
1111 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1112 * @dev: network device to receive on
1113 * @length: length to allocate
1115 * Allocate a new &sk_buff and assign it a usage count of one. The
1116 * buffer has unspecified headroom built in. Users should allocate
1117 * the headroom they think they need without accounting for the
1118 * built in space. The built in space is used for optimisations.
1120 * %NULL is returned if there is no free memory. Although this function
1121 * allocates memory it can be called from an interrupt.
1123 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1124 unsigned int length)
1126 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1130 * skb_cow - copy header of skb when it is required
1131 * @skb: buffer to cow
1132 * @headroom: needed headroom
1134 * If the skb passed lacks sufficient headroom or its data part
1135 * is shared, data is reallocated. If reallocation fails, an error
1136 * is returned and original skb is not changed.
1138 * The result is skb with writable area skb->head...skb->tail
1139 * and at least @headroom of space at head.
1141 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1143 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1149 if (delta || skb_cloned(skb))
1150 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1151 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1156 * skb_padto - pad an skbuff up to a minimal size
1157 * @skb: buffer to pad
1158 * @len: minimal length
1160 * Pads up a buffer to ensure the trailing bytes exist and are
1161 * blanked. If the buffer already contains sufficient data it
1162 * is untouched. Otherwise it is extended. Returns zero on
1163 * success. The skb is freed on error.
1166 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1168 unsigned int size = skb->len;
1169 if (likely(size >= len))
1171 return skb_pad(skb, len-size);
1174 static inline int skb_add_data(struct sk_buff *skb,
1175 char __user *from, int copy)
1177 const int off = skb->len;
1179 if (skb->ip_summed == CHECKSUM_NONE) {
1181 unsigned int csum = csum_and_copy_from_user(from,
1185 skb->csum = csum_block_add(skb->csum, csum, off);
1188 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1191 __skb_trim(skb, off);
1195 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1196 struct page *page, int off)
1199 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1201 return page == frag->page &&
1202 off == frag->page_offset + frag->size;
1207 static inline int __skb_linearize(struct sk_buff *skb)
1209 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1213 * skb_linearize - convert paged skb to linear one
1214 * @skb: buffer to linarize
1216 * If there is no free memory -ENOMEM is returned, otherwise zero
1217 * is returned and the old skb data released.
1219 static inline int skb_linearize(struct sk_buff *skb)
1221 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1225 * skb_linearize_cow - make sure skb is linear and writable
1226 * @skb: buffer to process
1228 * If there is no free memory -ENOMEM is returned, otherwise zero
1229 * is returned and the old skb data released.
1231 static inline int skb_linearize_cow(struct sk_buff *skb)
1233 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1234 __skb_linearize(skb) : 0;
1238 * skb_postpull_rcsum - update checksum for received skb after pull
1239 * @skb: buffer to update
1240 * @start: start of data before pull
1241 * @len: length of data pulled
1243 * After doing a pull on a received packet, you need to call this to
1244 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1245 * so that it can be recomputed from scratch.
1248 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1249 const void *start, unsigned int len)
1251 if (skb->ip_summed == CHECKSUM_HW)
1252 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1255 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1258 * pskb_trim_rcsum - trim received skb and update checksum
1259 * @skb: buffer to trim
1262 * This is exactly the same as pskb_trim except that it ensures the
1263 * checksum of received packets are still valid after the operation.
1266 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1268 if (likely(len >= skb->len))
1270 if (skb->ip_summed == CHECKSUM_HW)
1271 skb->ip_summed = CHECKSUM_NONE;
1272 return __pskb_trim(skb, len);
1275 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1277 #ifdef CONFIG_HIGHMEM
1282 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1285 static inline void kunmap_skb_frag(void *vaddr)
1287 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1288 #ifdef CONFIG_HIGHMEM
1293 #define skb_queue_walk(queue, skb) \
1294 for (skb = (queue)->next; \
1295 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1298 #define skb_queue_reverse_walk(queue, skb) \
1299 for (skb = (queue)->prev; \
1300 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1304 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1305 int noblock, int *err);
1306 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1307 struct poll_table_struct *wait);
1308 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1309 int offset, struct iovec *to,
1311 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1314 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1315 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1316 unsigned int flags);
1317 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1318 int len, unsigned int csum);
1319 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1321 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1322 void *from, int len);
1323 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1324 int offset, u8 *to, int len,
1326 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1327 extern void skb_split(struct sk_buff *skb,
1328 struct sk_buff *skb1, const u32 len);
1330 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1332 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1333 int len, void *buffer)
1335 int hlen = skb_headlen(skb);
1337 if (hlen - offset >= len)
1338 return skb->data + offset;
1340 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1346 extern void skb_init(void);
1347 extern void skb_add_mtu(int mtu);
1350 * skb_get_timestamp - get timestamp from a skb
1351 * @skb: skb to get stamp from
1352 * @stamp: pointer to struct timeval to store stamp in
1354 * Timestamps are stored in the skb as offsets to a base timestamp.
1355 * This function converts the offset back to a struct timeval and stores
1358 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1360 stamp->tv_sec = skb->tstamp.off_sec;
1361 stamp->tv_usec = skb->tstamp.off_usec;
1365 * skb_set_timestamp - set timestamp of a skb
1366 * @skb: skb to set stamp of
1367 * @stamp: pointer to struct timeval to get stamp from
1369 * Timestamps are stored in the skb as offsets to a base timestamp.
1370 * This function converts a struct timeval to an offset and stores
1373 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1375 skb->tstamp.off_sec = stamp->tv_sec;
1376 skb->tstamp.off_usec = stamp->tv_usec;
1379 extern void __net_timestamp(struct sk_buff *skb);
1381 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1384 * skb_checksum_complete - Calculate checksum of an entire packet
1385 * @skb: packet to process
1387 * This function calculates the checksum over the entire packet plus
1388 * the value of skb->csum. The latter can be used to supply the
1389 * checksum of a pseudo header as used by TCP/UDP. It returns the
1392 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1393 * this function can be used to verify that checksum on received
1394 * packets. In that case the function should return zero if the
1395 * checksum is correct. In particular, this function will return zero
1396 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1397 * hardware has already verified the correctness of the checksum.
1399 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1401 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1402 __skb_checksum_complete(skb);
1405 #ifdef CONFIG_NETFILTER
1406 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1408 if (nfct && atomic_dec_and_test(&nfct->use))
1409 nfct->destroy(nfct);
1411 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1414 atomic_inc(&nfct->use);
1416 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1417 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1420 atomic_inc(&skb->users);
1422 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1428 #ifdef CONFIG_BRIDGE_NETFILTER
1429 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1431 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1434 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1437 atomic_inc(&nf_bridge->use);
1439 #endif /* CONFIG_BRIDGE_NETFILTER */
1440 static inline void nf_reset(struct sk_buff *skb)
1442 nf_conntrack_put(skb->nfct);
1444 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1445 nf_conntrack_put_reasm(skb->nfct_reasm);
1446 skb->nfct_reasm = NULL;
1448 #ifdef CONFIG_BRIDGE_NETFILTER
1449 nf_bridge_put(skb->nf_bridge);
1450 skb->nf_bridge = NULL;
1454 #else /* CONFIG_NETFILTER */
1455 static inline void nf_reset(struct sk_buff *skb) {}
1456 #endif /* CONFIG_NETFILTER */
1458 #ifdef CONFIG_NETWORK_SECMARK
1459 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1461 to->secmark = from->secmark;
1464 static inline void skb_init_secmark(struct sk_buff *skb)
1469 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1472 static inline void skb_init_secmark(struct sk_buff *skb)
1476 static inline int skb_is_gso(const struct sk_buff *skb)
1478 return skb_shinfo(skb)->gso_size;
1481 #endif /* __KERNEL__ */
1482 #endif /* _LINUX_SKBUFF_H */