1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number.
8 * See detailed comments in the file linux/bitmap.h describing the
9 * data type on which these cpumasks are based.
11 * For details of cpumask_scnprintf() and cpumask_parse_user(),
12 * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c.
13 * For details of cpulist_scnprintf() and cpulist_parse(), see
14 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
15 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
16 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
17 * For details of cpus_onto(), see bitmap_onto in lib/bitmap.c.
18 * For details of cpus_fold(), see bitmap_fold in lib/bitmap.c.
20 * The available cpumask operations are:
22 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask
23 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
24 * void cpus_setall(mask) set all bits
25 * void cpus_clear(mask) clear all bits
26 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
27 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
29 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
30 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
31 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2
32 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
33 * void cpus_complement(dst, src) dst = ~src
35 * int cpus_equal(mask1, mask2) Does mask1 == mask2?
36 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
37 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
38 * int cpus_empty(mask) Is mask empty (no bits sets)?
39 * int cpus_full(mask) Is mask full (all bits sets)?
40 * int cpus_weight(mask) Hamming weigh - number of set bits
42 * void cpus_shift_right(dst, src, n) Shift right
43 * void cpus_shift_left(dst, src, n) Shift left
45 * int first_cpu(mask) Number lowest set bit, or NR_CPUS
46 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
48 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
49 * CPU_MASK_ALL Initializer - all bits set
50 * CPU_MASK_NONE Initializer - no bits set
51 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask
53 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
54 * int cpumask_parse_user(ubuf, ulen, mask) Parse ascii string as cpumask
55 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
56 * int cpulist_parse(buf, map) Parse ascii string as cpulist
57 * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
58 * void cpus_remap(dst, src, old, new) *dst = map(old, new)(src)
59 * void cpus_onto(dst, orig, relmap) *dst = orig relative to relmap
60 * void cpus_fold(dst, orig, sz) dst bits = orig bits mod sz
62 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask
64 * int num_online_cpus() Number of online CPUs
65 * int num_possible_cpus() Number of all possible CPUs
66 * int num_present_cpus() Number of present CPUs
68 * int cpu_online(cpu) Is some cpu online?
69 * int cpu_possible(cpu) Is some cpu possible?
70 * int cpu_present(cpu) Is some cpu present (can schedule)?
72 * int any_online_cpu(mask) First online cpu in mask
74 * for_each_possible_cpu(cpu) for-loop cpu over cpu_possible_map
75 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
76 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
79 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
80 * to generate slightly worse code. Note for example the additional
81 * 40 lines of assembly code compiling the "for each possible cpu"
82 * loops buried in the disk_stat_read() macros calls when compiling
83 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
84 * one-line #define for cpu_isset(), instead of wrapping an inline
85 * inside a macro, the way we do the other calls.
88 #include <linux/kernel.h>
89 #include <linux/threads.h>
90 #include <linux/bitmap.h>
92 typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
93 extern cpumask_t _unused_cpumask_arg_;
95 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
96 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
98 set_bit(cpu, dstp->bits);
101 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
102 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
104 clear_bit(cpu, dstp->bits);
107 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
108 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
110 bitmap_fill(dstp->bits, nbits);
113 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
114 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
116 bitmap_zero(dstp->bits, nbits);
119 /* No static inline type checking - see Subtlety (1) above. */
120 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
122 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
123 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
125 return test_and_set_bit(cpu, addr->bits);
128 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
129 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
130 const cpumask_t *src2p, int nbits)
132 bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
135 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
136 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
137 const cpumask_t *src2p, int nbits)
139 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
142 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
143 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
144 const cpumask_t *src2p, int nbits)
146 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
149 #define cpus_andnot(dst, src1, src2) \
150 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
151 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
152 const cpumask_t *src2p, int nbits)
154 bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
157 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
158 static inline void __cpus_complement(cpumask_t *dstp,
159 const cpumask_t *srcp, int nbits)
161 bitmap_complement(dstp->bits, srcp->bits, nbits);
164 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
165 static inline int __cpus_equal(const cpumask_t *src1p,
166 const cpumask_t *src2p, int nbits)
168 return bitmap_equal(src1p->bits, src2p->bits, nbits);
171 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
172 static inline int __cpus_intersects(const cpumask_t *src1p,
173 const cpumask_t *src2p, int nbits)
175 return bitmap_intersects(src1p->bits, src2p->bits, nbits);
178 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
179 static inline int __cpus_subset(const cpumask_t *src1p,
180 const cpumask_t *src2p, int nbits)
182 return bitmap_subset(src1p->bits, src2p->bits, nbits);
185 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
186 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
188 return bitmap_empty(srcp->bits, nbits);
191 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
192 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
194 return bitmap_full(srcp->bits, nbits);
197 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
198 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
200 return bitmap_weight(srcp->bits, nbits);
203 #define cpus_shift_right(dst, src, n) \
204 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
205 static inline void __cpus_shift_right(cpumask_t *dstp,
206 const cpumask_t *srcp, int n, int nbits)
208 bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
211 #define cpus_shift_left(dst, src, n) \
212 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
213 static inline void __cpus_shift_left(cpumask_t *dstp,
214 const cpumask_t *srcp, int n, int nbits)
216 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
220 int __first_cpu(const cpumask_t *srcp);
221 #define first_cpu(src) __first_cpu(&(src))
222 int __next_cpu(int n, const cpumask_t *srcp);
223 #define next_cpu(n, src) __next_cpu((n), &(src))
225 #define first_cpu(src) ({ (void)(src); 0; })
226 #define next_cpu(n, src) ({ (void)(src); 1; })
229 #ifdef CONFIG_HAVE_CPUMASK_OF_CPU_MAP
230 extern cpumask_t *cpumask_of_cpu_map;
231 #define cpumask_of_cpu(cpu) (cpumask_of_cpu_map[cpu])
234 #define cpumask_of_cpu(cpu) \
236 typeof(_unused_cpumask_arg_) m; \
237 if (sizeof(m) == sizeof(unsigned long)) { \
238 m.bits[0] = 1UL<<(cpu); \
247 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
249 #if NR_CPUS <= BITS_PER_LONG
251 #define CPU_MASK_ALL \
253 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
256 #define CPU_MASK_ALL_PTR (&CPU_MASK_ALL)
260 #define CPU_MASK_ALL \
262 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
263 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
266 /* cpu_mask_all is in init/main.c */
267 extern cpumask_t cpu_mask_all;
268 #define CPU_MASK_ALL_PTR (&cpu_mask_all)
272 #define CPU_MASK_NONE \
274 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
277 #define CPU_MASK_CPU0 \
282 #define cpus_addr(src) ((src).bits)
284 #define cpumask_scnprintf(buf, len, src) \
285 __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
286 static inline int __cpumask_scnprintf(char *buf, int len,
287 const cpumask_t *srcp, int nbits)
289 return bitmap_scnprintf(buf, len, srcp->bits, nbits);
292 #define cpumask_scnprintf_len(len) \
293 __cpumask_scnprintf_len((len))
294 static inline int __cpumask_scnprintf_len(int len)
296 return bitmap_scnprintf_len(len);
299 #define cpumask_parse_user(ubuf, ulen, dst) \
300 __cpumask_parse_user((ubuf), (ulen), &(dst), NR_CPUS)
301 static inline int __cpumask_parse_user(const char __user *buf, int len,
302 cpumask_t *dstp, int nbits)
304 return bitmap_parse_user(buf, len, dstp->bits, nbits);
307 #define cpulist_scnprintf(buf, len, src) \
308 __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
309 static inline int __cpulist_scnprintf(char *buf, int len,
310 const cpumask_t *srcp, int nbits)
312 return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
315 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
316 static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
318 return bitmap_parselist(buf, dstp->bits, nbits);
321 #define cpu_remap(oldbit, old, new) \
322 __cpu_remap((oldbit), &(old), &(new), NR_CPUS)
323 static inline int __cpu_remap(int oldbit,
324 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
326 return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
329 #define cpus_remap(dst, src, old, new) \
330 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
331 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
332 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
334 bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
337 #define cpus_onto(dst, orig, relmap) \
338 __cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS)
339 static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp,
340 const cpumask_t *relmapp, int nbits)
342 bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
345 #define cpus_fold(dst, orig, sz) \
346 __cpus_fold(&(dst), &(orig), sz, NR_CPUS)
347 static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp,
350 bitmap_fold(dstp->bits, origp->bits, sz, nbits);
354 #define for_each_cpu_mask(cpu, mask) \
355 for ((cpu) = first_cpu(mask); \
357 (cpu) = next_cpu((cpu), (mask)))
358 #else /* NR_CPUS == 1 */
359 #define for_each_cpu_mask(cpu, mask) \
360 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
364 * The following particular system cpumasks and operations manage
365 * possible, present and online cpus. Each of them is a fixed size
366 * bitmap of size NR_CPUS.
368 * #ifdef CONFIG_HOTPLUG_CPU
369 * cpu_possible_map - has bit 'cpu' set iff cpu is populatable
370 * cpu_present_map - has bit 'cpu' set iff cpu is populated
371 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
373 * cpu_possible_map - has bit 'cpu' set iff cpu is populated
374 * cpu_present_map - copy of cpu_possible_map
375 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
378 * In either case, NR_CPUS is fixed at compile time, as the static
379 * size of these bitmaps. The cpu_possible_map is fixed at boot
380 * time, as the set of CPU id's that it is possible might ever
381 * be plugged in at anytime during the life of that system boot.
382 * The cpu_present_map is dynamic(*), representing which CPUs
383 * are currently plugged in. And cpu_online_map is the dynamic
384 * subset of cpu_present_map, indicating those CPUs available
387 * If HOTPLUG is enabled, then cpu_possible_map is forced to have
388 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
389 * ACPI reports present at boot.
391 * If HOTPLUG is enabled, then cpu_present_map varies dynamically,
392 * depending on what ACPI reports as currently plugged in, otherwise
393 * cpu_present_map is just a copy of cpu_possible_map.
395 * (*) Well, cpu_present_map is dynamic in the hotplug case. If not
396 * hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
399 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
400 * assumption that their single CPU is online. The UP
401 * cpu_{online,possible,present}_maps are placebos. Changing them
402 * will have no useful affect on the following num_*_cpus()
403 * and cpu_*() macros in the UP case. This ugliness is a UP
404 * optimization - don't waste any instructions or memory references
405 * asking if you're online or how many CPUs there are if there is
407 * 2) Most SMP arch's #define some of these maps to be some
408 * other map specific to that arch. Therefore, the following
409 * must be #define macros, not inlines. To see why, examine
410 * the assembly code produced by the following. Note that
411 * set1() writes phys_x_map, but set2() writes x_map:
412 * int x_map, phys_x_map;
413 * #define set1(a) x_map = a
414 * inline void set2(int a) { x_map = a; }
415 * #define x_map phys_x_map
416 * main(){ set1(3); set2(5); }
419 extern cpumask_t cpu_possible_map;
420 extern cpumask_t cpu_online_map;
421 extern cpumask_t cpu_present_map;
424 #define num_online_cpus() cpus_weight(cpu_online_map)
425 #define num_possible_cpus() cpus_weight(cpu_possible_map)
426 #define num_present_cpus() cpus_weight(cpu_present_map)
427 #define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
428 #define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
429 #define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
431 #define num_online_cpus() 1
432 #define num_possible_cpus() 1
433 #define num_present_cpus() 1
434 #define cpu_online(cpu) ((cpu) == 0)
435 #define cpu_possible(cpu) ((cpu) == 0)
436 #define cpu_present(cpu) ((cpu) == 0)
439 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
442 extern int nr_cpu_ids;
443 #define any_online_cpu(mask) __any_online_cpu(&(mask))
444 int __any_online_cpu(const cpumask_t *mask);
447 #define any_online_cpu(mask) 0
450 #define for_each_possible_cpu(cpu) for_each_cpu_mask((cpu), cpu_possible_map)
451 #define for_each_online_cpu(cpu) for_each_cpu_mask((cpu), cpu_online_map)
452 #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
454 #endif /* __LINUX_CPUMASK_H */