]> err.no Git - linux-2.6/blob - include/asm-arm/bitops.h
[ARM] 3991/1: i.MX/MX1 high resolution time source
[linux-2.6] / include / asm-arm / bitops.h
1 /*
2  * Copyright 1995, Russell King.
3  * Various bits and pieces copyrights include:
4  *  Linus Torvalds (test_bit).
5  * Big endian support: Copyright 2001, Nicolas Pitre
6  *  reworked by rmk.
7  *
8  * bit 0 is the LSB of an "unsigned long" quantity.
9  *
10  * Please note that the code in this file should never be included
11  * from user space.  Many of these are not implemented in assembler
12  * since they would be too costly.  Also, they require privileged
13  * instructions (which are not available from user mode) to ensure
14  * that they are atomic.
15  */
16
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19
20 #ifdef __KERNEL__
21
22 #include <linux/compiler.h>
23 #include <asm/system.h>
24
25 #define smp_mb__before_clear_bit()      mb()
26 #define smp_mb__after_clear_bit()       mb()
27
28 /*
29  * These functions are the basis of our bit ops.
30  *
31  * First, the atomic bitops. These use native endian.
32  */
33 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
34 {
35         unsigned long flags;
36         unsigned long mask = 1UL << (bit & 31);
37
38         p += bit >> 5;
39
40         raw_local_irq_save(flags);
41         *p |= mask;
42         raw_local_irq_restore(flags);
43 }
44
45 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
46 {
47         unsigned long flags;
48         unsigned long mask = 1UL << (bit & 31);
49
50         p += bit >> 5;
51
52         raw_local_irq_save(flags);
53         *p &= ~mask;
54         raw_local_irq_restore(flags);
55 }
56
57 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
58 {
59         unsigned long flags;
60         unsigned long mask = 1UL << (bit & 31);
61
62         p += bit >> 5;
63
64         raw_local_irq_save(flags);
65         *p ^= mask;
66         raw_local_irq_restore(flags);
67 }
68
69 static inline int
70 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
71 {
72         unsigned long flags;
73         unsigned int res;
74         unsigned long mask = 1UL << (bit & 31);
75
76         p += bit >> 5;
77
78         raw_local_irq_save(flags);
79         res = *p;
80         *p = res | mask;
81         raw_local_irq_restore(flags);
82
83         return res & mask;
84 }
85
86 static inline int
87 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
88 {
89         unsigned long flags;
90         unsigned int res;
91         unsigned long mask = 1UL << (bit & 31);
92
93         p += bit >> 5;
94
95         raw_local_irq_save(flags);
96         res = *p;
97         *p = res & ~mask;
98         raw_local_irq_restore(flags);
99
100         return res & mask;
101 }
102
103 static inline int
104 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
105 {
106         unsigned long flags;
107         unsigned int res;
108         unsigned long mask = 1UL << (bit & 31);
109
110         p += bit >> 5;
111
112         raw_local_irq_save(flags);
113         res = *p;
114         *p = res ^ mask;
115         raw_local_irq_restore(flags);
116
117         return res & mask;
118 }
119
120 #include <asm-generic/bitops/non-atomic.h>
121
122 /*
123  *  A note about Endian-ness.
124  *  -------------------------
125  *
126  * When the ARM is put into big endian mode via CR15, the processor
127  * merely swaps the order of bytes within words, thus:
128  *
129  *          ------------ physical data bus bits -----------
130  *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
131  * little     byte 3       byte 2       byte 1      byte 0
132  * big        byte 0       byte 1       byte 2      byte 3
133  *
134  * This means that reading a 32-bit word at address 0 returns the same
135  * value irrespective of the endian mode bit.
136  *
137  * Peripheral devices should be connected with the data bus reversed in
138  * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
139  * available from http://www.arm.com/.
140  *
141  * The following assumes that the data bus connectivity for big endian
142  * mode has been followed.
143  *
144  * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
145  */
146
147 /*
148  * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
149  */
150 extern void _set_bit_le(int nr, volatile unsigned long * p);
151 extern void _clear_bit_le(int nr, volatile unsigned long * p);
152 extern void _change_bit_le(int nr, volatile unsigned long * p);
153 extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
154 extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
155 extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
156 extern int _find_first_zero_bit_le(const void * p, unsigned size);
157 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
158 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
159 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
160
161 /*
162  * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
163  */
164 extern void _set_bit_be(int nr, volatile unsigned long * p);
165 extern void _clear_bit_be(int nr, volatile unsigned long * p);
166 extern void _change_bit_be(int nr, volatile unsigned long * p);
167 extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
168 extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
169 extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
170 extern int _find_first_zero_bit_be(const void * p, unsigned size);
171 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
172 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
173 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
174
175 #ifndef CONFIG_SMP
176 /*
177  * The __* form of bitops are non-atomic and may be reordered.
178  */
179 #define ATOMIC_BITOP_LE(name,nr,p)              \
180         (__builtin_constant_p(nr) ?             \
181          ____atomic_##name(nr, p) :             \
182          _##name##_le(nr,p))
183
184 #define ATOMIC_BITOP_BE(name,nr,p)              \
185         (__builtin_constant_p(nr) ?             \
186          ____atomic_##name(nr, p) :             \
187          _##name##_be(nr,p))
188 #else
189 #define ATOMIC_BITOP_LE(name,nr,p)      _##name##_le(nr,p)
190 #define ATOMIC_BITOP_BE(name,nr,p)      _##name##_be(nr,p)
191 #endif
192
193 #define NONATOMIC_BITOP(name,nr,p)              \
194         (____nonatomic_##name(nr, p))
195
196 #ifndef __ARMEB__
197 /*
198  * These are the little endian, atomic definitions.
199  */
200 #define set_bit(nr,p)                   ATOMIC_BITOP_LE(set_bit,nr,p)
201 #define clear_bit(nr,p)                 ATOMIC_BITOP_LE(clear_bit,nr,p)
202 #define change_bit(nr,p)                ATOMIC_BITOP_LE(change_bit,nr,p)
203 #define test_and_set_bit(nr,p)          ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
204 #define test_and_clear_bit(nr,p)        ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
205 #define test_and_change_bit(nr,p)       ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
206 #define find_first_zero_bit(p,sz)       _find_first_zero_bit_le(p,sz)
207 #define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_le(p,sz,off)
208 #define find_first_bit(p,sz)            _find_first_bit_le(p,sz)
209 #define find_next_bit(p,sz,off)         _find_next_bit_le(p,sz,off)
210
211 #define WORD_BITOFF_TO_LE(x)            ((x))
212
213 #else
214
215 /*
216  * These are the big endian, atomic definitions.
217  */
218 #define set_bit(nr,p)                   ATOMIC_BITOP_BE(set_bit,nr,p)
219 #define clear_bit(nr,p)                 ATOMIC_BITOP_BE(clear_bit,nr,p)
220 #define change_bit(nr,p)                ATOMIC_BITOP_BE(change_bit,nr,p)
221 #define test_and_set_bit(nr,p)          ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
222 #define test_and_clear_bit(nr,p)        ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
223 #define test_and_change_bit(nr,p)       ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
224 #define find_first_zero_bit(p,sz)       _find_first_zero_bit_be(p,sz)
225 #define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_be(p,sz,off)
226 #define find_first_bit(p,sz)            _find_first_bit_be(p,sz)
227 #define find_next_bit(p,sz,off)         _find_next_bit_be(p,sz,off)
228
229 #define WORD_BITOFF_TO_LE(x)            ((x) ^ 0x18)
230
231 #endif
232
233 #if __LINUX_ARM_ARCH__ < 5
234
235 #include <asm-generic/bitops/ffz.h>
236 #include <asm-generic/bitops/__ffs.h>
237 #include <asm-generic/bitops/fls.h>
238 #include <asm-generic/bitops/ffs.h>
239
240 #else
241
242 static inline int constant_fls(int x)
243 {
244         int r = 32;
245
246         if (!x)
247                 return 0;
248         if (!(x & 0xffff0000u)) {
249                 x <<= 16;
250                 r -= 16;
251         }
252         if (!(x & 0xff000000u)) {
253                 x <<= 8;
254                 r -= 8;
255         }
256         if (!(x & 0xf0000000u)) {
257                 x <<= 4;
258                 r -= 4;
259         }
260         if (!(x & 0xc0000000u)) {
261                 x <<= 2;
262                 r -= 2;
263         }
264         if (!(x & 0x80000000u)) {
265                 x <<= 1;
266                 r -= 1;
267         }
268         return r;
269 }
270
271 /*
272  * On ARMv5 and above those functions can be implemented around
273  * the clz instruction for much better code efficiency.
274  */
275
276 #define fls(x) \
277         ( __builtin_constant_p(x) ? constant_fls(x) : \
278           ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
279 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
280 #define __ffs(x) (ffs(x) - 1)
281 #define ffz(x) __ffs( ~(x) )
282
283 #endif
284
285 #include <asm-generic/bitops/fls64.h>
286
287 #include <asm-generic/bitops/sched.h>
288 #include <asm-generic/bitops/hweight.h>
289
290 /*
291  * Ext2 is defined to use little-endian byte ordering.
292  * These do not need to be atomic.
293  */
294 #define ext2_set_bit(nr,p)                      \
295                 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
296 #define ext2_set_bit_atomic(lock,nr,p)          \
297                 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
298 #define ext2_clear_bit(nr,p)                    \
299                 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
300 #define ext2_clear_bit_atomic(lock,nr,p)        \
301                 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
302 #define ext2_test_bit(nr,p)                     \
303                 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
304 #define ext2_find_first_zero_bit(p,sz)          \
305                 _find_first_zero_bit_le(p,sz)
306 #define ext2_find_next_zero_bit(p,sz,off)       \
307                 _find_next_zero_bit_le(p,sz,off)
308
309 /*
310  * Minix is defined to use little-endian byte ordering.
311  * These do not need to be atomic.
312  */
313 #define minix_set_bit(nr,p)                     \
314                 __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
315 #define minix_test_bit(nr,p)                    \
316                 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
317 #define minix_test_and_set_bit(nr,p)            \
318                 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
319 #define minix_test_and_clear_bit(nr,p)          \
320                 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
321 #define minix_find_first_zero_bit(p,sz)         \
322                 _find_first_zero_bit_le(p,sz)
323
324 #endif /* __KERNEL__ */
325
326 #endif /* _ARM_BITOPS_H */