2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC void xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int xfs_uuid_mount(xfs_mount_t *);
50 STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
51 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
55 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
56 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
58 STATIC void xfs_icsb_sync_counters(xfs_mount_t *);
59 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
61 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
65 #define xfs_icsb_destroy_counters(mp) do { } while (0)
66 #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0)
67 #define xfs_icsb_sync_counters(mp) do { } while (0)
68 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
74 short type; /* 0 = integer
75 * 1 = binary / string (no translation)
78 { offsetof(xfs_sb_t, sb_magicnum), 0 },
79 { offsetof(xfs_sb_t, sb_blocksize), 0 },
80 { offsetof(xfs_sb_t, sb_dblocks), 0 },
81 { offsetof(xfs_sb_t, sb_rblocks), 0 },
82 { offsetof(xfs_sb_t, sb_rextents), 0 },
83 { offsetof(xfs_sb_t, sb_uuid), 1 },
84 { offsetof(xfs_sb_t, sb_logstart), 0 },
85 { offsetof(xfs_sb_t, sb_rootino), 0 },
86 { offsetof(xfs_sb_t, sb_rbmino), 0 },
87 { offsetof(xfs_sb_t, sb_rsumino), 0 },
88 { offsetof(xfs_sb_t, sb_rextsize), 0 },
89 { offsetof(xfs_sb_t, sb_agblocks), 0 },
90 { offsetof(xfs_sb_t, sb_agcount), 0 },
91 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
92 { offsetof(xfs_sb_t, sb_logblocks), 0 },
93 { offsetof(xfs_sb_t, sb_versionnum), 0 },
94 { offsetof(xfs_sb_t, sb_sectsize), 0 },
95 { offsetof(xfs_sb_t, sb_inodesize), 0 },
96 { offsetof(xfs_sb_t, sb_inopblock), 0 },
97 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
98 { offsetof(xfs_sb_t, sb_blocklog), 0 },
99 { offsetof(xfs_sb_t, sb_sectlog), 0 },
100 { offsetof(xfs_sb_t, sb_inodelog), 0 },
101 { offsetof(xfs_sb_t, sb_inopblog), 0 },
102 { offsetof(xfs_sb_t, sb_agblklog), 0 },
103 { offsetof(xfs_sb_t, sb_rextslog), 0 },
104 { offsetof(xfs_sb_t, sb_inprogress), 0 },
105 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
106 { offsetof(xfs_sb_t, sb_icount), 0 },
107 { offsetof(xfs_sb_t, sb_ifree), 0 },
108 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
109 { offsetof(xfs_sb_t, sb_frextents), 0 },
110 { offsetof(xfs_sb_t, sb_uquotino), 0 },
111 { offsetof(xfs_sb_t, sb_gquotino), 0 },
112 { offsetof(xfs_sb_t, sb_qflags), 0 },
113 { offsetof(xfs_sb_t, sb_flags), 0 },
114 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
115 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
116 { offsetof(xfs_sb_t, sb_unit), 0 },
117 { offsetof(xfs_sb_t, sb_width), 0 },
118 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
119 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
120 { offsetof(xfs_sb_t, sb_logsectsize),0 },
121 { offsetof(xfs_sb_t, sb_logsunit), 0 },
122 { offsetof(xfs_sb_t, sb_features2), 0 },
123 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
124 { sizeof(xfs_sb_t), 0 }
128 * Return a pointer to an initialized xfs_mount structure.
135 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
137 if (xfs_icsb_init_counters(mp)) {
138 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
141 spin_lock_init(&mp->m_sb_lock);
142 mutex_init(&mp->m_ilock);
143 mutex_init(&mp->m_growlock);
144 atomic_set(&mp->m_active_trans, 0);
150 * Free up the resources associated with a mount structure. Assume that
151 * the structure was initially zeroed, so we can tell which fields got
161 for (agno = 0; agno < mp->m_maxagi; agno++)
162 if (mp->m_perag[agno].pagb_list)
163 kmem_free(mp->m_perag[agno].pagb_list,
164 sizeof(xfs_perag_busy_t) *
166 kmem_free(mp->m_perag,
167 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
170 spinlock_destroy(&mp->m_ail_lock);
171 spinlock_destroy(&mp->m_sb_lock);
172 mutex_destroy(&mp->m_ilock);
173 mutex_destroy(&mp->m_growlock);
177 if (mp->m_fsname != NULL)
178 kmem_free(mp->m_fsname, mp->m_fsname_len);
179 if (mp->m_rtname != NULL)
180 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
181 if (mp->m_logname != NULL)
182 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
184 xfs_icsb_destroy_counters(mp);
188 * Check size of device based on the (data/realtime) block count.
189 * Note: this check is used by the growfs code as well as mount.
192 xfs_sb_validate_fsb_count(
196 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
197 ASSERT(sbp->sb_blocklog >= BBSHIFT);
199 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
200 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
202 #else /* Limited by UINT_MAX of sectors */
203 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
210 * Check the validity of the SB found.
213 xfs_mount_validate_sb(
219 * If the log device and data device have the
220 * same device number, the log is internal.
221 * Consequently, the sb_logstart should be non-zero. If
222 * we have a zero sb_logstart in this case, we may be trying to mount
223 * a volume filesystem in a non-volume manner.
225 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
226 xfs_fs_mount_cmn_err(flags, "bad magic number");
227 return XFS_ERROR(EWRONGFS);
230 if (!xfs_sb_good_version(sbp)) {
231 xfs_fs_mount_cmn_err(flags, "bad version");
232 return XFS_ERROR(EWRONGFS);
236 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
237 xfs_fs_mount_cmn_err(flags,
238 "filesystem is marked as having an external log; "
239 "specify logdev on the\nmount command line.");
240 return XFS_ERROR(EINVAL);
244 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
245 xfs_fs_mount_cmn_err(flags,
246 "filesystem is marked as having an internal log; "
247 "do not specify logdev on\nthe mount command line.");
248 return XFS_ERROR(EINVAL);
252 * More sanity checking. These were stolen directly from
256 sbp->sb_agcount <= 0 ||
257 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
258 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
259 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
260 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
261 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
262 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
263 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
264 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
265 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
266 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
267 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
268 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
269 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
270 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
271 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
272 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
273 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
274 return XFS_ERROR(EFSCORRUPTED);
278 * Sanity check AG count, size fields against data size field
281 sbp->sb_dblocks == 0 ||
283 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
284 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
285 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
286 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
287 return XFS_ERROR(EFSCORRUPTED);
290 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
291 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
292 xfs_fs_mount_cmn_err(flags,
293 "file system too large to be mounted on this system.");
294 return XFS_ERROR(E2BIG);
297 if (unlikely(sbp->sb_inprogress)) {
298 xfs_fs_mount_cmn_err(flags, "file system busy");
299 return XFS_ERROR(EFSCORRUPTED);
303 * Version 1 directory format has never worked on Linux.
305 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
306 xfs_fs_mount_cmn_err(flags,
307 "file system using version 1 directory format");
308 return XFS_ERROR(ENOSYS);
312 * Until this is fixed only page-sized or smaller data blocks work.
314 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
315 xfs_fs_mount_cmn_err(flags,
316 "file system with blocksize %d bytes",
318 xfs_fs_mount_cmn_err(flags,
319 "only pagesize (%ld) or less will currently work.",
321 return XFS_ERROR(ENOSYS);
328 xfs_initialize_perag_icache(
331 if (!pag->pag_ici_init) {
332 rwlock_init(&pag->pag_ici_lock);
333 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
334 pag->pag_ici_init = 1;
339 xfs_initialize_perag(
341 xfs_agnumber_t agcount)
343 xfs_agnumber_t index, max_metadata;
347 xfs_sb_t *sbp = &mp->m_sb;
348 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
350 /* Check to see if the filesystem can overflow 32 bit inodes */
351 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
352 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
354 /* Clear the mount flag if no inode can overflow 32 bits
355 * on this filesystem, or if specifically requested..
357 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
358 mp->m_flags |= XFS_MOUNT_32BITINODES;
360 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
363 /* If we can overflow then setup the ag headers accordingly */
364 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
365 /* Calculate how much should be reserved for inodes to
366 * meet the max inode percentage.
368 if (mp->m_maxicount) {
371 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
373 icount += sbp->sb_agblocks - 1;
374 do_div(icount, sbp->sb_agblocks);
375 max_metadata = icount;
377 max_metadata = agcount;
379 for (index = 0; index < agcount; index++) {
380 ino = XFS_AGINO_TO_INO(mp, index, agino);
381 if (ino > max_inum) {
386 /* This ag is preferred for inodes */
387 pag = &mp->m_perag[index];
388 pag->pagi_inodeok = 1;
389 if (index < max_metadata)
390 pag->pagf_metadata = 1;
391 xfs_initialize_perag_icache(pag);
394 /* Setup default behavior for smaller filesystems */
395 for (index = 0; index < agcount; index++) {
396 pag = &mp->m_perag[index];
397 pag->pagi_inodeok = 1;
398 xfs_initialize_perag_icache(pag);
409 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
410 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
411 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
412 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
413 to->sb_rextents = be64_to_cpu(from->sb_rextents);
414 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
415 to->sb_logstart = be64_to_cpu(from->sb_logstart);
416 to->sb_rootino = be64_to_cpu(from->sb_rootino);
417 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
418 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
419 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
420 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
421 to->sb_agcount = be32_to_cpu(from->sb_agcount);
422 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
423 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
424 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
425 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
426 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
427 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
428 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
429 to->sb_blocklog = from->sb_blocklog;
430 to->sb_sectlog = from->sb_sectlog;
431 to->sb_inodelog = from->sb_inodelog;
432 to->sb_inopblog = from->sb_inopblog;
433 to->sb_agblklog = from->sb_agblklog;
434 to->sb_rextslog = from->sb_rextslog;
435 to->sb_inprogress = from->sb_inprogress;
436 to->sb_imax_pct = from->sb_imax_pct;
437 to->sb_icount = be64_to_cpu(from->sb_icount);
438 to->sb_ifree = be64_to_cpu(from->sb_ifree);
439 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
440 to->sb_frextents = be64_to_cpu(from->sb_frextents);
441 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
442 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
443 to->sb_qflags = be16_to_cpu(from->sb_qflags);
444 to->sb_flags = from->sb_flags;
445 to->sb_shared_vn = from->sb_shared_vn;
446 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
447 to->sb_unit = be32_to_cpu(from->sb_unit);
448 to->sb_width = be32_to_cpu(from->sb_width);
449 to->sb_dirblklog = from->sb_dirblklog;
450 to->sb_logsectlog = from->sb_logsectlog;
451 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
452 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
453 to->sb_features2 = be32_to_cpu(from->sb_features2);
454 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
458 * Copy in core superblock to ondisk one.
460 * The fields argument is mask of superblock fields to copy.
468 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
469 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
479 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
480 first = xfs_sb_info[f].offset;
481 size = xfs_sb_info[f + 1].offset - first;
483 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
485 if (size == 1 || xfs_sb_info[f].type == 1) {
486 memcpy(to_ptr + first, from_ptr + first, size);
490 *(__be16 *)(to_ptr + first) =
491 cpu_to_be16(*(__u16 *)(from_ptr + first));
494 *(__be32 *)(to_ptr + first) =
495 cpu_to_be32(*(__u32 *)(from_ptr + first));
498 *(__be64 *)(to_ptr + first) =
499 cpu_to_be64(*(__u64 *)(from_ptr + first));
506 fields &= ~(1LL << f);
513 * Does the initial read of the superblock.
516 xfs_readsb(xfs_mount_t *mp, int flags)
518 unsigned int sector_size;
519 unsigned int extra_flags;
523 ASSERT(mp->m_sb_bp == NULL);
524 ASSERT(mp->m_ddev_targp != NULL);
527 * Allocate a (locked) buffer to hold the superblock.
528 * This will be kept around at all times to optimize
529 * access to the superblock.
531 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
532 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
534 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
535 BTOBB(sector_size), extra_flags);
536 if (!bp || XFS_BUF_ISERROR(bp)) {
537 xfs_fs_mount_cmn_err(flags, "SB read failed");
538 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
541 ASSERT(XFS_BUF_ISBUSY(bp));
542 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
545 * Initialize the mount structure from the superblock.
546 * But first do some basic consistency checking.
548 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
550 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
552 xfs_fs_mount_cmn_err(flags, "SB validate failed");
557 * We must be able to do sector-sized and sector-aligned IO.
559 if (sector_size > mp->m_sb.sb_sectsize) {
560 xfs_fs_mount_cmn_err(flags,
561 "device supports only %u byte sectors (not %u)",
562 sector_size, mp->m_sb.sb_sectsize);
568 * If device sector size is smaller than the superblock size,
569 * re-read the superblock so the buffer is correctly sized.
571 if (sector_size < mp->m_sb.sb_sectsize) {
572 XFS_BUF_UNMANAGE(bp);
574 sector_size = mp->m_sb.sb_sectsize;
575 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
576 BTOBB(sector_size), extra_flags);
577 if (!bp || XFS_BUF_ISERROR(bp)) {
578 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
579 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
582 ASSERT(XFS_BUF_ISBUSY(bp));
583 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
586 /* Initialize per-cpu counters */
587 xfs_icsb_reinit_counters(mp);
591 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
596 XFS_BUF_UNMANAGE(bp);
606 * Mount initialization code establishing various mount
607 * fields from the superblock associated with the given
611 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
615 mp->m_agfrotor = mp->m_agirotor = 0;
616 spin_lock_init(&mp->m_agirotor_lock);
617 mp->m_maxagi = mp->m_sb.sb_agcount;
618 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
619 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
620 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
621 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
622 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
623 mp->m_litino = sbp->sb_inodesize -
624 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
625 mp->m_blockmask = sbp->sb_blocksize - 1;
626 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
627 mp->m_blockwmask = mp->m_blockwsize - 1;
628 INIT_LIST_HEAD(&mp->m_del_inodes);
631 * Setup for attributes, in case they get created.
632 * This value is for inodes getting attributes for the first time,
633 * the per-inode value is for old attribute values.
635 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
636 switch (sbp->sb_inodesize) {
638 mp->m_attroffset = XFS_LITINO(mp) -
639 XFS_BMDR_SPACE_CALC(MINABTPTRS);
644 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
649 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
651 for (i = 0; i < 2; i++) {
652 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
654 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
657 for (i = 0; i < 2; i++) {
658 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
660 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
663 for (i = 0; i < 2; i++) {
664 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
666 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
670 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
671 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
673 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
677 * xfs_initialize_perag_data
679 * Read in each per-ag structure so we can count up the number of
680 * allocated inodes, free inodes and used filesystem blocks as this
681 * information is no longer persistent in the superblock. Once we have
682 * this information, write it into the in-core superblock structure.
685 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
687 xfs_agnumber_t index;
689 xfs_sb_t *sbp = &mp->m_sb;
693 uint64_t bfreelst = 0;
697 for (index = 0; index < agcount; index++) {
699 * read the agf, then the agi. This gets us
700 * all the inforamtion we need and populates the
701 * per-ag structures for us.
703 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
707 error = xfs_ialloc_pagi_init(mp, NULL, index);
710 pag = &mp->m_perag[index];
711 ifree += pag->pagi_freecount;
712 ialloc += pag->pagi_count;
713 bfree += pag->pagf_freeblks;
714 bfreelst += pag->pagf_flcount;
715 btree += pag->pagf_btreeblks;
718 * Overwrite incore superblock counters with just-read data
720 spin_lock(&mp->m_sb_lock);
721 sbp->sb_ifree = ifree;
722 sbp->sb_icount = ialloc;
723 sbp->sb_fdblocks = bfree + bfreelst + btree;
724 spin_unlock(&mp->m_sb_lock);
726 /* Fixup the per-cpu counters as well. */
727 xfs_icsb_reinit_counters(mp);
733 * Update alignment values based on mount options and sb values
736 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
738 xfs_sb_t *sbp = &(mp->m_sb);
740 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
742 * If stripe unit and stripe width are not multiples
743 * of the fs blocksize turn off alignment.
745 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
746 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
747 if (mp->m_flags & XFS_MOUNT_RETERR) {
749 "XFS: alignment check 1 failed");
750 return XFS_ERROR(EINVAL);
752 mp->m_dalign = mp->m_swidth = 0;
755 * Convert the stripe unit and width to FSBs.
757 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
758 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
759 if (mp->m_flags & XFS_MOUNT_RETERR) {
760 return XFS_ERROR(EINVAL);
762 xfs_fs_cmn_err(CE_WARN, mp,
763 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
764 mp->m_dalign, mp->m_swidth,
769 } else if (mp->m_dalign) {
770 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
772 if (mp->m_flags & XFS_MOUNT_RETERR) {
773 xfs_fs_cmn_err(CE_WARN, mp,
774 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
777 return XFS_ERROR(EINVAL);
784 * Update superblock with new values
787 if (xfs_sb_version_hasdalign(sbp)) {
788 if (sbp->sb_unit != mp->m_dalign) {
789 sbp->sb_unit = mp->m_dalign;
790 *update_flags |= XFS_SB_UNIT;
792 if (sbp->sb_width != mp->m_swidth) {
793 sbp->sb_width = mp->m_swidth;
794 *update_flags |= XFS_SB_WIDTH;
797 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
798 xfs_sb_version_hasdalign(&mp->m_sb)) {
799 mp->m_dalign = sbp->sb_unit;
800 mp->m_swidth = sbp->sb_width;
807 * Set the maximum inode count for this filesystem
810 xfs_set_maxicount(xfs_mount_t *mp)
812 xfs_sb_t *sbp = &(mp->m_sb);
815 if (sbp->sb_imax_pct) {
817 * Make sure the maximum inode count is a multiple
818 * of the units we allocate inodes in.
820 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
822 do_div(icount, mp->m_ialloc_blks);
823 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
831 * Set the default minimum read and write sizes unless
832 * already specified in a mount option.
833 * We use smaller I/O sizes when the file system
834 * is being used for NFS service (wsync mount option).
837 xfs_set_rw_sizes(xfs_mount_t *mp)
839 xfs_sb_t *sbp = &(mp->m_sb);
840 int readio_log, writeio_log;
842 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
843 if (mp->m_flags & XFS_MOUNT_WSYNC) {
844 readio_log = XFS_WSYNC_READIO_LOG;
845 writeio_log = XFS_WSYNC_WRITEIO_LOG;
847 readio_log = XFS_READIO_LOG_LARGE;
848 writeio_log = XFS_WRITEIO_LOG_LARGE;
851 readio_log = mp->m_readio_log;
852 writeio_log = mp->m_writeio_log;
855 if (sbp->sb_blocklog > readio_log) {
856 mp->m_readio_log = sbp->sb_blocklog;
858 mp->m_readio_log = readio_log;
860 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
861 if (sbp->sb_blocklog > writeio_log) {
862 mp->m_writeio_log = sbp->sb_blocklog;
864 mp->m_writeio_log = writeio_log;
866 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
870 * Set whether we're using inode alignment.
873 xfs_set_inoalignment(xfs_mount_t *mp)
875 if (xfs_sb_version_hasalign(&mp->m_sb) &&
876 mp->m_sb.sb_inoalignmt >=
877 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
878 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
880 mp->m_inoalign_mask = 0;
882 * If we are using stripe alignment, check whether
883 * the stripe unit is a multiple of the inode alignment
885 if (mp->m_dalign && mp->m_inoalign_mask &&
886 !(mp->m_dalign & mp->m_inoalign_mask))
887 mp->m_sinoalign = mp->m_dalign;
893 * Check that the data (and log if separate) are an ok size.
896 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
902 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
903 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
904 cmn_err(CE_WARN, "XFS: size check 1 failed");
905 return XFS_ERROR(E2BIG);
907 error = xfs_read_buf(mp, mp->m_ddev_targp,
908 d - XFS_FSS_TO_BB(mp, 1),
909 XFS_FSS_TO_BB(mp, 1), 0, &bp);
913 cmn_err(CE_WARN, "XFS: size check 2 failed");
915 error = XFS_ERROR(E2BIG);
919 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
920 mp->m_logdev_targp != mp->m_ddev_targp) {
921 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
922 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
923 cmn_err(CE_WARN, "XFS: size check 3 failed");
924 return XFS_ERROR(E2BIG);
926 error = xfs_read_buf(mp, mp->m_logdev_targp,
927 d - XFS_FSB_TO_BB(mp, 1),
928 XFS_FSB_TO_BB(mp, 1), 0, &bp);
932 cmn_err(CE_WARN, "XFS: size check 3 failed");
934 error = XFS_ERROR(E2BIG);
944 * This function does the following on an initial mount of a file system:
945 * - reads the superblock from disk and init the mount struct
946 * - if we're a 32-bit kernel, do a size check on the superblock
947 * so we don't mount terabyte filesystems
948 * - init mount struct realtime fields
949 * - allocate inode hash table for fs
950 * - init directory manager
951 * - perform recovery and init the log manager
958 xfs_sb_t *sbp = &(mp->m_sb);
961 __int64_t update_flags = 0LL;
962 uint quotamount, quotaflags;
964 int uuid_mounted = 0;
967 xfs_mount_common(mp, sbp);
970 * Check for a mismatched features2 values. Older kernels
971 * read & wrote into the wrong sb offset for sb_features2
972 * on some platforms due to xfs_sb_t not being 64bit size aligned
973 * when sb_features2 was added, which made older superblock
974 * reading/writing routines swap it as a 64-bit value.
976 * For backwards compatibility, we make both slots equal.
978 * If we detect a mismatched field, we OR the set bits into the
979 * existing features2 field in case it has already been modified; we
980 * don't want to lose any features. We then update the bad location
981 * with the ORed value so that older kernels will see any features2
982 * flags, and mark the two fields as needing updates once the
983 * transaction subsystem is online.
985 if (xfs_sb_has_mismatched_features2(sbp)) {
987 "XFS: correcting sb_features alignment problem");
988 sbp->sb_features2 |= sbp->sb_bad_features2;
989 sbp->sb_bad_features2 = sbp->sb_features2;
990 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
993 * Re-check for ATTR2 in case it was found in bad_features2
996 if (xfs_sb_version_hasattr2(&mp->m_sb))
997 mp->m_flags |= XFS_MOUNT_ATTR2;
1002 * Check if sb_agblocks is aligned at stripe boundary
1003 * If sb_agblocks is NOT aligned turn off m_dalign since
1004 * allocator alignment is within an ag, therefore ag has
1005 * to be aligned at stripe boundary.
1007 error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1011 xfs_alloc_compute_maxlevels(mp);
1012 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1013 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1014 xfs_ialloc_compute_maxlevels(mp);
1016 xfs_set_maxicount(mp);
1018 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1021 * XFS uses the uuid from the superblock as the unique
1022 * identifier for fsid. We can not use the uuid from the volume
1023 * since a single partition filesystem is identical to a single
1024 * partition volume/filesystem.
1026 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1027 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1028 if (xfs_uuid_mount(mp)) {
1029 error = XFS_ERROR(EINVAL);
1036 * Set the minimum read and write sizes
1038 xfs_set_rw_sizes(mp);
1041 * Set the inode cluster size.
1042 * This may still be overridden by the file system
1043 * block size if it is larger than the chosen cluster size.
1045 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1048 * Set inode alignment fields
1050 xfs_set_inoalignment(mp);
1053 * Check that the data (and log if separate) are an ok size.
1055 error = xfs_check_sizes(mp, mfsi_flags);
1060 * Initialize realtime fields in the mount structure
1062 error = xfs_rtmount_init(mp);
1064 cmn_err(CE_WARN, "XFS: RT mount failed");
1069 * For client case we are done now
1071 if (mfsi_flags & XFS_MFSI_CLIENT) {
1076 * Copies the low order bits of the timestamp and the randomly
1077 * set "sequence" number out of a UUID.
1079 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1081 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1086 * Initialize the attribute manager's entries.
1088 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1091 * Initialize the precomputed transaction reservations values.
1096 * Allocate and initialize the per-ag data.
1098 init_rwsem(&mp->m_peraglock);
1100 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1102 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1105 * log's mount-time initialization. Perform 1st part recovery if needed
1107 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1108 error = xfs_log_mount(mp, mp->m_logdev_targp,
1109 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1110 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1112 cmn_err(CE_WARN, "XFS: log mount failed");
1115 } else { /* No log has been defined */
1116 cmn_err(CE_WARN, "XFS: no log defined");
1117 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1118 error = XFS_ERROR(EFSCORRUPTED);
1123 * Now the log is mounted, we know if it was an unclean shutdown or
1124 * not. If it was, with the first phase of recovery has completed, we
1125 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1126 * but they are recovered transactionally in the second recovery phase
1129 * Hence we can safely re-initialise incore superblock counters from
1130 * the per-ag data. These may not be correct if the filesystem was not
1131 * cleanly unmounted, so we need to wait for recovery to finish before
1134 * If the filesystem was cleanly unmounted, then we can trust the
1135 * values in the superblock to be correct and we don't need to do
1138 * If we are currently making the filesystem, the initialisation will
1139 * fail as the perag data is in an undefined state.
1142 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1143 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1144 !mp->m_sb.sb_inprogress) {
1145 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1151 * Get and sanity-check the root inode.
1152 * Save the pointer to it in the mount structure.
1154 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1156 cmn_err(CE_WARN, "XFS: failed to read root inode");
1160 ASSERT(rip != NULL);
1162 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1163 cmn_err(CE_WARN, "XFS: corrupted root inode");
1164 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1165 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1166 (unsigned long long)rip->i_ino);
1167 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1168 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1170 error = XFS_ERROR(EFSCORRUPTED);
1173 mp->m_rootip = rip; /* save it */
1175 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1178 * Initialize realtime inode pointers in the mount structure
1180 error = xfs_rtmount_inodes(mp);
1183 * Free up the root inode.
1185 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1190 * If fs is not mounted readonly, then update the superblock changes.
1192 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY))
1193 xfs_mount_log_sb(mp, update_flags);
1196 * Initialise the XFS quota management subsystem for this mount
1198 error = XFS_QM_INIT(mp, "amount, "aflags);
1203 * Finish recovering the file system. This part needed to be
1204 * delayed until after the root and real-time bitmap inodes
1205 * were consistently read in.
1207 error = xfs_log_mount_finish(mp, mfsi_flags);
1209 cmn_err(CE_WARN, "XFS: log mount finish failed");
1214 * Complete the quota initialisation, post-log-replay component.
1216 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1221 * Now we are mounted, reserve a small amount of unused space for
1222 * privileged transactions. This is needed so that transaction
1223 * space required for critical operations can dip into this pool
1224 * when at ENOSPC. This is needed for operations like create with
1225 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1226 * are not allowed to use this reserved space.
1228 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1229 * This may drive us straight to ENOSPC on mount, but that implies
1230 * we were already there on the last unmount.
1232 resblks = mp->m_sb.sb_dblocks;
1233 do_div(resblks, 20);
1234 resblks = min_t(__uint64_t, resblks, 1024);
1235 xfs_reserve_blocks(mp, &resblks, NULL);
1241 * Free up the root inode.
1245 xfs_log_unmount_dealloc(mp);
1247 for (agno = 0; agno < sbp->sb_agcount; agno++)
1248 if (mp->m_perag[agno].pagb_list)
1249 kmem_free(mp->m_perag[agno].pagb_list,
1250 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1251 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1256 xfs_uuid_unmount(mp);
1264 * This flushes out the inodes,dquots and the superblock, unmounts the
1265 * log and makes sure that incore structures are freed.
1268 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1273 * We can potentially deadlock here if we have an inode cluster
1274 * that has been freed has it's buffer still pinned in memory because
1275 * the transaction is still sitting in a iclog. The stale inodes
1276 * on that buffer will have their flush locks held until the
1277 * transaction hits the disk and the callbacks run. the inode
1278 * flush takes the flush lock unconditionally and with nothing to
1279 * push out the iclog we will never get that unlocked. hence we
1280 * need to force the log first.
1282 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1285 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1288 * Flush out the log synchronously so that we know for sure
1289 * that nothing is pinned. This is important because bflush()
1290 * will skip pinned buffers.
1292 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1294 xfs_binval(mp->m_ddev_targp);
1295 if (mp->m_rtdev_targp) {
1296 xfs_binval(mp->m_rtdev_targp);
1300 * Unreserve any blocks we have so that when we unmount we don't account
1301 * the reserved free space as used. This is really only necessary for
1302 * lazy superblock counting because it trusts the incore superblock
1303 * counters to be aboslutely correct on clean unmount.
1305 * We don't bother correcting this elsewhere for lazy superblock
1306 * counting because on mount of an unclean filesystem we reconstruct the
1307 * correct counter value and this is irrelevant.
1309 * For non-lazy counter filesystems, this doesn't matter at all because
1310 * we only every apply deltas to the superblock and hence the incore
1311 * value does not matter....
1314 xfs_reserve_blocks(mp, &resblks, NULL);
1316 xfs_log_sbcount(mp, 1);
1317 xfs_unmountfs_writesb(mp);
1318 xfs_unmountfs_wait(mp); /* wait for async bufs */
1319 xfs_log_unmount(mp); /* Done! No more fs ops. */
1324 * All inodes from this mount point should be freed.
1326 ASSERT(mp->m_inodes == NULL);
1328 xfs_unmountfs_close(mp, cr);
1329 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1330 xfs_uuid_unmount(mp);
1332 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1333 xfs_errortag_clearall(mp, 0);
1340 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1342 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1343 xfs_free_buftarg(mp->m_logdev_targp, 1);
1344 if (mp->m_rtdev_targp)
1345 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1346 xfs_free_buftarg(mp->m_ddev_targp, 0);
1350 xfs_unmountfs_wait(xfs_mount_t *mp)
1352 if (mp->m_logdev_targp != mp->m_ddev_targp)
1353 xfs_wait_buftarg(mp->m_logdev_targp);
1354 if (mp->m_rtdev_targp)
1355 xfs_wait_buftarg(mp->m_rtdev_targp);
1356 xfs_wait_buftarg(mp->m_ddev_targp);
1360 xfs_fs_writable(xfs_mount_t *mp)
1362 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1363 (mp->m_flags & XFS_MOUNT_RDONLY));
1369 * Called either periodically to keep the on disk superblock values
1370 * roughly up to date or from unmount to make sure the values are
1371 * correct on a clean unmount.
1373 * Note this code can be called during the process of freezing, so
1374 * we may need to use the transaction allocator which does not not
1375 * block when the transaction subsystem is in its frozen state.
1385 if (!xfs_fs_writable(mp))
1388 xfs_icsb_sync_counters(mp);
1391 * we don't need to do this if we are updating the superblock
1392 * counters on every modification.
1394 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1397 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1398 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1399 XFS_DEFAULT_LOG_COUNT);
1401 xfs_trans_cancel(tp, 0);
1405 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1407 xfs_trans_set_sync(tp);
1408 xfs_trans_commit(tp, 0);
1418 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp);
1421 if (!(sb->sb_flags & XFS_SBF_READONLY))
1422 sb->sb_flags |= XFS_SBF_READONLY;
1424 version = be16_to_cpu(sb->sb_versionnum);
1425 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1426 !(version & XFS_SB_VERSION_SHAREDBIT))
1427 version |= XFS_SB_VERSION_SHAREDBIT;
1428 sb->sb_versionnum = cpu_to_be16(version);
1432 xfs_unmountfs_writesb(xfs_mount_t *mp)
1438 * skip superblock write if fs is read-only, or
1439 * if we are doing a forced umount.
1441 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1442 XFS_FORCED_SHUTDOWN(mp))) {
1444 sbp = xfs_getsb(mp, 0);
1447 * mark shared-readonly if desired
1449 if (mp->m_mk_sharedro)
1450 xfs_mark_shared_ro(mp, sbp);
1452 XFS_BUF_UNDONE(sbp);
1453 XFS_BUF_UNREAD(sbp);
1454 XFS_BUF_UNDELAYWRITE(sbp);
1456 XFS_BUF_UNASYNC(sbp);
1457 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1458 xfsbdstrat(mp, sbp);
1459 /* Nevermind errors we might get here. */
1460 error = xfs_iowait(sbp);
1462 xfs_ioerror_alert("xfs_unmountfs_writesb",
1463 mp, sbp, XFS_BUF_ADDR(sbp));
1464 if (error && mp->m_mk_sharedro)
1465 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1472 * xfs_mod_sb() can be used to copy arbitrary changes to the
1473 * in-core superblock into the superblock buffer to be logged.
1474 * It does not provide the higher level of locking that is
1475 * needed to protect the in-core superblock from concurrent
1479 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1491 bp = xfs_trans_getsb(tp, mp, 0);
1492 first = sizeof(xfs_sb_t);
1495 /* translate/copy */
1497 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1499 /* find modified range */
1501 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1502 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1503 first = xfs_sb_info[f].offset;
1505 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1506 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1507 last = xfs_sb_info[f + 1].offset - 1;
1509 xfs_trans_log_buf(tp, bp, first, last);
1514 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1515 * a delta to a specified field in the in-core superblock. Simply
1516 * switch on the field indicated and apply the delta to that field.
1517 * Fields are not allowed to dip below zero, so if the delta would
1518 * do this do not apply it and return EINVAL.
1520 * The m_sb_lock must be held when this routine is called.
1523 xfs_mod_incore_sb_unlocked(
1525 xfs_sb_field_t field,
1529 int scounter; /* short counter for 32 bit fields */
1530 long long lcounter; /* long counter for 64 bit fields */
1531 long long res_used, rem;
1534 * With the in-core superblock spin lock held, switch
1535 * on the indicated field. Apply the delta to the
1536 * proper field. If the fields value would dip below
1537 * 0, then do not apply the delta and return EINVAL.
1540 case XFS_SBS_ICOUNT:
1541 lcounter = (long long)mp->m_sb.sb_icount;
1545 return XFS_ERROR(EINVAL);
1547 mp->m_sb.sb_icount = lcounter;
1550 lcounter = (long long)mp->m_sb.sb_ifree;
1554 return XFS_ERROR(EINVAL);
1556 mp->m_sb.sb_ifree = lcounter;
1558 case XFS_SBS_FDBLOCKS:
1559 lcounter = (long long)
1560 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1561 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1563 if (delta > 0) { /* Putting blocks back */
1564 if (res_used > delta) {
1565 mp->m_resblks_avail += delta;
1567 rem = delta - res_used;
1568 mp->m_resblks_avail = mp->m_resblks;
1571 } else { /* Taking blocks away */
1576 * If were out of blocks, use any available reserved blocks if
1582 lcounter = (long long)mp->m_resblks_avail + delta;
1584 return XFS_ERROR(ENOSPC);
1586 mp->m_resblks_avail = lcounter;
1588 } else { /* not reserved */
1589 return XFS_ERROR(ENOSPC);
1594 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1596 case XFS_SBS_FREXTENTS:
1597 lcounter = (long long)mp->m_sb.sb_frextents;
1600 return XFS_ERROR(ENOSPC);
1602 mp->m_sb.sb_frextents = lcounter;
1604 case XFS_SBS_DBLOCKS:
1605 lcounter = (long long)mp->m_sb.sb_dblocks;
1609 return XFS_ERROR(EINVAL);
1611 mp->m_sb.sb_dblocks = lcounter;
1613 case XFS_SBS_AGCOUNT:
1614 scounter = mp->m_sb.sb_agcount;
1618 return XFS_ERROR(EINVAL);
1620 mp->m_sb.sb_agcount = scounter;
1622 case XFS_SBS_IMAX_PCT:
1623 scounter = mp->m_sb.sb_imax_pct;
1627 return XFS_ERROR(EINVAL);
1629 mp->m_sb.sb_imax_pct = scounter;
1631 case XFS_SBS_REXTSIZE:
1632 scounter = mp->m_sb.sb_rextsize;
1636 return XFS_ERROR(EINVAL);
1638 mp->m_sb.sb_rextsize = scounter;
1640 case XFS_SBS_RBMBLOCKS:
1641 scounter = mp->m_sb.sb_rbmblocks;
1645 return XFS_ERROR(EINVAL);
1647 mp->m_sb.sb_rbmblocks = scounter;
1649 case XFS_SBS_RBLOCKS:
1650 lcounter = (long long)mp->m_sb.sb_rblocks;
1654 return XFS_ERROR(EINVAL);
1656 mp->m_sb.sb_rblocks = lcounter;
1658 case XFS_SBS_REXTENTS:
1659 lcounter = (long long)mp->m_sb.sb_rextents;
1663 return XFS_ERROR(EINVAL);
1665 mp->m_sb.sb_rextents = lcounter;
1667 case XFS_SBS_REXTSLOG:
1668 scounter = mp->m_sb.sb_rextslog;
1672 return XFS_ERROR(EINVAL);
1674 mp->m_sb.sb_rextslog = scounter;
1678 return XFS_ERROR(EINVAL);
1683 * xfs_mod_incore_sb() is used to change a field in the in-core
1684 * superblock structure by the specified delta. This modification
1685 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1686 * routine to do the work.
1691 xfs_sb_field_t field,
1697 /* check for per-cpu counters */
1699 #ifdef HAVE_PERCPU_SB
1700 case XFS_SBS_ICOUNT:
1702 case XFS_SBS_FDBLOCKS:
1703 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1704 status = xfs_icsb_modify_counters(mp, field,
1711 spin_lock(&mp->m_sb_lock);
1712 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1713 spin_unlock(&mp->m_sb_lock);
1721 * xfs_mod_incore_sb_batch() is used to change more than one field
1722 * in the in-core superblock structure at a time. This modification
1723 * is protected by a lock internal to this module. The fields and
1724 * changes to those fields are specified in the array of xfs_mod_sb
1725 * structures passed in.
1727 * Either all of the specified deltas will be applied or none of
1728 * them will. If any modified field dips below 0, then all modifications
1729 * will be backed out and EINVAL will be returned.
1732 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1738 * Loop through the array of mod structures and apply each
1739 * individually. If any fail, then back out all those
1740 * which have already been applied. Do all of this within
1741 * the scope of the m_sb_lock so that all of the changes will
1744 spin_lock(&mp->m_sb_lock);
1746 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1748 * Apply the delta at index n. If it fails, break
1749 * from the loop so we'll fall into the undo loop
1752 switch (msbp->msb_field) {
1753 #ifdef HAVE_PERCPU_SB
1754 case XFS_SBS_ICOUNT:
1756 case XFS_SBS_FDBLOCKS:
1757 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1758 spin_unlock(&mp->m_sb_lock);
1759 status = xfs_icsb_modify_counters(mp,
1761 msbp->msb_delta, rsvd);
1762 spin_lock(&mp->m_sb_lock);
1768 status = xfs_mod_incore_sb_unlocked(mp,
1770 msbp->msb_delta, rsvd);
1780 * If we didn't complete the loop above, then back out
1781 * any changes made to the superblock. If you add code
1782 * between the loop above and here, make sure that you
1783 * preserve the value of status. Loop back until
1784 * we step below the beginning of the array. Make sure
1785 * we don't touch anything back there.
1789 while (msbp >= msb) {
1790 switch (msbp->msb_field) {
1791 #ifdef HAVE_PERCPU_SB
1792 case XFS_SBS_ICOUNT:
1794 case XFS_SBS_FDBLOCKS:
1795 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1796 spin_unlock(&mp->m_sb_lock);
1797 status = xfs_icsb_modify_counters(mp,
1801 spin_lock(&mp->m_sb_lock);
1807 status = xfs_mod_incore_sb_unlocked(mp,
1813 ASSERT(status == 0);
1817 spin_unlock(&mp->m_sb_lock);
1822 * xfs_getsb() is called to obtain the buffer for the superblock.
1823 * The buffer is returned locked and read in from disk.
1824 * The buffer should be released with a call to xfs_brelse().
1826 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1827 * the superblock buffer if it can be locked without sleeping.
1828 * If it can't then we'll return NULL.
1837 ASSERT(mp->m_sb_bp != NULL);
1839 if (flags & XFS_BUF_TRYLOCK) {
1840 if (!XFS_BUF_CPSEMA(bp)) {
1844 XFS_BUF_PSEMA(bp, PRIBIO);
1847 ASSERT(XFS_BUF_ISDONE(bp));
1852 * Used to free the superblock along various error paths.
1861 * Use xfs_getsb() so that the buffer will be locked
1862 * when we call xfs_buf_relse().
1864 bp = xfs_getsb(mp, 0);
1865 XFS_BUF_UNMANAGE(bp);
1871 * See if the UUID is unique among mounted XFS filesystems.
1872 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1878 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1880 "XFS: Filesystem %s has nil UUID - can't mount",
1884 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1886 "XFS: Filesystem %s has duplicate UUID - can't mount",
1894 * Remove filesystem from the UUID table.
1900 uuid_table_remove(&mp->m_sb.sb_uuid);
1904 * Used to log changes to the superblock unit and width fields which could
1905 * be altered by the mount options, as well as any potential sb_features2
1906 * fixup. Only the first superblock is updated.
1915 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1916 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2));
1918 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1919 if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1920 XFS_DEFAULT_LOG_COUNT)) {
1921 xfs_trans_cancel(tp, 0);
1924 xfs_mod_sb(tp, fields);
1925 xfs_trans_commit(tp, 0);
1929 #ifdef HAVE_PERCPU_SB
1931 * Per-cpu incore superblock counters
1933 * Simple concept, difficult implementation
1935 * Basically, replace the incore superblock counters with a distributed per cpu
1936 * counter for contended fields (e.g. free block count).
1938 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1939 * hence needs to be accurately read when we are running low on space. Hence
1940 * there is a method to enable and disable the per-cpu counters based on how
1941 * much "stuff" is available in them.
1943 * Basically, a counter is enabled if there is enough free resource to justify
1944 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1945 * ENOSPC), then we disable the counters to synchronise all callers and
1946 * re-distribute the available resources.
1948 * If, once we redistributed the available resources, we still get a failure,
1949 * we disable the per-cpu counter and go through the slow path.
1951 * The slow path is the current xfs_mod_incore_sb() function. This means that
1952 * when we disable a per-cpu counter, we need to drain it's resources back to
1953 * the global superblock. We do this after disabling the counter to prevent
1954 * more threads from queueing up on the counter.
1956 * Essentially, this means that we still need a lock in the fast path to enable
1957 * synchronisation between the global counters and the per-cpu counters. This
1958 * is not a problem because the lock will be local to a CPU almost all the time
1959 * and have little contention except when we get to ENOSPC conditions.
1961 * Basically, this lock becomes a barrier that enables us to lock out the fast
1962 * path while we do things like enabling and disabling counters and
1963 * synchronising the counters.
1967 * 1. m_sb_lock before picking up per-cpu locks
1968 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1969 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1970 * 4. modifying per-cpu counters requires holding per-cpu lock
1971 * 5. modifying global counters requires holding m_sb_lock
1972 * 6. enabling or disabling a counter requires holding the m_sb_lock
1973 * and _none_ of the per-cpu locks.
1975 * Disabled counters are only ever re-enabled by a balance operation
1976 * that results in more free resources per CPU than a given threshold.
1977 * To ensure counters don't remain disabled, they are rebalanced when
1978 * the global resource goes above a higher threshold (i.e. some hysteresis
1979 * is present to prevent thrashing).
1982 #ifdef CONFIG_HOTPLUG_CPU
1984 * hot-plug CPU notifier support.
1986 * We need a notifier per filesystem as we need to be able to identify
1987 * the filesystem to balance the counters out. This is achieved by
1988 * having a notifier block embedded in the xfs_mount_t and doing pointer
1989 * magic to get the mount pointer from the notifier block address.
1992 xfs_icsb_cpu_notify(
1993 struct notifier_block *nfb,
1994 unsigned long action,
1997 xfs_icsb_cnts_t *cntp;
2000 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2001 cntp = (xfs_icsb_cnts_t *)
2002 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2004 case CPU_UP_PREPARE:
2005 case CPU_UP_PREPARE_FROZEN:
2006 /* Easy Case - initialize the area and locks, and
2007 * then rebalance when online does everything else for us. */
2008 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2011 case CPU_ONLINE_FROZEN:
2013 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2014 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2015 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2016 xfs_icsb_unlock(mp);
2019 case CPU_DEAD_FROZEN:
2020 /* Disable all the counters, then fold the dead cpu's
2021 * count into the total on the global superblock and
2022 * re-enable the counters. */
2024 spin_lock(&mp->m_sb_lock);
2025 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2026 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2027 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2029 mp->m_sb.sb_icount += cntp->icsb_icount;
2030 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2031 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2033 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2035 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
2036 XFS_ICSB_SB_LOCKED, 0);
2037 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
2038 XFS_ICSB_SB_LOCKED, 0);
2039 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
2040 XFS_ICSB_SB_LOCKED, 0);
2041 spin_unlock(&mp->m_sb_lock);
2042 xfs_icsb_unlock(mp);
2048 #endif /* CONFIG_HOTPLUG_CPU */
2051 xfs_icsb_init_counters(
2054 xfs_icsb_cnts_t *cntp;
2057 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2058 if (mp->m_sb_cnts == NULL)
2061 #ifdef CONFIG_HOTPLUG_CPU
2062 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2063 mp->m_icsb_notifier.priority = 0;
2064 register_hotcpu_notifier(&mp->m_icsb_notifier);
2065 #endif /* CONFIG_HOTPLUG_CPU */
2067 for_each_online_cpu(i) {
2068 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2069 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2072 mutex_init(&mp->m_icsb_mutex);
2075 * start with all counters disabled so that the
2076 * initial balance kicks us off correctly
2078 mp->m_icsb_counters = -1;
2083 xfs_icsb_reinit_counters(
2088 * start with all counters disabled so that the
2089 * initial balance kicks us off correctly
2091 mp->m_icsb_counters = -1;
2092 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2093 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2094 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2095 xfs_icsb_unlock(mp);
2099 xfs_icsb_destroy_counters(
2102 if (mp->m_sb_cnts) {
2103 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2104 free_percpu(mp->m_sb_cnts);
2106 mutex_destroy(&mp->m_icsb_mutex);
2111 xfs_icsb_cnts_t *icsbp)
2113 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2119 xfs_icsb_unlock_cntr(
2120 xfs_icsb_cnts_t *icsbp)
2122 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2127 xfs_icsb_lock_all_counters(
2130 xfs_icsb_cnts_t *cntp;
2133 for_each_online_cpu(i) {
2134 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2135 xfs_icsb_lock_cntr(cntp);
2140 xfs_icsb_unlock_all_counters(
2143 xfs_icsb_cnts_t *cntp;
2146 for_each_online_cpu(i) {
2147 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2148 xfs_icsb_unlock_cntr(cntp);
2155 xfs_icsb_cnts_t *cnt,
2158 xfs_icsb_cnts_t *cntp;
2161 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2163 if (!(flags & XFS_ICSB_LAZY_COUNT))
2164 xfs_icsb_lock_all_counters(mp);
2166 for_each_online_cpu(i) {
2167 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2168 cnt->icsb_icount += cntp->icsb_icount;
2169 cnt->icsb_ifree += cntp->icsb_ifree;
2170 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2173 if (!(flags & XFS_ICSB_LAZY_COUNT))
2174 xfs_icsb_unlock_all_counters(mp);
2178 xfs_icsb_counter_disabled(
2180 xfs_sb_field_t field)
2182 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2183 return test_bit(field, &mp->m_icsb_counters);
2187 xfs_icsb_disable_counter(
2189 xfs_sb_field_t field)
2191 xfs_icsb_cnts_t cnt;
2193 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2196 * If we are already disabled, then there is nothing to do
2197 * here. We check before locking all the counters to avoid
2198 * the expensive lock operation when being called in the
2199 * slow path and the counter is already disabled. This is
2200 * safe because the only time we set or clear this state is under
2203 if (xfs_icsb_counter_disabled(mp, field))
2206 xfs_icsb_lock_all_counters(mp);
2207 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2208 /* drain back to superblock */
2210 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2212 case XFS_SBS_ICOUNT:
2213 mp->m_sb.sb_icount = cnt.icsb_icount;
2216 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2218 case XFS_SBS_FDBLOCKS:
2219 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2226 xfs_icsb_unlock_all_counters(mp);
2230 xfs_icsb_enable_counter(
2232 xfs_sb_field_t field,
2236 xfs_icsb_cnts_t *cntp;
2239 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2241 xfs_icsb_lock_all_counters(mp);
2242 for_each_online_cpu(i) {
2243 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2245 case XFS_SBS_ICOUNT:
2246 cntp->icsb_icount = count + resid;
2249 cntp->icsb_ifree = count + resid;
2251 case XFS_SBS_FDBLOCKS:
2252 cntp->icsb_fdblocks = count + resid;
2260 clear_bit(field, &mp->m_icsb_counters);
2261 xfs_icsb_unlock_all_counters(mp);
2265 xfs_icsb_sync_counters_flags(
2269 xfs_icsb_cnts_t cnt;
2271 /* Pass 1: lock all counters */
2272 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2273 spin_lock(&mp->m_sb_lock);
2275 xfs_icsb_count(mp, &cnt, flags);
2277 /* Step 3: update mp->m_sb fields */
2278 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2279 mp->m_sb.sb_icount = cnt.icsb_icount;
2280 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2281 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2282 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2283 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2285 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2286 spin_unlock(&mp->m_sb_lock);
2290 * Accurate update of per-cpu counters to incore superblock
2293 xfs_icsb_sync_counters(
2296 xfs_icsb_sync_counters_flags(mp, 0);
2300 * Balance and enable/disable counters as necessary.
2302 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2303 * chosen to be the same number as single on disk allocation chunk per CPU, and
2304 * free blocks is something far enough zero that we aren't going thrash when we
2305 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2306 * prevent looping endlessly when xfs_alloc_space asks for more than will
2307 * be distributed to a single CPU but each CPU has enough blocks to be
2310 * Note that we can be called when counters are already disabled.
2311 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2312 * prevent locking every per-cpu counter needlessly.
2315 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2316 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2317 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2319 xfs_icsb_balance_counter(
2321 xfs_sb_field_t field,
2325 uint64_t count, resid;
2326 int weight = num_online_cpus();
2327 uint64_t min = (uint64_t)min_per_cpu;
2329 if (!(flags & XFS_ICSB_SB_LOCKED))
2330 spin_lock(&mp->m_sb_lock);
2332 /* disable counter and sync counter */
2333 xfs_icsb_disable_counter(mp, field);
2335 /* update counters - first CPU gets residual*/
2337 case XFS_SBS_ICOUNT:
2338 count = mp->m_sb.sb_icount;
2339 resid = do_div(count, weight);
2340 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2344 count = mp->m_sb.sb_ifree;
2345 resid = do_div(count, weight);
2346 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2349 case XFS_SBS_FDBLOCKS:
2350 count = mp->m_sb.sb_fdblocks;
2351 resid = do_div(count, weight);
2352 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2357 count = resid = 0; /* quiet, gcc */
2361 xfs_icsb_enable_counter(mp, field, count, resid);
2363 if (!(flags & XFS_ICSB_SB_LOCKED))
2364 spin_unlock(&mp->m_sb_lock);
2368 xfs_icsb_modify_counters(
2370 xfs_sb_field_t field,
2374 xfs_icsb_cnts_t *icsbp;
2375 long long lcounter; /* long counter for 64 bit fields */
2381 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2384 * if the counter is disabled, go to slow path
2386 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2388 xfs_icsb_lock_cntr(icsbp);
2389 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2390 xfs_icsb_unlock_cntr(icsbp);
2395 case XFS_SBS_ICOUNT:
2396 lcounter = icsbp->icsb_icount;
2398 if (unlikely(lcounter < 0))
2399 goto balance_counter;
2400 icsbp->icsb_icount = lcounter;
2404 lcounter = icsbp->icsb_ifree;
2406 if (unlikely(lcounter < 0))
2407 goto balance_counter;
2408 icsbp->icsb_ifree = lcounter;
2411 case XFS_SBS_FDBLOCKS:
2412 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2414 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2416 if (unlikely(lcounter < 0))
2417 goto balance_counter;
2418 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2424 xfs_icsb_unlock_cntr(icsbp);
2432 * serialise with a mutex so we don't burn lots of cpu on
2433 * the superblock lock. We still need to hold the superblock
2434 * lock, however, when we modify the global structures.
2439 * Now running atomically.
2441 * If the counter is enabled, someone has beaten us to rebalancing.
2442 * Drop the lock and try again in the fast path....
2444 if (!(xfs_icsb_counter_disabled(mp, field))) {
2445 xfs_icsb_unlock(mp);
2450 * The counter is currently disabled. Because we are
2451 * running atomically here, we know a rebalance cannot
2452 * be in progress. Hence we can go straight to operating
2453 * on the global superblock. We do not call xfs_mod_incore_sb()
2454 * here even though we need to get the m_sb_lock. Doing so
2455 * will cause us to re-enter this function and deadlock.
2456 * Hence we get the m_sb_lock ourselves and then call
2457 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2458 * directly on the global counters.
2460 spin_lock(&mp->m_sb_lock);
2461 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2462 spin_unlock(&mp->m_sb_lock);
2465 * Now that we've modified the global superblock, we
2466 * may be able to re-enable the distributed counters
2467 * (e.g. lots of space just got freed). After that
2471 xfs_icsb_balance_counter(mp, field, 0, 0);
2472 xfs_icsb_unlock(mp);
2476 xfs_icsb_unlock_cntr(icsbp);
2480 * We may have multiple threads here if multiple per-cpu
2481 * counters run dry at the same time. This will mean we can
2482 * do more balances than strictly necessary but it is not
2483 * the common slowpath case.
2488 * running atomically.
2490 * This will leave the counter in the correct state for future
2491 * accesses. After the rebalance, we simply try again and our retry
2492 * will either succeed through the fast path or slow path without
2493 * another balance operation being required.
2495 xfs_icsb_balance_counter(mp, field, 0, delta);
2496 xfs_icsb_unlock(mp);