2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec;
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip->di_next_unlinked);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 (int)imap->im_len, buf_flags, &bp);
149 if (error != EAGAIN) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else /* usual case */
170 for (i = 0; i < ni; i++) {
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (imap_flags & XFS_IMAP_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_core.di_magic));
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
200 xfs_inobp_check(mp, bp);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 *offset = imap.im_boffset;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
288 if (ip->i_blkno == (xfs_daddr_t)0) {
290 error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 XFS_IMAP_LOOKUP | imap_flags);
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
311 ASSERT(bno == 0 || bno == imap.im_blkno);
313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
318 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
343 xfs_attr_shortform_t *atp;
347 ip->i_df.if_ext_max =
348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 be16_to_cpu(dip->di_core.di_anextents) >
353 be64_to_cpu(dip->di_core.di_nblocks))) {
354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 (unsigned long long)ip->i_ino,
357 (int)(be32_to_cpu(dip->di_core.di_nextents) +
358 be16_to_cpu(dip->di_core.di_anextents)),
360 be64_to_cpu(dip->di_core.di_nblocks));
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
363 return XFS_ERROR(EFSCORRUPTED);
366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
369 (unsigned long long)ip->i_ino,
370 dip->di_core.di_forkoff);
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
373 return XFS_ERROR(EFSCORRUPTED);
376 switch (ip->i_d.di_mode & S_IFMT) {
381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
384 return XFS_ERROR(EFSCORRUPTED);
388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
394 switch (dip->di_core.di_format) {
395 case XFS_DINODE_FMT_LOCAL:
397 * no local regular files yet
399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
402 "(local format for regular file).",
403 (unsigned long long) ip->i_ino);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
407 return XFS_ERROR(EFSCORRUPTED);
410 di_size = be64_to_cpu(dip->di_core.di_size);
411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "(bad size %Ld for local inode).",
415 (unsigned long long) ip->i_ino,
416 (long long) di_size);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
420 return XFS_ERROR(EFSCORRUPTED);
424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
426 case XFS_DINODE_FMT_EXTENTS:
427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
429 case XFS_DINODE_FMT_BTREE:
430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
435 return XFS_ERROR(EFSCORRUPTED);
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 return XFS_ERROR(EFSCORRUPTED);
446 if (!XFS_DFORK_Q(dip))
448 ASSERT(ip->i_afp == NULL);
449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 ip->i_afp->if_ext_max =
451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
452 switch (dip->di_core.di_aformat) {
453 case XFS_DINODE_FMT_LOCAL:
454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
455 size = be16_to_cpu(atp->hdr.totsize);
456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
458 case XFS_DINODE_FMT_EXTENTS:
459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
461 case XFS_DINODE_FMT_BTREE:
462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
465 error = XFS_ERROR(EFSCORRUPTED);
469 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
471 xfs_idestroy_fork(ip, XFS_DATA_FORK);
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
504 "(bad size %d for local fork, size = %d).",
505 (unsigned long long) ip->i_ino, size,
506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
509 return XFS_ERROR(EFSCORRUPTED);
511 ifp = XFS_IFORK_PTR(ip, whichfork);
514 ifp->if_u1.if_data = NULL;
515 else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
518 real_size = roundup(size, 4);
519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
521 ifp->if_bytes = size;
522 ifp->if_real_bytes = real_size;
524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 ifp->if_flags &= ~XFS_IFEXTENTS;
526 ifp->if_flags |= XFS_IFINLINE;
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
551 ifp = XFS_IFORK_PTR(ip, whichfork);
552 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu ((a)extents = %d).",
563 (unsigned long long) ip->i_ino, nex);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
566 return XFS_ERROR(EFSCORRUPTED);
569 ifp->if_real_bytes = 0;
571 ifp->if_u1.if_extents = NULL;
572 else if (nex <= XFS_INLINE_EXTS)
573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
575 xfs_iext_add(ifp, 0, nex);
577 ifp->if_bytes = size;
579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
581 for (i = 0; i < nex; i++, dp++) {
582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
583 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
584 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
587 if (whichfork != XFS_DATA_FORK ||
588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 if (unlikely(xfs_check_nostate_extents(
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
594 return XFS_ERROR(EFSCORRUPTED);
597 ifp->if_flags |= XFS_IFEXTENTS;
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
615 xfs_bmdr_block_t *dfp;
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 size = XFS_BMAP_BROOT_SPACE(dfp);
624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs) >
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 "corrupt inode %Lu (btree).",
639 (unsigned long long) ip->i_ino);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
642 return XFS_ERROR(EFSCORRUPTED);
645 ifp->if_broot_bytes = size;
646 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 ASSERT(ifp->if_broot != NULL);
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 ifp->if_broot, size);
654 ifp->if_flags &= ~XFS_IFEXTENTS;
655 ifp->if_flags |= XFS_IFBROOT;
661 xfs_dinode_from_disk(
663 xfs_dinode_core_t *from)
665 to->di_magic = be16_to_cpu(from->di_magic);
666 to->di_mode = be16_to_cpu(from->di_mode);
667 to->di_version = from ->di_version;
668 to->di_format = from->di_format;
669 to->di_onlink = be16_to_cpu(from->di_onlink);
670 to->di_uid = be32_to_cpu(from->di_uid);
671 to->di_gid = be32_to_cpu(from->di_gid);
672 to->di_nlink = be32_to_cpu(from->di_nlink);
673 to->di_projid = be16_to_cpu(from->di_projid);
674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 to->di_size = be64_to_cpu(from->di_size);
683 to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 to->di_extsize = be32_to_cpu(from->di_extsize);
685 to->di_nextents = be32_to_cpu(from->di_nextents);
686 to->di_anextents = be16_to_cpu(from->di_anextents);
687 to->di_forkoff = from->di_forkoff;
688 to->di_aformat = from->di_aformat;
689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
690 to->di_dmstate = be16_to_cpu(from->di_dmstate);
691 to->di_flags = be16_to_cpu(from->di_flags);
692 to->di_gen = be32_to_cpu(from->di_gen);
697 xfs_dinode_core_t *to,
698 xfs_icdinode_t *from)
700 to->di_magic = cpu_to_be16(from->di_magic);
701 to->di_mode = cpu_to_be16(from->di_mode);
702 to->di_version = from ->di_version;
703 to->di_format = from->di_format;
704 to->di_onlink = cpu_to_be16(from->di_onlink);
705 to->di_uid = cpu_to_be32(from->di_uid);
706 to->di_gid = cpu_to_be32(from->di_gid);
707 to->di_nlink = cpu_to_be32(from->di_nlink);
708 to->di_projid = cpu_to_be16(from->di_projid);
709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 to->di_size = cpu_to_be64(from->di_size);
718 to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 to->di_extsize = cpu_to_be32(from->di_extsize);
720 to->di_nextents = cpu_to_be32(from->di_nextents);
721 to->di_anextents = cpu_to_be16(from->di_anextents);
722 to->di_forkoff = from->di_forkoff;
723 to->di_aformat = from->di_aformat;
724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 to->di_flags = cpu_to_be16(from->di_flags);
727 to->di_gen = cpu_to_be32(from->di_gen);
736 if (di_flags & XFS_DIFLAG_ANY) {
737 if (di_flags & XFS_DIFLAG_REALTIME)
738 flags |= XFS_XFLAG_REALTIME;
739 if (di_flags & XFS_DIFLAG_PREALLOC)
740 flags |= XFS_XFLAG_PREALLOC;
741 if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 flags |= XFS_XFLAG_IMMUTABLE;
743 if (di_flags & XFS_DIFLAG_APPEND)
744 flags |= XFS_XFLAG_APPEND;
745 if (di_flags & XFS_DIFLAG_SYNC)
746 flags |= XFS_XFLAG_SYNC;
747 if (di_flags & XFS_DIFLAG_NOATIME)
748 flags |= XFS_XFLAG_NOATIME;
749 if (di_flags & XFS_DIFLAG_NODUMP)
750 flags |= XFS_XFLAG_NODUMP;
751 if (di_flags & XFS_DIFLAG_RTINHERIT)
752 flags |= XFS_XFLAG_RTINHERIT;
753 if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 flags |= XFS_XFLAG_PROJINHERIT;
755 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 flags |= XFS_XFLAG_NOSYMLINKS;
757 if (di_flags & XFS_DIFLAG_EXTSIZE)
758 flags |= XFS_XFLAG_EXTSIZE;
759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 flags |= XFS_XFLAG_EXTSZINHERIT;
761 if (di_flags & XFS_DIFLAG_NODEFRAG)
762 flags |= XFS_XFLAG_NODEFRAG;
763 if (di_flags & XFS_DIFLAG_FILESTREAM)
764 flags |= XFS_XFLAG_FILESTREAM;
774 xfs_icdinode_t *dic = &ip->i_d;
776 return _xfs_dic2xflags(dic->di_flags) |
777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
784 xfs_dinode_core_t *dic = &dip->di_core;
786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
791 * Given a mount structure and an inode number, return a pointer
792 * to a newly allocated in-core inode corresponding to the given
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
812 ASSERT(xfs_inode_zone != NULL);
814 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
817 atomic_set(&ip->i_iocount, 0);
818 spin_lock_init(&ip->i_flags_lock);
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
827 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
829 kmem_zone_free(xfs_inode_zone, ip);
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
837 #ifdef XFS_INODE_TRACE
838 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
840 #ifdef XFS_BMAP_TRACE
841 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
843 #ifdef XFS_BMBT_TRACE
844 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
847 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
849 #ifdef XFS_ILOCK_TRACE
850 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
852 #ifdef XFS_DIR2_TRACE
853 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
860 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
861 kmem_zone_free(xfs_inode_zone, ip);
862 xfs_trans_brelse(tp, bp);
864 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
867 be16_to_cpu(dip->di_core.di_magic),
870 return XFS_ERROR(EINVAL);
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
880 if (dip->di_core.di_mode) {
881 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
882 error = xfs_iformat(ip, dip);
884 kmem_zone_free(xfs_inode_zone, ip);
885 xfs_trans_brelse(tp, bp);
887 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 "xfs_iformat() returned error %d",
894 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 ip->i_d.di_version = dip->di_core.di_version;
896 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
910 ip->i_df.if_ext_max =
911 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
914 INIT_LIST_HEAD(&ip->i_reclaim);
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
927 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 ip->i_d.di_nlink = ip->i_d.di_onlink;
929 ip->i_d.di_onlink = 0;
930 ip->i_d.di_projid = 0;
933 ip->i_delayed_blks = 0;
934 ip->i_size = ip->i_d.di_size;
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
941 XFS_BUF_SET_REF(bp, XFS_INO_REF);
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
956 xfs_trans_brelse(tp, bp);
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
973 xfs_extnum_t nextents;
976 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
979 return XFS_ERROR(EFSCORRUPTED);
981 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 size = nextents * sizeof(xfs_bmbt_rec_t);
983 ifp = XFS_IFORK_PTR(ip, whichfork);
986 * We know that the size is valid (it's checked in iformat_btree)
988 ifp->if_lastex = NULLEXTNUM;
989 ifp->if_bytes = ifp->if_real_bytes = 0;
990 ifp->if_flags |= XFS_IFEXTENTS;
991 xfs_iext_add(ifp, 0, nextents);
992 error = xfs_bmap_read_extents(tp, ip, whichfork);
994 xfs_iext_destroy(ifp);
995 ifp->if_flags &= ~XFS_IFEXTENTS;
998 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1043 xfs_buf_t **ialloc_context,
1044 boolean_t *call_again,
1054 * Call the space management code to pick
1055 * the on-disk inode to be allocated.
1057 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1058 ialloc_context, call_again, &ino);
1062 if (*call_again || ino == NULLFSINO) {
1066 ASSERT(*ialloc_context == NULL);
1069 * Get the in-core inode with the lock held exclusively.
1070 * This is because we're setting fields here we need
1071 * to prevent others from looking at until we're done.
1073 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1074 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1081 ip->i_d.di_mode = (__uint16_t)mode;
1082 ip->i_d.di_onlink = 0;
1083 ip->i_d.di_nlink = nlink;
1084 ASSERT(ip->i_d.di_nlink == nlink);
1085 ip->i_d.di_uid = current_fsuid(cr);
1086 ip->i_d.di_gid = current_fsgid(cr);
1087 ip->i_d.di_projid = prid;
1088 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1091 * If the superblock version is up to where we support new format
1092 * inodes and this is currently an old format inode, then change
1093 * the inode version number now. This way we only do the conversion
1094 * here rather than here and in the flush/logging code.
1096 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1097 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1098 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1100 * We've already zeroed the old link count, the projid field,
1101 * and the pad field.
1106 * Project ids won't be stored on disk if we are using a version 1 inode.
1108 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1109 xfs_bump_ino_vers2(tp, ip);
1111 if (pip && XFS_INHERIT_GID(pip)) {
1112 ip->i_d.di_gid = pip->i_d.di_gid;
1113 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1114 ip->i_d.di_mode |= S_ISGID;
1119 * If the group ID of the new file does not match the effective group
1120 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1121 * (and only if the irix_sgid_inherit compatibility variable is set).
1123 if ((irix_sgid_inherit) &&
1124 (ip->i_d.di_mode & S_ISGID) &&
1125 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1126 ip->i_d.di_mode &= ~S_ISGID;
1129 ip->i_d.di_size = 0;
1131 ip->i_d.di_nextents = 0;
1132 ASSERT(ip->i_d.di_nblocks == 0);
1133 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1135 * di_gen will have been taken care of in xfs_iread.
1137 ip->i_d.di_extsize = 0;
1138 ip->i_d.di_dmevmask = 0;
1139 ip->i_d.di_dmstate = 0;
1140 ip->i_d.di_flags = 0;
1141 flags = XFS_ILOG_CORE;
1142 switch (mode & S_IFMT) {
1147 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1148 ip->i_df.if_u2.if_rdev = rdev;
1149 ip->i_df.if_flags = 0;
1150 flags |= XFS_ILOG_DEV;
1153 if (pip && xfs_inode_is_filestream(pip)) {
1154 error = xfs_filestream_associate(pip, ip);
1158 xfs_iflags_set(ip, XFS_IFILESTREAM);
1162 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1165 if ((mode & S_IFMT) == S_IFDIR) {
1166 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1167 di_flags |= XFS_DIFLAG_RTINHERIT;
1168 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1169 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1170 ip->i_d.di_extsize = pip->i_d.di_extsize;
1172 } else if ((mode & S_IFMT) == S_IFREG) {
1173 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1174 di_flags |= XFS_DIFLAG_REALTIME;
1175 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1176 di_flags |= XFS_DIFLAG_EXTSIZE;
1177 ip->i_d.di_extsize = pip->i_d.di_extsize;
1180 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1181 xfs_inherit_noatime)
1182 di_flags |= XFS_DIFLAG_NOATIME;
1183 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1185 di_flags |= XFS_DIFLAG_NODUMP;
1186 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1188 di_flags |= XFS_DIFLAG_SYNC;
1189 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1190 xfs_inherit_nosymlinks)
1191 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1192 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1193 di_flags |= XFS_DIFLAG_PROJINHERIT;
1194 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1195 xfs_inherit_nodefrag)
1196 di_flags |= XFS_DIFLAG_NODEFRAG;
1197 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1198 di_flags |= XFS_DIFLAG_FILESTREAM;
1199 ip->i_d.di_flags |= di_flags;
1203 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1204 ip->i_df.if_flags = XFS_IFEXTENTS;
1205 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1206 ip->i_df.if_u1.if_extents = NULL;
1212 * Attribute fork settings for new inode.
1214 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1215 ip->i_d.di_anextents = 0;
1218 * Log the new values stuffed into the inode.
1220 xfs_trans_log_inode(tp, ip, flags);
1222 /* now that we have an i_mode we can setup inode ops and unlock */
1223 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1230 * Check to make sure that there are no blocks allocated to the
1231 * file beyond the size of the file. We don't check this for
1232 * files with fixed size extents or real time extents, but we
1233 * at least do it for regular files.
1242 xfs_fileoff_t map_first;
1244 xfs_bmbt_irec_t imaps[2];
1246 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1249 if (XFS_IS_REALTIME_INODE(ip))
1252 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1256 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1258 * The filesystem could be shutting down, so bmapi may return
1261 if (xfs_bmapi(NULL, ip, map_first,
1263 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1265 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1268 ASSERT(nimaps == 1);
1269 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1274 * Calculate the last possible buffered byte in a file. This must
1275 * include data that was buffered beyond the EOF by the write code.
1276 * This also needs to deal with overflowing the xfs_fsize_t type
1277 * which can happen for sizes near the limit.
1279 * We also need to take into account any blocks beyond the EOF. It
1280 * may be the case that they were buffered by a write which failed.
1281 * In that case the pages will still be in memory, but the inode size
1282 * will never have been updated.
1289 xfs_fsize_t last_byte;
1290 xfs_fileoff_t last_block;
1291 xfs_fileoff_t size_last_block;
1294 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1298 * Only check for blocks beyond the EOF if the extents have
1299 * been read in. This eliminates the need for the inode lock,
1300 * and it also saves us from looking when it really isn't
1303 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1304 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1312 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1313 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1315 last_byte = XFS_FSB_TO_B(mp, last_block);
1316 if (last_byte < 0) {
1317 return XFS_MAXIOFFSET(mp);
1319 last_byte += (1 << mp->m_writeio_log);
1320 if (last_byte < 0) {
1321 return XFS_MAXIOFFSET(mp);
1326 #if defined(XFS_RW_TRACE)
1332 xfs_fsize_t new_size,
1333 xfs_off_t toss_start,
1334 xfs_off_t toss_finish)
1336 if (ip->i_rwtrace == NULL) {
1340 ktrace_enter(ip->i_rwtrace,
1343 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1344 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1345 (void*)((long)flag),
1346 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1347 (void*)(unsigned long)(new_size & 0xffffffff),
1348 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1349 (void*)(unsigned long)(toss_start & 0xffffffff),
1350 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1351 (void*)(unsigned long)(toss_finish & 0xffffffff),
1352 (void*)(unsigned long)current_cpu(),
1353 (void*)(unsigned long)current_pid(),
1359 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1363 * Start the truncation of the file to new_size. The new size
1364 * must be smaller than the current size. This routine will
1365 * clear the buffer and page caches of file data in the removed
1366 * range, and xfs_itruncate_finish() will remove the underlying
1369 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1370 * must NOT have the inode lock held at all. This is because we're
1371 * calling into the buffer/page cache code and we can't hold the
1372 * inode lock when we do so.
1374 * We need to wait for any direct I/Os in flight to complete before we
1375 * proceed with the truncate. This is needed to prevent the extents
1376 * being read or written by the direct I/Os from being removed while the
1377 * I/O is in flight as there is no other method of synchronising
1378 * direct I/O with the truncate operation. Also, because we hold
1379 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1380 * started until the truncate completes and drops the lock. Essentially,
1381 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1382 * between direct I/Os and the truncate operation.
1384 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1385 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1386 * in the case that the caller is locking things out of order and
1387 * may not be able to call xfs_itruncate_finish() with the inode lock
1388 * held without dropping the I/O lock. If the caller must drop the
1389 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1390 * must be called again with all the same restrictions as the initial
1394 xfs_itruncate_start(
1397 xfs_fsize_t new_size)
1399 xfs_fsize_t last_byte;
1400 xfs_off_t toss_start;
1405 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1406 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1407 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1408 (flags == XFS_ITRUNC_MAYBE));
1413 /* wait for the completion of any pending DIOs */
1414 if (new_size < ip->i_size)
1418 * Call toss_pages or flushinval_pages to get rid of pages
1419 * overlapping the region being removed. We have to use
1420 * the less efficient flushinval_pages in the case that the
1421 * caller may not be able to finish the truncate without
1422 * dropping the inode's I/O lock. Make sure
1423 * to catch any pages brought in by buffers overlapping
1424 * the EOF by searching out beyond the isize by our
1425 * block size. We round new_size up to a block boundary
1426 * so that we don't toss things on the same block as
1427 * new_size but before it.
1429 * Before calling toss_page or flushinval_pages, make sure to
1430 * call remapf() over the same region if the file is mapped.
1431 * This frees up mapped file references to the pages in the
1432 * given range and for the flushinval_pages case it ensures
1433 * that we get the latest mapped changes flushed out.
1435 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1436 toss_start = XFS_FSB_TO_B(mp, toss_start);
1437 if (toss_start < 0) {
1439 * The place to start tossing is beyond our maximum
1440 * file size, so there is no way that the data extended
1445 last_byte = xfs_file_last_byte(ip);
1446 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1448 if (last_byte > toss_start) {
1449 if (flags & XFS_ITRUNC_DEFINITE) {
1450 xfs_tosspages(ip, toss_start,
1451 -1, FI_REMAPF_LOCKED);
1453 error = xfs_flushinval_pages(ip, toss_start,
1454 -1, FI_REMAPF_LOCKED);
1459 if (new_size == 0) {
1460 ASSERT(VN_CACHED(vp) == 0);
1467 * Shrink the file to the given new_size. The new
1468 * size must be smaller than the current size.
1469 * This will free up the underlying blocks
1470 * in the removed range after a call to xfs_itruncate_start()
1471 * or xfs_atruncate_start().
1473 * The transaction passed to this routine must have made
1474 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1475 * This routine may commit the given transaction and
1476 * start new ones, so make sure everything involved in
1477 * the transaction is tidy before calling here.
1478 * Some transaction will be returned to the caller to be
1479 * committed. The incoming transaction must already include
1480 * the inode, and both inode locks must be held exclusively.
1481 * The inode must also be "held" within the transaction. On
1482 * return the inode will be "held" within the returned transaction.
1483 * This routine does NOT require any disk space to be reserved
1484 * for it within the transaction.
1486 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1487 * and it indicates the fork which is to be truncated. For the
1488 * attribute fork we only support truncation to size 0.
1490 * We use the sync parameter to indicate whether or not the first
1491 * transaction we perform might have to be synchronous. For the attr fork,
1492 * it needs to be so if the unlink of the inode is not yet known to be
1493 * permanent in the log. This keeps us from freeing and reusing the
1494 * blocks of the attribute fork before the unlink of the inode becomes
1497 * For the data fork, we normally have to run synchronously if we're
1498 * being called out of the inactive path or we're being called
1499 * out of the create path where we're truncating an existing file.
1500 * Either way, the truncate needs to be sync so blocks don't reappear
1501 * in the file with altered data in case of a crash. wsync filesystems
1502 * can run the first case async because anything that shrinks the inode
1503 * has to run sync so by the time we're called here from inactive, the
1504 * inode size is permanently set to 0.
1506 * Calls from the truncate path always need to be sync unless we're
1507 * in a wsync filesystem and the file has already been unlinked.
1509 * The caller is responsible for correctly setting the sync parameter.
1510 * It gets too hard for us to guess here which path we're being called
1511 * out of just based on inode state.
1514 xfs_itruncate_finish(
1517 xfs_fsize_t new_size,
1521 xfs_fsblock_t first_block;
1522 xfs_fileoff_t first_unmap_block;
1523 xfs_fileoff_t last_block;
1524 xfs_filblks_t unmap_len=0;
1529 xfs_bmap_free_t free_list;
1532 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1533 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1534 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1535 ASSERT(*tp != NULL);
1536 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1537 ASSERT(ip->i_transp == *tp);
1538 ASSERT(ip->i_itemp != NULL);
1539 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1543 mp = (ntp)->t_mountp;
1544 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1547 * We only support truncating the entire attribute fork.
1549 if (fork == XFS_ATTR_FORK) {
1552 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1553 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1555 * The first thing we do is set the size to new_size permanently
1556 * on disk. This way we don't have to worry about anyone ever
1557 * being able to look at the data being freed even in the face
1558 * of a crash. What we're getting around here is the case where
1559 * we free a block, it is allocated to another file, it is written
1560 * to, and then we crash. If the new data gets written to the
1561 * file but the log buffers containing the free and reallocation
1562 * don't, then we'd end up with garbage in the blocks being freed.
1563 * As long as we make the new_size permanent before actually
1564 * freeing any blocks it doesn't matter if they get writtten to.
1566 * The callers must signal into us whether or not the size
1567 * setting here must be synchronous. There are a few cases
1568 * where it doesn't have to be synchronous. Those cases
1569 * occur if the file is unlinked and we know the unlink is
1570 * permanent or if the blocks being truncated are guaranteed
1571 * to be beyond the inode eof (regardless of the link count)
1572 * and the eof value is permanent. Both of these cases occur
1573 * only on wsync-mounted filesystems. In those cases, we're
1574 * guaranteed that no user will ever see the data in the blocks
1575 * that are being truncated so the truncate can run async.
1576 * In the free beyond eof case, the file may wind up with
1577 * more blocks allocated to it than it needs if we crash
1578 * and that won't get fixed until the next time the file
1579 * is re-opened and closed but that's ok as that shouldn't
1580 * be too many blocks.
1582 * However, we can't just make all wsync xactions run async
1583 * because there's one call out of the create path that needs
1584 * to run sync where it's truncating an existing file to size
1585 * 0 whose size is > 0.
1587 * It's probably possible to come up with a test in this
1588 * routine that would correctly distinguish all the above
1589 * cases from the values of the function parameters and the
1590 * inode state but for sanity's sake, I've decided to let the
1591 * layers above just tell us. It's simpler to correctly figure
1592 * out in the layer above exactly under what conditions we
1593 * can run async and I think it's easier for others read and
1594 * follow the logic in case something has to be changed.
1595 * cscope is your friend -- rcc.
1597 * The attribute fork is much simpler.
1599 * For the attribute fork we allow the caller to tell us whether
1600 * the unlink of the inode that led to this call is yet permanent
1601 * in the on disk log. If it is not and we will be freeing extents
1602 * in this inode then we make the first transaction synchronous
1603 * to make sure that the unlink is permanent by the time we free
1606 if (fork == XFS_DATA_FORK) {
1607 if (ip->i_d.di_nextents > 0) {
1609 * If we are not changing the file size then do
1610 * not update the on-disk file size - we may be
1611 * called from xfs_inactive_free_eofblocks(). If we
1612 * update the on-disk file size and then the system
1613 * crashes before the contents of the file are
1614 * flushed to disk then the files may be full of
1615 * holes (ie NULL files bug).
1617 if (ip->i_size != new_size) {
1618 ip->i_d.di_size = new_size;
1619 ip->i_size = new_size;
1620 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1624 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1625 if (ip->i_d.di_anextents > 0)
1626 xfs_trans_set_sync(ntp);
1628 ASSERT(fork == XFS_DATA_FORK ||
1629 (fork == XFS_ATTR_FORK &&
1630 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1631 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1634 * Since it is possible for space to become allocated beyond
1635 * the end of the file (in a crash where the space is allocated
1636 * but the inode size is not yet updated), simply remove any
1637 * blocks which show up between the new EOF and the maximum
1638 * possible file size. If the first block to be removed is
1639 * beyond the maximum file size (ie it is the same as last_block),
1640 * then there is nothing to do.
1642 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1643 ASSERT(first_unmap_block <= last_block);
1645 if (last_block == first_unmap_block) {
1648 unmap_len = last_block - first_unmap_block + 1;
1652 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1653 * will tell us whether it freed the entire range or
1654 * not. If this is a synchronous mount (wsync),
1655 * then we can tell bunmapi to keep all the
1656 * transactions asynchronous since the unlink
1657 * transaction that made this inode inactive has
1658 * already hit the disk. There's no danger of
1659 * the freed blocks being reused, there being a
1660 * crash, and the reused blocks suddenly reappearing
1661 * in this file with garbage in them once recovery
1664 XFS_BMAP_INIT(&free_list, &first_block);
1665 error = xfs_bunmapi(ntp, ip,
1666 first_unmap_block, unmap_len,
1667 XFS_BMAPI_AFLAG(fork) |
1668 (sync ? 0 : XFS_BMAPI_ASYNC),
1669 XFS_ITRUNC_MAX_EXTENTS,
1670 &first_block, &free_list,
1674 * If the bunmapi call encounters an error,
1675 * return to the caller where the transaction
1676 * can be properly aborted. We just need to
1677 * make sure we're not holding any resources
1678 * that we were not when we came in.
1680 xfs_bmap_cancel(&free_list);
1685 * Duplicate the transaction that has the permanent
1686 * reservation and commit the old transaction.
1688 error = xfs_bmap_finish(tp, &free_list, &committed);
1692 * If the bmap finish call encounters an error,
1693 * return to the caller where the transaction
1694 * can be properly aborted. We just need to
1695 * make sure we're not holding any resources
1696 * that we were not when we came in.
1698 * Aborting from this point might lose some
1699 * blocks in the file system, but oh well.
1701 xfs_bmap_cancel(&free_list);
1704 * If the passed in transaction committed
1705 * in xfs_bmap_finish(), then we want to
1706 * add the inode to this one before returning.
1707 * This keeps things simple for the higher
1708 * level code, because it always knows that
1709 * the inode is locked and held in the
1710 * transaction that returns to it whether
1711 * errors occur or not. We don't mark the
1712 * inode dirty so that this transaction can
1713 * be easily aborted if possible.
1715 xfs_trans_ijoin(ntp, ip,
1716 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1717 xfs_trans_ihold(ntp, ip);
1724 * The first xact was committed,
1725 * so add the inode to the new one.
1726 * Mark it dirty so it will be logged
1727 * and moved forward in the log as
1728 * part of every commit.
1730 xfs_trans_ijoin(ntp, ip,
1731 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1732 xfs_trans_ihold(ntp, ip);
1733 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1735 ntp = xfs_trans_dup(ntp);
1736 (void) xfs_trans_commit(*tp, 0);
1738 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1739 XFS_TRANS_PERM_LOG_RES,
1740 XFS_ITRUNCATE_LOG_COUNT);
1742 * Add the inode being truncated to the next chained
1745 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1746 xfs_trans_ihold(ntp, ip);
1751 * Only update the size in the case of the data fork, but
1752 * always re-log the inode so that our permanent transaction
1753 * can keep on rolling it forward in the log.
1755 if (fork == XFS_DATA_FORK) {
1756 xfs_isize_check(mp, ip, new_size);
1758 * If we are not changing the file size then do
1759 * not update the on-disk file size - we may be
1760 * called from xfs_inactive_free_eofblocks(). If we
1761 * update the on-disk file size and then the system
1762 * crashes before the contents of the file are
1763 * flushed to disk then the files may be full of
1764 * holes (ie NULL files bug).
1766 if (ip->i_size != new_size) {
1767 ip->i_d.di_size = new_size;
1768 ip->i_size = new_size;
1771 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1772 ASSERT((new_size != 0) ||
1773 (fork == XFS_ATTR_FORK) ||
1774 (ip->i_delayed_blks == 0));
1775 ASSERT((new_size != 0) ||
1776 (fork == XFS_ATTR_FORK) ||
1777 (ip->i_d.di_nextents == 0));
1778 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1786 * Do the first part of growing a file: zero any data in the last
1787 * block that is beyond the old EOF. We need to do this before
1788 * the inode is joined to the transaction to modify the i_size.
1789 * That way we can drop the inode lock and call into the buffer
1790 * cache to get the buffer mapping the EOF.
1795 xfs_fsize_t new_size,
1798 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1799 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1800 ASSERT(new_size > ip->i_size);
1803 * Zero any pages that may have been created by
1804 * xfs_write_file() beyond the end of the file
1805 * and any blocks between the old and new file sizes.
1807 return xfs_zero_eof(ip, new_size, ip->i_size);
1813 * This routine is called to extend the size of a file.
1814 * The inode must have both the iolock and the ilock locked
1815 * for update and it must be a part of the current transaction.
1816 * The xfs_igrow_start() function must have been called previously.
1817 * If the change_flag is not zero, the inode change timestamp will
1824 xfs_fsize_t new_size,
1827 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1828 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1829 ASSERT(ip->i_transp == tp);
1830 ASSERT(new_size > ip->i_size);
1833 * Update the file size. Update the inode change timestamp
1834 * if change_flag set.
1836 ip->i_d.di_size = new_size;
1837 ip->i_size = new_size;
1839 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1840 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1846 * This is called when the inode's link count goes to 0.
1847 * We place the on-disk inode on a list in the AGI. It
1848 * will be pulled from this list when the inode is freed.
1860 xfs_agnumber_t agno;
1861 xfs_daddr_t agdaddr;
1868 ASSERT(ip->i_d.di_nlink == 0);
1869 ASSERT(ip->i_d.di_mode != 0);
1870 ASSERT(ip->i_transp == tp);
1874 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1875 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1878 * Get the agi buffer first. It ensures lock ordering
1881 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1882 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1887 * Validate the magic number of the agi block.
1889 agi = XFS_BUF_TO_AGI(agibp);
1891 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1892 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1893 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1894 XFS_RANDOM_IUNLINK))) {
1895 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1896 xfs_trans_brelse(tp, agibp);
1897 return XFS_ERROR(EFSCORRUPTED);
1900 * Get the index into the agi hash table for the
1901 * list this inode will go on.
1903 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1905 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1906 ASSERT(agi->agi_unlinked[bucket_index]);
1907 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1909 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1911 * There is already another inode in the bucket we need
1912 * to add ourselves to. Add us at the front of the list.
1913 * Here we put the head pointer into our next pointer,
1914 * and then we fall through to point the head at us.
1916 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1920 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1921 /* both on-disk, don't endian flip twice */
1922 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1923 offset = ip->i_boffset +
1924 offsetof(xfs_dinode_t, di_next_unlinked);
1925 xfs_trans_inode_buf(tp, ibp);
1926 xfs_trans_log_buf(tp, ibp, offset,
1927 (offset + sizeof(xfs_agino_t) - 1));
1928 xfs_inobp_check(mp, ibp);
1932 * Point the bucket head pointer at the inode being inserted.
1935 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1936 offset = offsetof(xfs_agi_t, agi_unlinked) +
1937 (sizeof(xfs_agino_t) * bucket_index);
1938 xfs_trans_log_buf(tp, agibp, offset,
1939 (offset + sizeof(xfs_agino_t) - 1));
1944 * Pull the on-disk inode from the AGI unlinked list.
1957 xfs_agnumber_t agno;
1958 xfs_daddr_t agdaddr;
1960 xfs_agino_t next_agino;
1961 xfs_buf_t *last_ibp;
1962 xfs_dinode_t *last_dip = NULL;
1964 int offset, last_offset = 0;
1969 * First pull the on-disk inode from the AGI unlinked list.
1973 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1974 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1977 * Get the agi buffer first. It ensures lock ordering
1980 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1981 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1984 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1985 error, mp->m_fsname);
1989 * Validate the magic number of the agi block.
1991 agi = XFS_BUF_TO_AGI(agibp);
1993 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1994 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1995 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1996 XFS_RANDOM_IUNLINK_REMOVE))) {
1997 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1999 xfs_trans_brelse(tp, agibp);
2001 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2003 return XFS_ERROR(EFSCORRUPTED);
2006 * Get the index into the agi hash table for the
2007 * list this inode will go on.
2009 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2011 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2012 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2013 ASSERT(agi->agi_unlinked[bucket_index]);
2015 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2017 * We're at the head of the list. Get the inode's
2018 * on-disk buffer to see if there is anyone after us
2019 * on the list. Only modify our next pointer if it
2020 * is not already NULLAGINO. This saves us the overhead
2021 * of dealing with the buffer when there is no need to
2024 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2027 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2028 error, mp->m_fsname);
2031 next_agino = be32_to_cpu(dip->di_next_unlinked);
2032 ASSERT(next_agino != 0);
2033 if (next_agino != NULLAGINO) {
2034 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2035 offset = ip->i_boffset +
2036 offsetof(xfs_dinode_t, di_next_unlinked);
2037 xfs_trans_inode_buf(tp, ibp);
2038 xfs_trans_log_buf(tp, ibp, offset,
2039 (offset + sizeof(xfs_agino_t) - 1));
2040 xfs_inobp_check(mp, ibp);
2042 xfs_trans_brelse(tp, ibp);
2045 * Point the bucket head pointer at the next inode.
2047 ASSERT(next_agino != 0);
2048 ASSERT(next_agino != agino);
2049 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2050 offset = offsetof(xfs_agi_t, agi_unlinked) +
2051 (sizeof(xfs_agino_t) * bucket_index);
2052 xfs_trans_log_buf(tp, agibp, offset,
2053 (offset + sizeof(xfs_agino_t) - 1));
2056 * We need to search the list for the inode being freed.
2058 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2060 while (next_agino != agino) {
2062 * If the last inode wasn't the one pointing to
2063 * us, then release its buffer since we're not
2064 * going to do anything with it.
2066 if (last_ibp != NULL) {
2067 xfs_trans_brelse(tp, last_ibp);
2069 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2070 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2071 &last_ibp, &last_offset);
2074 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2075 error, mp->m_fsname);
2078 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2079 ASSERT(next_agino != NULLAGINO);
2080 ASSERT(next_agino != 0);
2083 * Now last_ibp points to the buffer previous to us on
2084 * the unlinked list. Pull us from the list.
2086 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2089 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2090 error, mp->m_fsname);
2093 next_agino = be32_to_cpu(dip->di_next_unlinked);
2094 ASSERT(next_agino != 0);
2095 ASSERT(next_agino != agino);
2096 if (next_agino != NULLAGINO) {
2097 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2098 offset = ip->i_boffset +
2099 offsetof(xfs_dinode_t, di_next_unlinked);
2100 xfs_trans_inode_buf(tp, ibp);
2101 xfs_trans_log_buf(tp, ibp, offset,
2102 (offset + sizeof(xfs_agino_t) - 1));
2103 xfs_inobp_check(mp, ibp);
2105 xfs_trans_brelse(tp, ibp);
2108 * Point the previous inode on the list to the next inode.
2110 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2111 ASSERT(next_agino != 0);
2112 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2113 xfs_trans_inode_buf(tp, last_ibp);
2114 xfs_trans_log_buf(tp, last_ibp, offset,
2115 (offset + sizeof(xfs_agino_t) - 1));
2116 xfs_inobp_check(mp, last_ibp);
2121 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2123 return (((ip->i_itemp == NULL) ||
2124 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2125 (ip->i_update_core == 0));
2130 xfs_inode_t *free_ip,
2134 xfs_mount_t *mp = free_ip->i_mount;
2135 int blks_per_cluster;
2138 int i, j, found, pre_flushed;
2141 xfs_inode_t *ip, **ip_found;
2142 xfs_inode_log_item_t *iip;
2143 xfs_log_item_t *lip;
2144 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2146 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2147 blks_per_cluster = 1;
2148 ninodes = mp->m_sb.sb_inopblock;
2149 nbufs = XFS_IALLOC_BLOCKS(mp);
2151 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2152 mp->m_sb.sb_blocksize;
2153 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2154 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2157 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2159 for (j = 0; j < nbufs; j++, inum += ninodes) {
2160 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2161 XFS_INO_TO_AGBNO(mp, inum));
2165 * Look for each inode in memory and attempt to lock it,
2166 * we can be racing with flush and tail pushing here.
2167 * any inode we get the locks on, add to an array of
2168 * inode items to process later.
2170 * The get the buffer lock, we could beat a flush
2171 * or tail pushing thread to the lock here, in which
2172 * case they will go looking for the inode buffer
2173 * and fail, we need some other form of interlock
2177 for (i = 0; i < ninodes; i++) {
2178 read_lock(&pag->pag_ici_lock);
2179 ip = radix_tree_lookup(&pag->pag_ici_root,
2180 XFS_INO_TO_AGINO(mp, (inum + i)));
2182 /* Inode not in memory or we found it already,
2185 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2186 read_unlock(&pag->pag_ici_lock);
2190 if (xfs_inode_clean(ip)) {
2191 read_unlock(&pag->pag_ici_lock);
2195 /* If we can get the locks then add it to the
2196 * list, otherwise by the time we get the bp lock
2197 * below it will already be attached to the
2201 /* This inode will already be locked - by us, lets
2205 if (ip == free_ip) {
2206 if (xfs_iflock_nowait(ip)) {
2207 xfs_iflags_set(ip, XFS_ISTALE);
2208 if (xfs_inode_clean(ip)) {
2211 ip_found[found++] = ip;
2214 read_unlock(&pag->pag_ici_lock);
2218 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2219 if (xfs_iflock_nowait(ip)) {
2220 xfs_iflags_set(ip, XFS_ISTALE);
2222 if (xfs_inode_clean(ip)) {
2224 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2226 ip_found[found++] = ip;
2229 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2232 read_unlock(&pag->pag_ici_lock);
2235 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2236 mp->m_bsize * blks_per_cluster,
2240 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2242 if (lip->li_type == XFS_LI_INODE) {
2243 iip = (xfs_inode_log_item_t *)lip;
2244 ASSERT(iip->ili_logged == 1);
2245 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2246 spin_lock(&mp->m_ail_lock);
2247 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2248 spin_unlock(&mp->m_ail_lock);
2249 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2252 lip = lip->li_bio_list;
2255 for (i = 0; i < found; i++) {
2260 ip->i_update_core = 0;
2262 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2266 iip->ili_last_fields = iip->ili_format.ilf_fields;
2267 iip->ili_format.ilf_fields = 0;
2268 iip->ili_logged = 1;
2269 spin_lock(&mp->m_ail_lock);
2270 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2271 spin_unlock(&mp->m_ail_lock);
2273 xfs_buf_attach_iodone(bp,
2274 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2275 xfs_istale_done, (xfs_log_item_t *)iip);
2276 if (ip != free_ip) {
2277 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2281 if (found || pre_flushed)
2282 xfs_trans_stale_inode_buf(tp, bp);
2283 xfs_trans_binval(tp, bp);
2286 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2287 xfs_put_perag(mp, pag);
2291 * This is called to return an inode to the inode free list.
2292 * The inode should already be truncated to 0 length and have
2293 * no pages associated with it. This routine also assumes that
2294 * the inode is already a part of the transaction.
2296 * The on-disk copy of the inode will have been added to the list
2297 * of unlinked inodes in the AGI. We need to remove the inode from
2298 * that list atomically with respect to freeing it here.
2304 xfs_bmap_free_t *flist)
2308 xfs_ino_t first_ino;
2312 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2313 ASSERT(ip->i_transp == tp);
2314 ASSERT(ip->i_d.di_nlink == 0);
2315 ASSERT(ip->i_d.di_nextents == 0);
2316 ASSERT(ip->i_d.di_anextents == 0);
2317 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2318 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2319 ASSERT(ip->i_d.di_nblocks == 0);
2322 * Pull the on-disk inode from the AGI unlinked list.
2324 error = xfs_iunlink_remove(tp, ip);
2329 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2333 ip->i_d.di_mode = 0; /* mark incore inode as free */
2334 ip->i_d.di_flags = 0;
2335 ip->i_d.di_dmevmask = 0;
2336 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2337 ip->i_df.if_ext_max =
2338 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2339 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2340 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2342 * Bump the generation count so no one will be confused
2343 * by reincarnations of this inode.
2347 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2349 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2354 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2355 * from picking up this inode when it is reclaimed (its incore state
2356 * initialzed but not flushed to disk yet). The in-core di_mode is
2357 * already cleared and a corresponding transaction logged.
2358 * The hack here just synchronizes the in-core to on-disk
2359 * di_mode value in advance before the actual inode sync to disk.
2360 * This is OK because the inode is already unlinked and would never
2361 * change its di_mode again for this inode generation.
2362 * This is a temporary hack that would require a proper fix
2365 dip->di_core.di_mode = 0;
2368 xfs_ifree_cluster(ip, tp, first_ino);
2375 * Reallocate the space for if_broot based on the number of records
2376 * being added or deleted as indicated in rec_diff. Move the records
2377 * and pointers in if_broot to fit the new size. When shrinking this
2378 * will eliminate holes between the records and pointers created by
2379 * the caller. When growing this will create holes to be filled in
2382 * The caller must not request to add more records than would fit in
2383 * the on-disk inode root. If the if_broot is currently NULL, then
2384 * if we adding records one will be allocated. The caller must also
2385 * not request that the number of records go below zero, although
2386 * it can go to zero.
2388 * ip -- the inode whose if_broot area is changing
2389 * ext_diff -- the change in the number of records, positive or negative,
2390 * requested for the if_broot array.
2400 xfs_bmbt_block_t *new_broot;
2407 * Handle the degenerate case quietly.
2409 if (rec_diff == 0) {
2413 ifp = XFS_IFORK_PTR(ip, whichfork);
2416 * If there wasn't any memory allocated before, just
2417 * allocate it now and get out.
2419 if (ifp->if_broot_bytes == 0) {
2420 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2421 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2423 ifp->if_broot_bytes = (int)new_size;
2428 * If there is already an existing if_broot, then we need
2429 * to realloc() it and shift the pointers to their new
2430 * location. The records don't change location because
2431 * they are kept butted up against the btree block header.
2433 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2434 new_max = cur_max + rec_diff;
2435 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2436 ifp->if_broot = (xfs_bmbt_block_t *)
2437 kmem_realloc(ifp->if_broot,
2439 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2441 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2442 ifp->if_broot_bytes);
2443 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2445 ifp->if_broot_bytes = (int)new_size;
2446 ASSERT(ifp->if_broot_bytes <=
2447 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2448 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2453 * rec_diff is less than 0. In this case, we are shrinking the
2454 * if_broot buffer. It must already exist. If we go to zero
2455 * records, just get rid of the root and clear the status bit.
2457 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2458 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2459 new_max = cur_max + rec_diff;
2460 ASSERT(new_max >= 0);
2462 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2466 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2468 * First copy over the btree block header.
2470 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2473 ifp->if_flags &= ~XFS_IFBROOT;
2477 * Only copy the records and pointers if there are any.
2481 * First copy the records.
2483 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2484 ifp->if_broot_bytes);
2485 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2487 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2490 * Then copy the pointers.
2492 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2493 ifp->if_broot_bytes);
2494 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2496 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2498 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2499 ifp->if_broot = new_broot;
2500 ifp->if_broot_bytes = (int)new_size;
2501 ASSERT(ifp->if_broot_bytes <=
2502 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2508 * This is called when the amount of space needed for if_data
2509 * is increased or decreased. The change in size is indicated by
2510 * the number of bytes that need to be added or deleted in the
2511 * byte_diff parameter.
2513 * If the amount of space needed has decreased below the size of the
2514 * inline buffer, then switch to using the inline buffer. Otherwise,
2515 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2516 * to what is needed.
2518 * ip -- the inode whose if_data area is changing
2519 * byte_diff -- the change in the number of bytes, positive or negative,
2520 * requested for the if_data array.
2532 if (byte_diff == 0) {
2536 ifp = XFS_IFORK_PTR(ip, whichfork);
2537 new_size = (int)ifp->if_bytes + byte_diff;
2538 ASSERT(new_size >= 0);
2540 if (new_size == 0) {
2541 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2542 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2544 ifp->if_u1.if_data = NULL;
2546 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2548 * If the valid extents/data can fit in if_inline_ext/data,
2549 * copy them from the malloc'd vector and free it.
2551 if (ifp->if_u1.if_data == NULL) {
2552 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2553 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2554 ASSERT(ifp->if_real_bytes != 0);
2555 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2557 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2558 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2563 * Stuck with malloc/realloc.
2564 * For inline data, the underlying buffer must be
2565 * a multiple of 4 bytes in size so that it can be
2566 * logged and stay on word boundaries. We enforce
2569 real_size = roundup(new_size, 4);
2570 if (ifp->if_u1.if_data == NULL) {
2571 ASSERT(ifp->if_real_bytes == 0);
2572 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2573 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2575 * Only do the realloc if the underlying size
2576 * is really changing.
2578 if (ifp->if_real_bytes != real_size) {
2579 ifp->if_u1.if_data =
2580 kmem_realloc(ifp->if_u1.if_data,
2586 ASSERT(ifp->if_real_bytes == 0);
2587 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2588 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2592 ifp->if_real_bytes = real_size;
2593 ifp->if_bytes = new_size;
2594 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2601 * Map inode to disk block and offset.
2603 * mp -- the mount point structure for the current file system
2604 * tp -- the current transaction
2605 * ino -- the inode number of the inode to be located
2606 * imap -- this structure is filled in with the information necessary
2607 * to retrieve the given inode from disk
2608 * flags -- flags to pass to xfs_dilocate indicating whether or not
2609 * lookups in the inode btree were OK or not
2619 xfs_fsblock_t fsbno;
2624 fsbno = imap->im_blkno ?
2625 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2626 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2630 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2631 imap->im_len = XFS_FSB_TO_BB(mp, len);
2632 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2633 imap->im_ioffset = (ushort)off;
2634 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2637 * If the inode number maps to a block outside the bounds
2638 * of the file system then return NULL rather than calling
2639 * read_buf and panicing when we get an error from the
2642 if ((imap->im_blkno + imap->im_len) >
2643 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2644 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2645 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2646 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2647 (unsigned long long) imap->im_blkno,
2648 (unsigned long long) imap->im_len,
2649 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2662 ifp = XFS_IFORK_PTR(ip, whichfork);
2663 if (ifp->if_broot != NULL) {
2664 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2665 ifp->if_broot = NULL;
2669 * If the format is local, then we can't have an extents
2670 * array so just look for an inline data array. If we're
2671 * not local then we may or may not have an extents list,
2672 * so check and free it up if we do.
2674 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2675 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2676 (ifp->if_u1.if_data != NULL)) {
2677 ASSERT(ifp->if_real_bytes != 0);
2678 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2679 ifp->if_u1.if_data = NULL;
2680 ifp->if_real_bytes = 0;
2682 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2683 ((ifp->if_flags & XFS_IFEXTIREC) ||
2684 ((ifp->if_u1.if_extents != NULL) &&
2685 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2686 ASSERT(ifp->if_real_bytes != 0);
2687 xfs_iext_destroy(ifp);
2689 ASSERT(ifp->if_u1.if_extents == NULL ||
2690 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2691 ASSERT(ifp->if_real_bytes == 0);
2692 if (whichfork == XFS_ATTR_FORK) {
2693 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2699 * This is called free all the memory associated with an inode.
2700 * It must free the inode itself and any buffers allocated for
2701 * if_extents/if_data and if_broot. It must also free the lock
2702 * associated with the inode.
2708 switch (ip->i_d.di_mode & S_IFMT) {
2712 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2716 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2717 mrfree(&ip->i_lock);
2718 mrfree(&ip->i_iolock);
2719 freesema(&ip->i_flock);
2721 #ifdef XFS_INODE_TRACE
2722 ktrace_free(ip->i_trace);
2724 #ifdef XFS_BMAP_TRACE
2725 ktrace_free(ip->i_xtrace);
2727 #ifdef XFS_BMBT_TRACE
2728 ktrace_free(ip->i_btrace);
2731 ktrace_free(ip->i_rwtrace);
2733 #ifdef XFS_ILOCK_TRACE
2734 ktrace_free(ip->i_lock_trace);
2736 #ifdef XFS_DIR2_TRACE
2737 ktrace_free(ip->i_dir_trace);
2741 * Only if we are shutting down the fs will we see an
2742 * inode still in the AIL. If it is there, we should remove
2743 * it to prevent a use-after-free from occurring.
2745 xfs_mount_t *mp = ip->i_mount;
2746 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2748 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2749 XFS_FORCED_SHUTDOWN(ip->i_mount));
2750 if (lip->li_flags & XFS_LI_IN_AIL) {
2751 spin_lock(&mp->m_ail_lock);
2752 if (lip->li_flags & XFS_LI_IN_AIL)
2753 xfs_trans_delete_ail(mp, lip);
2755 spin_unlock(&mp->m_ail_lock);
2757 xfs_inode_item_destroy(ip);
2759 kmem_zone_free(xfs_inode_zone, ip);
2764 * Increment the pin count of the given buffer.
2765 * This value is protected by ipinlock spinlock in the mount structure.
2771 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2773 atomic_inc(&ip->i_pincount);
2777 * Decrement the pin count of the given inode, and wake up
2778 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2779 * inode must have been previously pinned with a call to xfs_ipin().
2785 ASSERT(atomic_read(&ip->i_pincount) > 0);
2787 if (atomic_dec_and_test(&ip->i_pincount))
2788 wake_up(&ip->i_ipin_wait);
2792 * This is called to unpin an inode. It can be directed to wait or to return
2793 * immediately without waiting for the inode to be unpinned. The caller must
2794 * have the inode locked in at least shared mode so that the buffer cannot be
2795 * subsequently pinned once someone is waiting for it to be unpinned.
2802 xfs_inode_log_item_t *iip = ip->i_itemp;
2804 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2805 if (atomic_read(&ip->i_pincount) == 0)
2808 /* Give the log a push to start the unpinning I/O */
2809 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2810 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2812 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2819 __xfs_iunpin_wait(ip, 1);
2826 __xfs_iunpin_wait(ip, 0);
2831 * xfs_iextents_copy()
2833 * This is called to copy the REAL extents (as opposed to the delayed
2834 * allocation extents) from the inode into the given buffer. It
2835 * returns the number of bytes copied into the buffer.
2837 * If there are no delayed allocation extents, then we can just
2838 * memcpy() the extents into the buffer. Otherwise, we need to
2839 * examine each extent in turn and skip those which are delayed.
2851 xfs_fsblock_t start_block;
2853 ifp = XFS_IFORK_PTR(ip, whichfork);
2854 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2855 ASSERT(ifp->if_bytes > 0);
2857 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2858 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2862 * There are some delayed allocation extents in the
2863 * inode, so copy the extents one at a time and skip
2864 * the delayed ones. There must be at least one
2865 * non-delayed extent.
2868 for (i = 0; i < nrecs; i++) {
2869 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2870 start_block = xfs_bmbt_get_startblock(ep);
2871 if (ISNULLSTARTBLOCK(start_block)) {
2873 * It's a delayed allocation extent, so skip it.
2878 /* Translate to on disk format */
2879 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2880 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2884 ASSERT(copied != 0);
2885 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2887 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2891 * Each of the following cases stores data into the same region
2892 * of the on-disk inode, so only one of them can be valid at
2893 * any given time. While it is possible to have conflicting formats
2894 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2895 * in EXTENTS format, this can only happen when the fork has
2896 * changed formats after being modified but before being flushed.
2897 * In these cases, the format always takes precedence, because the
2898 * format indicates the current state of the fork.
2905 xfs_inode_log_item_t *iip,
2912 #ifdef XFS_TRANS_DEBUG
2915 static const short brootflag[2] =
2916 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2917 static const short dataflag[2] =
2918 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2919 static const short extflag[2] =
2920 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2924 ifp = XFS_IFORK_PTR(ip, whichfork);
2926 * This can happen if we gave up in iformat in an error path,
2927 * for the attribute fork.
2930 ASSERT(whichfork == XFS_ATTR_FORK);
2933 cp = XFS_DFORK_PTR(dip, whichfork);
2935 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2936 case XFS_DINODE_FMT_LOCAL:
2937 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2938 (ifp->if_bytes > 0)) {
2939 ASSERT(ifp->if_u1.if_data != NULL);
2940 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2941 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2945 case XFS_DINODE_FMT_EXTENTS:
2946 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2947 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2948 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2949 (ifp->if_bytes == 0));
2950 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2951 (ifp->if_bytes > 0));
2952 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2953 (ifp->if_bytes > 0)) {
2954 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2955 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2960 case XFS_DINODE_FMT_BTREE:
2961 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2962 (ifp->if_broot_bytes > 0)) {
2963 ASSERT(ifp->if_broot != NULL);
2964 ASSERT(ifp->if_broot_bytes <=
2965 (XFS_IFORK_SIZE(ip, whichfork) +
2966 XFS_BROOT_SIZE_ADJ));
2967 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2968 (xfs_bmdr_block_t *)cp,
2969 XFS_DFORK_SIZE(dip, mp, whichfork));
2973 case XFS_DINODE_FMT_DEV:
2974 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2975 ASSERT(whichfork == XFS_DATA_FORK);
2976 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
2980 case XFS_DINODE_FMT_UUID:
2981 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2982 ASSERT(whichfork == XFS_DATA_FORK);
2983 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3001 xfs_mount_t *mp = ip->i_mount;
3002 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
3003 unsigned long first_index, mask;
3005 xfs_inode_t **ilist;
3007 xfs_inode_log_item_t *iip;
3013 ASSERT(pag->pagi_inodeok);
3014 ASSERT(pag->pag_ici_init);
3016 ilist_size = XFS_INODE_CLUSTER_SIZE(mp) * sizeof(xfs_inode_t *);
3017 ilist = kmem_alloc(ilist_size, KM_MAYFAIL);
3021 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
3022 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3023 read_lock(&pag->pag_ici_lock);
3024 /* really need a gang lookup range call here */
3025 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3027 XFS_INODE_CLUSTER_SIZE(mp));
3031 for (i = 0; i < nr_found; i++) {
3035 /* if the inode lies outside this cluster, we're done. */
3036 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
3039 * Do an un-protected check to see if the inode is dirty and
3040 * is a candidate for flushing. These checks will be repeated
3041 * later after the appropriate locks are acquired.
3044 if ((iq->i_update_core == 0) &&
3046 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3047 xfs_ipincount(iq) == 0) {
3052 * Try to get locks. If any are unavailable or it is pinned,
3053 * then this inode cannot be flushed and is skipped.
3056 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3058 if (!xfs_iflock_nowait(iq)) {
3059 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3062 if (xfs_ipincount(iq)) {
3064 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3069 * arriving here means that this inode can be flushed. First
3070 * re-check that it's dirty before flushing.
3073 if ((iq->i_update_core != 0) || ((iip != NULL) &&
3074 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3076 error = xfs_iflush_int(iq, bp);
3078 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3079 goto cluster_corrupt_out;
3085 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3089 XFS_STATS_INC(xs_icluster_flushcnt);
3090 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3094 read_unlock(&pag->pag_ici_lock);
3095 kmem_free(ilist, ilist_size);
3099 cluster_corrupt_out:
3101 * Corruption detected in the clustering loop. Invalidate the
3102 * inode buffer and shut down the filesystem.
3104 read_unlock(&pag->pag_ici_lock);
3106 * Clean up the buffer. If it was B_DELWRI, just release it --
3107 * brelse can handle it with no problems. If not, shut down the
3108 * filesystem before releasing the buffer.
3110 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3114 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3116 if (!bufwasdelwri) {
3118 * Just like incore_relse: if we have b_iodone functions,
3119 * mark the buffer as an error and call them. Otherwise
3120 * mark it as stale and brelse.
3122 if (XFS_BUF_IODONE_FUNC(bp)) {
3123 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3127 XFS_BUF_ERROR(bp,EIO);
3136 * Unlocks the flush lock
3138 xfs_iflush_abort(iq);
3139 kmem_free(ilist, ilist_size);
3140 return XFS_ERROR(EFSCORRUPTED);
3144 * xfs_iflush() will write a modified inode's changes out to the
3145 * inode's on disk home. The caller must have the inode lock held
3146 * in at least shared mode and the inode flush semaphore must be
3147 * held as well. The inode lock will still be held upon return from
3148 * the call and the caller is free to unlock it.
3149 * The inode flush lock will be unlocked when the inode reaches the disk.
3150 * The flags indicate how the inode's buffer should be written out.
3157 xfs_inode_log_item_t *iip;
3162 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3163 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3165 XFS_STATS_INC(xs_iflush_count);
3167 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3168 ASSERT(issemalocked(&(ip->i_flock)));
3169 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3170 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3176 * If the inode isn't dirty, then just release the inode
3177 * flush lock and do nothing.
3179 if ((ip->i_update_core == 0) &&
3180 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3181 ASSERT((iip != NULL) ?
3182 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3188 * We can't flush the inode until it is unpinned, so wait for it if we
3189 * are allowed to block. We know noone new can pin it, because we are
3190 * holding the inode lock shared and you need to hold it exclusively to
3193 * If we are not allowed to block, force the log out asynchronously so
3194 * that when we come back the inode will be unpinned. If other inodes
3195 * in the same cluster are dirty, they will probably write the inode
3196 * out for us if they occur after the log force completes.
3198 if (noblock && xfs_ipincount(ip)) {
3199 xfs_iunpin_nowait(ip);
3203 xfs_iunpin_wait(ip);
3206 * This may have been unpinned because the filesystem is shutting
3207 * down forcibly. If that's the case we must not write this inode
3208 * to disk, because the log record didn't make it to disk!
3210 if (XFS_FORCED_SHUTDOWN(mp)) {
3211 ip->i_update_core = 0;
3213 iip->ili_format.ilf_fields = 0;
3215 return XFS_ERROR(EIO);
3219 * Decide how buffer will be flushed out. This is done before
3220 * the call to xfs_iflush_int because this field is zeroed by it.
3222 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3224 * Flush out the inode buffer according to the directions
3225 * of the caller. In the cases where the caller has given
3226 * us a choice choose the non-delwri case. This is because
3227 * the inode is in the AIL and we need to get it out soon.
3230 case XFS_IFLUSH_SYNC:
3231 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3234 case XFS_IFLUSH_ASYNC_NOBLOCK:
3235 case XFS_IFLUSH_ASYNC:
3236 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3239 case XFS_IFLUSH_DELWRI:
3249 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3250 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3251 case XFS_IFLUSH_DELWRI:
3254 case XFS_IFLUSH_ASYNC_NOBLOCK:
3255 case XFS_IFLUSH_ASYNC:
3258 case XFS_IFLUSH_SYNC:
3269 * Get the buffer containing the on-disk inode.
3271 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3272 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3279 * First flush out the inode that xfs_iflush was called with.
3281 error = xfs_iflush_int(ip, bp);
3286 * If the buffer is pinned then push on the log now so we won't
3287 * get stuck waiting in the write for too long.
3289 if (XFS_BUF_ISPINNED(bp))
3290 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3294 * see if other inodes can be gathered into this write
3296 error = xfs_iflush_cluster(ip, bp);
3298 goto cluster_corrupt_out;
3300 if (flags & INT_DELWRI) {
3301 xfs_bdwrite(mp, bp);
3302 } else if (flags & INT_ASYNC) {
3303 xfs_bawrite(mp, bp);
3305 error = xfs_bwrite(mp, bp);
3311 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3312 cluster_corrupt_out:
3314 * Unlocks the flush lock
3316 xfs_iflush_abort(ip);
3317 return XFS_ERROR(EFSCORRUPTED);
3326 xfs_inode_log_item_t *iip;
3329 #ifdef XFS_TRANS_DEBUG
3333 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3334 ASSERT(issemalocked(&(ip->i_flock)));
3335 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3336 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3343 * If the inode isn't dirty, then just release the inode
3344 * flush lock and do nothing.
3346 if ((ip->i_update_core == 0) &&
3347 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3352 /* set *dip = inode's place in the buffer */
3353 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3356 * Clear i_update_core before copying out the data.
3357 * This is for coordination with our timestamp updates
3358 * that don't hold the inode lock. They will always
3359 * update the timestamps BEFORE setting i_update_core,
3360 * so if we clear i_update_core after they set it we
3361 * are guaranteed to see their updates to the timestamps.
3362 * I believe that this depends on strongly ordered memory
3363 * semantics, but we have that. We use the SYNCHRONIZE
3364 * macro to make sure that the compiler does not reorder
3365 * the i_update_core access below the data copy below.
3367 ip->i_update_core = 0;
3371 * Make sure to get the latest atime from the Linux inode.
3373 xfs_synchronize_atime(ip);
3375 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3376 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3377 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3378 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3379 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3382 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3383 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3384 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3385 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3386 ip->i_ino, ip, ip->i_d.di_magic);
3389 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3391 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3392 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3393 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3394 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3395 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3399 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3401 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3402 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3403 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3404 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3405 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3406 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3411 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3412 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3413 XFS_RANDOM_IFLUSH_5)) {
3414 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3415 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3417 ip->i_d.di_nextents + ip->i_d.di_anextents,
3422 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3423 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3424 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3425 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3426 ip->i_ino, ip->i_d.di_forkoff, ip);
3430 * bump the flush iteration count, used to detect flushes which
3431 * postdate a log record during recovery.
3434 ip->i_d.di_flushiter++;
3437 * Copy the dirty parts of the inode into the on-disk
3438 * inode. We always copy out the core of the inode,
3439 * because if the inode is dirty at all the core must
3442 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3444 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3445 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3446 ip->i_d.di_flushiter = 0;
3449 * If this is really an old format inode and the superblock version
3450 * has not been updated to support only new format inodes, then
3451 * convert back to the old inode format. If the superblock version
3452 * has been updated, then make the conversion permanent.
3454 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3455 xfs_sb_version_hasnlink(&mp->m_sb));
3456 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3457 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3461 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3462 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3465 * The superblock version has already been bumped,
3466 * so just make the conversion to the new inode
3469 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3470 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3471 ip->i_d.di_onlink = 0;
3472 dip->di_core.di_onlink = 0;
3473 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3474 memset(&(dip->di_core.di_pad[0]), 0,
3475 sizeof(dip->di_core.di_pad));
3476 ASSERT(ip->i_d.di_projid == 0);
3480 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3484 if (XFS_IFORK_Q(ip)) {
3486 * The only error from xfs_iflush_fork is on the data fork.
3488 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3490 xfs_inobp_check(mp, bp);
3493 * We've recorded everything logged in the inode, so we'd
3494 * like to clear the ilf_fields bits so we don't log and
3495 * flush things unnecessarily. However, we can't stop
3496 * logging all this information until the data we've copied
3497 * into the disk buffer is written to disk. If we did we might
3498 * overwrite the copy of the inode in the log with all the
3499 * data after re-logging only part of it, and in the face of
3500 * a crash we wouldn't have all the data we need to recover.
3502 * What we do is move the bits to the ili_last_fields field.
3503 * When logging the inode, these bits are moved back to the
3504 * ilf_fields field. In the xfs_iflush_done() routine we
3505 * clear ili_last_fields, since we know that the information
3506 * those bits represent is permanently on disk. As long as
3507 * the flush completes before the inode is logged again, then
3508 * both ilf_fields and ili_last_fields will be cleared.
3510 * We can play with the ilf_fields bits here, because the inode
3511 * lock must be held exclusively in order to set bits there
3512 * and the flush lock protects the ili_last_fields bits.
3513 * Set ili_logged so the flush done
3514 * routine can tell whether or not to look in the AIL.
3515 * Also, store the current LSN of the inode so that we can tell
3516 * whether the item has moved in the AIL from xfs_iflush_done().
3517 * In order to read the lsn we need the AIL lock, because
3518 * it is a 64 bit value that cannot be read atomically.
3520 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3521 iip->ili_last_fields = iip->ili_format.ilf_fields;
3522 iip->ili_format.ilf_fields = 0;
3523 iip->ili_logged = 1;
3525 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3526 spin_lock(&mp->m_ail_lock);
3527 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3528 spin_unlock(&mp->m_ail_lock);
3531 * Attach the function xfs_iflush_done to the inode's
3532 * buffer. This will remove the inode from the AIL
3533 * and unlock the inode's flush lock when the inode is
3534 * completely written to disk.
3536 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3537 xfs_iflush_done, (xfs_log_item_t *)iip);
3539 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3540 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3543 * We're flushing an inode which is not in the AIL and has
3544 * not been logged but has i_update_core set. For this
3545 * case we can use a B_DELWRI flush and immediately drop
3546 * the inode flush lock because we can avoid the whole
3547 * AIL state thing. It's OK to drop the flush lock now,
3548 * because we've already locked the buffer and to do anything
3549 * you really need both.
3552 ASSERT(iip->ili_logged == 0);
3553 ASSERT(iip->ili_last_fields == 0);
3554 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3562 return XFS_ERROR(EFSCORRUPTED);
3567 * Flush all inactive inodes in mp.
3577 XFS_MOUNT_ILOCK(mp);
3583 /* Make sure we skip markers inserted by sync */
3584 if (ip->i_mount == NULL) {
3589 vp = XFS_ITOV_NULL(ip);
3591 XFS_MOUNT_IUNLOCK(mp);
3592 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3596 ASSERT(vn_count(vp) == 0);
3599 } while (ip != mp->m_inodes);
3601 XFS_MOUNT_IUNLOCK(mp);
3604 #ifdef XFS_ILOCK_TRACE
3605 ktrace_t *xfs_ilock_trace_buf;
3608 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3610 ktrace_enter(ip->i_lock_trace,
3612 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3613 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3614 (void *)ra, /* caller of ilock */
3615 (void *)(unsigned long)current_cpu(),
3616 (void *)(unsigned long)current_pid(),
3617 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3622 * Return a pointer to the extent record at file index idx.
3624 xfs_bmbt_rec_host_t *
3626 xfs_ifork_t *ifp, /* inode fork pointer */
3627 xfs_extnum_t idx) /* index of target extent */
3630 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3631 return ifp->if_u1.if_ext_irec->er_extbuf;
3632 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3633 xfs_ext_irec_t *erp; /* irec pointer */
3634 int erp_idx = 0; /* irec index */
3635 xfs_extnum_t page_idx = idx; /* ext index in target list */
3637 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3638 return &erp->er_extbuf[page_idx];
3639 } else if (ifp->if_bytes) {
3640 return &ifp->if_u1.if_extents[idx];
3647 * Insert new item(s) into the extent records for incore inode
3648 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3652 xfs_ifork_t *ifp, /* inode fork pointer */
3653 xfs_extnum_t idx, /* starting index of new items */
3654 xfs_extnum_t count, /* number of inserted items */
3655 xfs_bmbt_irec_t *new) /* items to insert */
3657 xfs_extnum_t i; /* extent record index */
3659 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3660 xfs_iext_add(ifp, idx, count);
3661 for (i = idx; i < idx + count; i++, new++)
3662 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3666 * This is called when the amount of space required for incore file
3667 * extents needs to be increased. The ext_diff parameter stores the
3668 * number of new extents being added and the idx parameter contains
3669 * the extent index where the new extents will be added. If the new
3670 * extents are being appended, then we just need to (re)allocate and
3671 * initialize the space. Otherwise, if the new extents are being
3672 * inserted into the middle of the existing entries, a bit more work
3673 * is required to make room for the new extents to be inserted. The
3674 * caller is responsible for filling in the new extent entries upon
3679 xfs_ifork_t *ifp, /* inode fork pointer */
3680 xfs_extnum_t idx, /* index to begin adding exts */
3681 int ext_diff) /* number of extents to add */
3683 int byte_diff; /* new bytes being added */
3684 int new_size; /* size of extents after adding */
3685 xfs_extnum_t nextents; /* number of extents in file */
3687 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3688 ASSERT((idx >= 0) && (idx <= nextents));
3689 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3690 new_size = ifp->if_bytes + byte_diff;
3692 * If the new number of extents (nextents + ext_diff)
3693 * fits inside the inode, then continue to use the inline
3696 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3697 if (idx < nextents) {
3698 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3699 &ifp->if_u2.if_inline_ext[idx],
3700 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3701 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3703 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3704 ifp->if_real_bytes = 0;
3705 ifp->if_lastex = nextents + ext_diff;
3708 * Otherwise use a linear (direct) extent list.
3709 * If the extents are currently inside the inode,
3710 * xfs_iext_realloc_direct will switch us from
3711 * inline to direct extent allocation mode.
3713 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3714 xfs_iext_realloc_direct(ifp, new_size);
3715 if (idx < nextents) {
3716 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3717 &ifp->if_u1.if_extents[idx],
3718 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3719 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3722 /* Indirection array */
3724 xfs_ext_irec_t *erp;
3728 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3729 if (ifp->if_flags & XFS_IFEXTIREC) {
3730 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3732 xfs_iext_irec_init(ifp);
3733 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3734 erp = ifp->if_u1.if_ext_irec;
3736 /* Extents fit in target extent page */
3737 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3738 if (page_idx < erp->er_extcount) {
3739 memmove(&erp->er_extbuf[page_idx + ext_diff],
3740 &erp->er_extbuf[page_idx],
3741 (erp->er_extcount - page_idx) *
3742 sizeof(xfs_bmbt_rec_t));
3743 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3745 erp->er_extcount += ext_diff;
3746 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3748 /* Insert a new extent page */
3750 xfs_iext_add_indirect_multi(ifp,
3751 erp_idx, page_idx, ext_diff);
3754 * If extent(s) are being appended to the last page in
3755 * the indirection array and the new extent(s) don't fit
3756 * in the page, then erp is NULL and erp_idx is set to
3757 * the next index needed in the indirection array.
3760 int count = ext_diff;
3763 erp = xfs_iext_irec_new(ifp, erp_idx);
3764 erp->er_extcount = count;
3765 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3772 ifp->if_bytes = new_size;
3776 * This is called when incore extents are being added to the indirection
3777 * array and the new extents do not fit in the target extent list. The
3778 * erp_idx parameter contains the irec index for the target extent list
3779 * in the indirection array, and the idx parameter contains the extent
3780 * index within the list. The number of extents being added is stored
3781 * in the count parameter.
3783 * |-------| |-------|
3784 * | | | | idx - number of extents before idx
3786 * | | | | count - number of extents being inserted at idx
3787 * |-------| |-------|
3788 * | count | | nex2 | nex2 - number of extents after idx + count
3789 * |-------| |-------|
3792 xfs_iext_add_indirect_multi(
3793 xfs_ifork_t *ifp, /* inode fork pointer */
3794 int erp_idx, /* target extent irec index */
3795 xfs_extnum_t idx, /* index within target list */
3796 int count) /* new extents being added */
3798 int byte_diff; /* new bytes being added */
3799 xfs_ext_irec_t *erp; /* pointer to irec entry */
3800 xfs_extnum_t ext_diff; /* number of extents to add */
3801 xfs_extnum_t ext_cnt; /* new extents still needed */
3802 xfs_extnum_t nex2; /* extents after idx + count */
3803 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3804 int nlists; /* number of irec's (lists) */
3806 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3807 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3808 nex2 = erp->er_extcount - idx;
3809 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3812 * Save second part of target extent list
3813 * (all extents past */
3815 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3816 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3817 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3818 erp->er_extcount -= nex2;
3819 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3820 memset(&erp->er_extbuf[idx], 0, byte_diff);
3824 * Add the new extents to the end of the target
3825 * list, then allocate new irec record(s) and
3826 * extent buffer(s) as needed to store the rest
3827 * of the new extents.
3830 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3832 erp->er_extcount += ext_diff;
3833 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3834 ext_cnt -= ext_diff;
3838 erp = xfs_iext_irec_new(ifp, erp_idx);
3839 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3840 erp->er_extcount = ext_diff;
3841 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3842 ext_cnt -= ext_diff;
3845 /* Add nex2 extents back to indirection array */
3847 xfs_extnum_t ext_avail;
3850 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3851 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3854 * If nex2 extents fit in the current page, append
3855 * nex2_ep after the new extents.
3857 if (nex2 <= ext_avail) {
3858 i = erp->er_extcount;
3861 * Otherwise, check if space is available in the
3864 else if ((erp_idx < nlists - 1) &&
3865 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3866 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3869 /* Create a hole for nex2 extents */
3870 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3871 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3874 * Final choice, create a new extent page for
3879 erp = xfs_iext_irec_new(ifp, erp_idx);
3881 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3882 kmem_free(nex2_ep, byte_diff);
3883 erp->er_extcount += nex2;
3884 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3889 * This is called when the amount of space required for incore file
3890 * extents needs to be decreased. The ext_diff parameter stores the
3891 * number of extents to be removed and the idx parameter contains
3892 * the extent index where the extents will be removed from.
3894 * If the amount of space needed has decreased below the linear
3895 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3896 * extent array. Otherwise, use kmem_realloc() to adjust the
3897 * size to what is needed.
3901 xfs_ifork_t *ifp, /* inode fork pointer */
3902 xfs_extnum_t idx, /* index to begin removing exts */
3903 int ext_diff) /* number of extents to remove */
3905 xfs_extnum_t nextents; /* number of extents in file */
3906 int new_size; /* size of extents after removal */
3908 ASSERT(ext_diff > 0);
3909 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3910 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3912 if (new_size == 0) {
3913 xfs_iext_destroy(ifp);
3914 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3915 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3916 } else if (ifp->if_real_bytes) {
3917 xfs_iext_remove_direct(ifp, idx, ext_diff);
3919 xfs_iext_remove_inline(ifp, idx, ext_diff);
3921 ifp->if_bytes = new_size;
3925 * This removes ext_diff extents from the inline buffer, beginning
3926 * at extent index idx.
3929 xfs_iext_remove_inline(
3930 xfs_ifork_t *ifp, /* inode fork pointer */
3931 xfs_extnum_t idx, /* index to begin removing exts */
3932 int ext_diff) /* number of extents to remove */
3934 int nextents; /* number of extents in file */
3936 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3937 ASSERT(idx < XFS_INLINE_EXTS);
3938 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3939 ASSERT(((nextents - ext_diff) > 0) &&
3940 (nextents - ext_diff) < XFS_INLINE_EXTS);
3942 if (idx + ext_diff < nextents) {
3943 memmove(&ifp->if_u2.if_inline_ext[idx],
3944 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3945 (nextents - (idx + ext_diff)) *
3946 sizeof(xfs_bmbt_rec_t));
3947 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3948 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3950 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3951 ext_diff * sizeof(xfs_bmbt_rec_t));
3956 * This removes ext_diff extents from a linear (direct) extent list,
3957 * beginning at extent index idx. If the extents are being removed
3958 * from the end of the list (ie. truncate) then we just need to re-
3959 * allocate the list to remove the extra space. Otherwise, if the
3960 * extents are being removed from the middle of the existing extent
3961 * entries, then we first need to move the extent records beginning
3962 * at idx + ext_diff up in the list to overwrite the records being
3963 * removed, then remove the extra space via kmem_realloc.
3966 xfs_iext_remove_direct(
3967 xfs_ifork_t *ifp, /* inode fork pointer */
3968 xfs_extnum_t idx, /* index to begin removing exts */
3969 int ext_diff) /* number of extents to remove */
3971 xfs_extnum_t nextents; /* number of extents in file */
3972 int new_size; /* size of extents after removal */
3974 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3975 new_size = ifp->if_bytes -
3976 (ext_diff * sizeof(xfs_bmbt_rec_t));
3977 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3979 if (new_size == 0) {
3980 xfs_iext_destroy(ifp);
3983 /* Move extents up in the list (if needed) */
3984 if (idx + ext_diff < nextents) {
3985 memmove(&ifp->if_u1.if_extents[idx],
3986 &ifp->if_u1.if_extents[idx + ext_diff],
3987 (nextents - (idx + ext_diff)) *
3988 sizeof(xfs_bmbt_rec_t));
3990 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3991 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3993 * Reallocate the direct extent list. If the extents
3994 * will fit inside the inode then xfs_iext_realloc_direct
3995 * will switch from direct to inline extent allocation
3998 xfs_iext_realloc_direct(ifp, new_size);
3999 ifp->if_bytes = new_size;
4003 * This is called when incore extents are being removed from the
4004 * indirection array and the extents being removed span multiple extent
4005 * buffers. The idx parameter contains the file extent index where we
4006 * want to begin removing extents, and the count parameter contains
4007 * how many extents need to be removed.
4009 * |-------| |-------|
4010 * | nex1 | | | nex1 - number of extents before idx
4011 * |-------| | count |
4012 * | | | | count - number of extents being removed at idx
4013 * | count | |-------|
4014 * | | | nex2 | nex2 - number of extents after idx + count
4015 * |-------| |-------|
4018 xfs_iext_remove_indirect(
4019 xfs_ifork_t *ifp, /* inode fork pointer */
4020 xfs_extnum_t idx, /* index to begin removing extents */
4021 int count) /* number of extents to remove */
4023 xfs_ext_irec_t *erp; /* indirection array pointer */
4024 int erp_idx = 0; /* indirection array index */
4025 xfs_extnum_t ext_cnt; /* extents left to remove */
4026 xfs_extnum_t ext_diff; /* extents to remove in current list */
4027 xfs_extnum_t nex1; /* number of extents before idx */
4028 xfs_extnum_t nex2; /* extents after idx + count */
4029 int nlists; /* entries in indirection array */
4030 int page_idx = idx; /* index in target extent list */
4032 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4033 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4034 ASSERT(erp != NULL);
4035 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4039 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4040 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4042 * Check for deletion of entire list;
4043 * xfs_iext_irec_remove() updates extent offsets.
4045 if (ext_diff == erp->er_extcount) {
4046 xfs_iext_irec_remove(ifp, erp_idx);
4047 ext_cnt -= ext_diff;
4050 ASSERT(erp_idx < ifp->if_real_bytes /
4052 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4059 /* Move extents up (if needed) */
4061 memmove(&erp->er_extbuf[nex1],
4062 &erp->er_extbuf[nex1 + ext_diff],
4063 nex2 * sizeof(xfs_bmbt_rec_t));
4065 /* Zero out rest of page */
4066 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4067 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4068 /* Update remaining counters */
4069 erp->er_extcount -= ext_diff;
4070 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4071 ext_cnt -= ext_diff;
4076 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4077 xfs_iext_irec_compact(ifp);
4081 * Create, destroy, or resize a linear (direct) block of extents.
4084 xfs_iext_realloc_direct(
4085 xfs_ifork_t *ifp, /* inode fork pointer */
4086 int new_size) /* new size of extents */
4088 int rnew_size; /* real new size of extents */
4090 rnew_size = new_size;
4092 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4093 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4094 (new_size != ifp->if_real_bytes)));
4096 /* Free extent records */
4097 if (new_size == 0) {
4098 xfs_iext_destroy(ifp);
4100 /* Resize direct extent list and zero any new bytes */
4101 else if (ifp->if_real_bytes) {
4102 /* Check if extents will fit inside the inode */
4103 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4104 xfs_iext_direct_to_inline(ifp, new_size /
4105 (uint)sizeof(xfs_bmbt_rec_t));
4106 ifp->if_bytes = new_size;
4109 if (!is_power_of_2(new_size)){
4110 rnew_size = roundup_pow_of_two(new_size);
4112 if (rnew_size != ifp->if_real_bytes) {
4113 ifp->if_u1.if_extents =
4114 kmem_realloc(ifp->if_u1.if_extents,
4119 if (rnew_size > ifp->if_real_bytes) {
4120 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4121 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4122 rnew_size - ifp->if_real_bytes);
4126 * Switch from the inline extent buffer to a direct
4127 * extent list. Be sure to include the inline extent
4128 * bytes in new_size.
4131 new_size += ifp->if_bytes;
4132 if (!is_power_of_2(new_size)) {
4133 rnew_size = roundup_pow_of_two(new_size);
4135 xfs_iext_inline_to_direct(ifp, rnew_size);
4137 ifp->if_real_bytes = rnew_size;
4138 ifp->if_bytes = new_size;
4142 * Switch from linear (direct) extent records to inline buffer.
4145 xfs_iext_direct_to_inline(
4146 xfs_ifork_t *ifp, /* inode fork pointer */
4147 xfs_extnum_t nextents) /* number of extents in file */
4149 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4150 ASSERT(nextents <= XFS_INLINE_EXTS);
4152 * The inline buffer was zeroed when we switched
4153 * from inline to direct extent allocation mode,
4154 * so we don't need to clear it here.
4156 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4157 nextents * sizeof(xfs_bmbt_rec_t));
4158 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4159 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4160 ifp->if_real_bytes = 0;
4164 * Switch from inline buffer to linear (direct) extent records.
4165 * new_size should already be rounded up to the next power of 2
4166 * by the caller (when appropriate), so use new_size as it is.
4167 * However, since new_size may be rounded up, we can't update
4168 * if_bytes here. It is the caller's responsibility to update
4169 * if_bytes upon return.
4172 xfs_iext_inline_to_direct(
4173 xfs_ifork_t *ifp, /* inode fork pointer */
4174 int new_size) /* number of extents in file */
4176 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4177 memset(ifp->if_u1.if_extents, 0, new_size);
4178 if (ifp->if_bytes) {
4179 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4181 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4182 sizeof(xfs_bmbt_rec_t));
4184 ifp->if_real_bytes = new_size;
4188 * Resize an extent indirection array to new_size bytes.
4191 xfs_iext_realloc_indirect(
4192 xfs_ifork_t *ifp, /* inode fork pointer */
4193 int new_size) /* new indirection array size */
4195 int nlists; /* number of irec's (ex lists) */
4196 int size; /* current indirection array size */
4198 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4199 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4200 size = nlists * sizeof(xfs_ext_irec_t);
4201 ASSERT(ifp->if_real_bytes);
4202 ASSERT((new_size >= 0) && (new_size != size));
4203 if (new_size == 0) {
4204 xfs_iext_destroy(ifp);
4206 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4207 kmem_realloc(ifp->if_u1.if_ext_irec,
4208 new_size, size, KM_SLEEP);
4213 * Switch from indirection array to linear (direct) extent allocations.
4216 xfs_iext_indirect_to_direct(
4217 xfs_ifork_t *ifp) /* inode fork pointer */
4219 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4220 xfs_extnum_t nextents; /* number of extents in file */
4221 int size; /* size of file extents */
4223 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4224 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4225 ASSERT(nextents <= XFS_LINEAR_EXTS);
4226 size = nextents * sizeof(xfs_bmbt_rec_t);
4228 xfs_iext_irec_compact_full(ifp);
4229 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4231 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4232 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4233 ifp->if_flags &= ~XFS_IFEXTIREC;
4234 ifp->if_u1.if_extents = ep;
4235 ifp->if_bytes = size;
4236 if (nextents < XFS_LINEAR_EXTS) {
4237 xfs_iext_realloc_direct(ifp, size);
4242 * Free incore file extents.
4246 xfs_ifork_t *ifp) /* inode fork pointer */
4248 if (ifp->if_flags & XFS_IFEXTIREC) {
4252 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4253 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4254 xfs_iext_irec_remove(ifp, erp_idx);
4256 ifp->if_flags &= ~XFS_IFEXTIREC;
4257 } else if (ifp->if_real_bytes) {
4258 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4259 } else if (ifp->if_bytes) {
4260 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4261 sizeof(xfs_bmbt_rec_t));
4263 ifp->if_u1.if_extents = NULL;
4264 ifp->if_real_bytes = 0;
4269 * Return a pointer to the extent record for file system block bno.
4271 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4272 xfs_iext_bno_to_ext(
4273 xfs_ifork_t *ifp, /* inode fork pointer */
4274 xfs_fileoff_t bno, /* block number to search for */
4275 xfs_extnum_t *idxp) /* index of target extent */
4277 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4278 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4279 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4280 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4281 int high; /* upper boundary in search */
4282 xfs_extnum_t idx = 0; /* index of target extent */
4283 int low; /* lower boundary in search */
4284 xfs_extnum_t nextents; /* number of file extents */
4285 xfs_fileoff_t startoff = 0; /* start offset of extent */
4287 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4288 if (nextents == 0) {
4293 if (ifp->if_flags & XFS_IFEXTIREC) {
4294 /* Find target extent list */
4296 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4297 base = erp->er_extbuf;
4298 high = erp->er_extcount - 1;
4300 base = ifp->if_u1.if_extents;
4301 high = nextents - 1;
4303 /* Binary search extent records */
4304 while (low <= high) {
4305 idx = (low + high) >> 1;
4307 startoff = xfs_bmbt_get_startoff(ep);
4308 blockcount = xfs_bmbt_get_blockcount(ep);
4309 if (bno < startoff) {
4311 } else if (bno >= startoff + blockcount) {
4314 /* Convert back to file-based extent index */
4315 if (ifp->if_flags & XFS_IFEXTIREC) {
4316 idx += erp->er_extoff;
4322 /* Convert back to file-based extent index */
4323 if (ifp->if_flags & XFS_IFEXTIREC) {
4324 idx += erp->er_extoff;
4326 if (bno >= startoff + blockcount) {
4327 if (++idx == nextents) {
4330 ep = xfs_iext_get_ext(ifp, idx);
4338 * Return a pointer to the indirection array entry containing the
4339 * extent record for filesystem block bno. Store the index of the
4340 * target irec in *erp_idxp.
4342 xfs_ext_irec_t * /* pointer to found extent record */
4343 xfs_iext_bno_to_irec(
4344 xfs_ifork_t *ifp, /* inode fork pointer */
4345 xfs_fileoff_t bno, /* block number to search for */
4346 int *erp_idxp) /* irec index of target ext list */
4348 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4349 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4350 int erp_idx; /* indirection array index */
4351 int nlists; /* number of extent irec's (lists) */
4352 int high; /* binary search upper limit */
4353 int low; /* binary search lower limit */
4355 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4356 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4360 while (low <= high) {
4361 erp_idx = (low + high) >> 1;
4362 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4363 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4364 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4366 } else if (erp_next && bno >=
4367 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4373 *erp_idxp = erp_idx;
4378 * Return a pointer to the indirection array entry containing the
4379 * extent record at file extent index *idxp. Store the index of the
4380 * target irec in *erp_idxp and store the page index of the target
4381 * extent record in *idxp.
4384 xfs_iext_idx_to_irec(
4385 xfs_ifork_t *ifp, /* inode fork pointer */
4386 xfs_extnum_t *idxp, /* extent index (file -> page) */
4387 int *erp_idxp, /* pointer to target irec */
4388 int realloc) /* new bytes were just added */
4390 xfs_ext_irec_t *prev; /* pointer to previous irec */
4391 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4392 int erp_idx; /* indirection array index */
4393 int nlists; /* number of irec's (ex lists) */
4394 int high; /* binary search upper limit */
4395 int low; /* binary search lower limit */
4396 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4398 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4399 ASSERT(page_idx >= 0 && page_idx <=
4400 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4401 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4406 /* Binary search extent irec's */
4407 while (low <= high) {
4408 erp_idx = (low + high) >> 1;
4409 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4410 prev = erp_idx > 0 ? erp - 1 : NULL;
4411 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4412 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4414 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4415 (page_idx == erp->er_extoff + erp->er_extcount &&
4418 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4419 erp->er_extcount == XFS_LINEAR_EXTS) {
4423 erp = erp_idx < nlists ? erp + 1 : NULL;
4426 page_idx -= erp->er_extoff;
4431 *erp_idxp = erp_idx;
4436 * Allocate and initialize an indirection array once the space needed
4437 * for incore extents increases above XFS_IEXT_BUFSZ.
4441 xfs_ifork_t *ifp) /* inode fork pointer */
4443 xfs_ext_irec_t *erp; /* indirection array pointer */
4444 xfs_extnum_t nextents; /* number of extents in file */
4446 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4447 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4448 ASSERT(nextents <= XFS_LINEAR_EXTS);
4450 erp = (xfs_ext_irec_t *)
4451 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4453 if (nextents == 0) {
4454 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4455 } else if (!ifp->if_real_bytes) {
4456 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4457 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4458 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4460 erp->er_extbuf = ifp->if_u1.if_extents;
4461 erp->er_extcount = nextents;
4464 ifp->if_flags |= XFS_IFEXTIREC;
4465 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4466 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4467 ifp->if_u1.if_ext_irec = erp;
4473 * Allocate and initialize a new entry in the indirection array.
4477 xfs_ifork_t *ifp, /* inode fork pointer */
4478 int erp_idx) /* index for new irec */
4480 xfs_ext_irec_t *erp; /* indirection array pointer */
4481 int i; /* loop counter */
4482 int nlists; /* number of irec's (ex lists) */
4484 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4485 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4487 /* Resize indirection array */
4488 xfs_iext_realloc_indirect(ifp, ++nlists *
4489 sizeof(xfs_ext_irec_t));
4491 * Move records down in the array so the
4492 * new page can use erp_idx.
4494 erp = ifp->if_u1.if_ext_irec;
4495 for (i = nlists - 1; i > erp_idx; i--) {
4496 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4498 ASSERT(i == erp_idx);
4500 /* Initialize new extent record */
4501 erp = ifp->if_u1.if_ext_irec;
4502 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4503 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4504 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4505 erp[erp_idx].er_extcount = 0;
4506 erp[erp_idx].er_extoff = erp_idx > 0 ?
4507 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4508 return (&erp[erp_idx]);
4512 * Remove a record from the indirection array.
4515 xfs_iext_irec_remove(
4516 xfs_ifork_t *ifp, /* inode fork pointer */
4517 int erp_idx) /* irec index to remove */
4519 xfs_ext_irec_t *erp; /* indirection array pointer */
4520 int i; /* loop counter */
4521 int nlists; /* number of irec's (ex lists) */
4523 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4524 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4525 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4526 if (erp->er_extbuf) {
4527 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4529 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4531 /* Compact extent records */
4532 erp = ifp->if_u1.if_ext_irec;
4533 for (i = erp_idx; i < nlists - 1; i++) {
4534 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4537 * Manually free the last extent record from the indirection
4538 * array. A call to xfs_iext_realloc_indirect() with a size
4539 * of zero would result in a call to xfs_iext_destroy() which
4540 * would in turn call this function again, creating a nasty
4544 xfs_iext_realloc_indirect(ifp,
4545 nlists * sizeof(xfs_ext_irec_t));
4547 kmem_free(ifp->if_u1.if_ext_irec,
4548 sizeof(xfs_ext_irec_t));
4550 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4554 * This is called to clean up large amounts of unused memory allocated
4555 * by the indirection array. Before compacting anything though, verify
4556 * that the indirection array is still needed and switch back to the
4557 * linear extent list (or even the inline buffer) if possible. The
4558 * compaction policy is as follows:
4560 * Full Compaction: Extents fit into a single page (or inline buffer)
4561 * Full Compaction: Extents occupy less than 10% of allocated space
4562 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4563 * No Compaction: Extents occupy at least 50% of allocated space
4566 xfs_iext_irec_compact(
4567 xfs_ifork_t *ifp) /* inode fork pointer */
4569 xfs_extnum_t nextents; /* number of extents in file */
4570 int nlists; /* number of irec's (ex lists) */
4572 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4573 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4574 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4576 if (nextents == 0) {
4577 xfs_iext_destroy(ifp);
4578 } else if (nextents <= XFS_INLINE_EXTS) {
4579 xfs_iext_indirect_to_direct(ifp);
4580 xfs_iext_direct_to_inline(ifp, nextents);
4581 } else if (nextents <= XFS_LINEAR_EXTS) {
4582 xfs_iext_indirect_to_direct(ifp);
4583 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4584 xfs_iext_irec_compact_full(ifp);
4585 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4586 xfs_iext_irec_compact_pages(ifp);
4591 * Combine extents from neighboring extent pages.
4594 xfs_iext_irec_compact_pages(
4595 xfs_ifork_t *ifp) /* inode fork pointer */
4597 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4598 int erp_idx = 0; /* indirection array index */
4599 int nlists; /* number of irec's (ex lists) */
4601 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4602 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4603 while (erp_idx < nlists - 1) {
4604 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4606 if (erp_next->er_extcount <=
4607 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4608 memmove(&erp->er_extbuf[erp->er_extcount],
4609 erp_next->er_extbuf, erp_next->er_extcount *
4610 sizeof(xfs_bmbt_rec_t));
4611 erp->er_extcount += erp_next->er_extcount;
4613 * Free page before removing extent record
4614 * so er_extoffs don't get modified in
4615 * xfs_iext_irec_remove.
4617 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4618 erp_next->er_extbuf = NULL;
4619 xfs_iext_irec_remove(ifp, erp_idx + 1);
4620 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4628 * Fully compact the extent records managed by the indirection array.
4631 xfs_iext_irec_compact_full(
4632 xfs_ifork_t *ifp) /* inode fork pointer */
4634 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4635 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4636 int erp_idx = 0; /* extent irec index */
4637 int ext_avail; /* empty entries in ex list */
4638 int ext_diff; /* number of exts to add */
4639 int nlists; /* number of irec's (ex lists) */
4641 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4642 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4643 erp = ifp->if_u1.if_ext_irec;
4644 ep = &erp->er_extbuf[erp->er_extcount];
4646 ep_next = erp_next->er_extbuf;
4647 while (erp_idx < nlists - 1) {
4648 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4649 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4650 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4651 erp->er_extcount += ext_diff;
4652 erp_next->er_extcount -= ext_diff;
4653 /* Remove next page */
4654 if (erp_next->er_extcount == 0) {
4656 * Free page before removing extent record
4657 * so er_extoffs don't get modified in
4658 * xfs_iext_irec_remove.
4660 kmem_free(erp_next->er_extbuf,
4661 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4662 erp_next->er_extbuf = NULL;
4663 xfs_iext_irec_remove(ifp, erp_idx + 1);
4664 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4665 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4666 /* Update next page */
4668 /* Move rest of page up to become next new page */
4669 memmove(erp_next->er_extbuf, ep_next,
4670 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4671 ep_next = erp_next->er_extbuf;
4672 memset(&ep_next[erp_next->er_extcount], 0,
4673 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4674 sizeof(xfs_bmbt_rec_t));
4676 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4678 if (erp_idx < nlists)
4679 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4683 ep = &erp->er_extbuf[erp->er_extcount];
4685 ep_next = erp_next->er_extbuf;
4690 * This is called to update the er_extoff field in the indirection
4691 * array when extents have been added or removed from one of the
4692 * extent lists. erp_idx contains the irec index to begin updating
4693 * at and ext_diff contains the number of extents that were added
4697 xfs_iext_irec_update_extoffs(
4698 xfs_ifork_t *ifp, /* inode fork pointer */
4699 int erp_idx, /* irec index to update */
4700 int ext_diff) /* number of new extents */
4702 int i; /* loop counter */
4703 int nlists; /* number of irec's (ex lists */
4705 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4706 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4707 for (i = erp_idx; i < nlists; i++) {
4708 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;