2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
71 * Make sure that the extents in the given memory buffer
81 xfs_bmbt_rec_host_t rec;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
94 #define xfs_validate_extents(ifp, nrecs, fmt)
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 ASSERT(dip->di_next_unlinked);
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
155 * Call the space management code to find the location of the
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 "of the file system %s. Returning EINVAL.",
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
179 return XFS_ERROR(EINVAL);
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
209 xfs_inobp_check(mp, bp);
212 * Set *dipp to point to the on-disk inode in the buffer.
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
216 *offset = imap.im_boffset;
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
257 if (ip->i_blkno == (xfs_daddr_t)0) {
259 * Call the space management code to find the location of the
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
285 return XFS_ERROR(EINVAL);
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
304 ASSERT(bno == 0 || bno == imap.im_blkno);
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 * No validation is done here in userspace (xfs_repair).
328 #if !defined(__KERNEL__)
331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else /* usual case */
336 for (i = 0; i < ni; i++) {
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 (unsigned long long)imap.im_blkno, i,
357 be16_to_cpu(dip->di_core.di_magic));
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
366 xfs_inobp_check(mp, bp);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
395 xfs_attr_shortform_t *atp;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip->i_ino,
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
412 be64_to_cpu(dip->di_core.di_nblocks));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
415 return XFS_ERROR(EFSCORRUPTED);
418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip->i_ino,
422 dip->di_core.di_forkoff);
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
425 return XFS_ERROR(EFSCORRUPTED);
428 switch (ip->i_d.di_mode & S_IFMT) {
433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
436 return XFS_ERROR(EFSCORRUPTED);
440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
446 switch (dip->di_core.di_format) {
447 case XFS_DINODE_FMT_LOCAL:
449 * no local regular files yet
451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 return XFS_ERROR(EFSCORRUPTED);
462 di_size = be64_to_cpu(dip->di_core.di_size);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 return XFS_ERROR(EFSCORRUPTED);
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
487 return XFS_ERROR(EFSCORRUPTED);
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
498 if (!XFS_DFORK_Q(dip))
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (dip->di_core.di_aformat) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = be16_to_cpu(atp->hdr.totsize);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
517 error = XFS_ERROR(EFSCORRUPTED);
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
561 return XFS_ERROR(EFSCORRUPTED);
563 ifp = XFS_IFORK_PTR(ip, whichfork);
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
618 return XFS_ERROR(EFSCORRUPTED);
621 ifp->if_real_bytes = 0;
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
627 xfs_iext_add(ifp, 0, nex);
629 ifp->if_bytes = size;
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 for (i = 0; i < nex; i++, dp++) {
634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
646 return XFS_ERROR(EFSCORRUPTED);
649 ifp->if_flags |= XFS_IFEXTENTS;
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
667 xfs_bmdr_block_t *dfp;
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
694 return XFS_ERROR(EFSCORRUPTED);
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
713 xfs_dinode_from_disk(
715 xfs_dinode_core_t *from)
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
826 xfs_icdinode_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
862 ASSERT(xfs_inode_zone != NULL);
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
867 atomic_set(&ip->i_iocount, 0);
868 spin_lock_init(&ip->i_flags_lock);
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
879 kmem_zone_free(xfs_inode_zone, ip);
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
887 #ifdef XFS_INODE_TRACE
888 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
890 #ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
893 #ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
899 #ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
902 #ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
917 be16_to_cpu(dip->di_core.di_magic),
920 return XFS_ERROR(EINVAL);
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
930 if (dip->di_core.di_mode) {
931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
932 error = xfs_iformat(ip, dip);
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
964 INIT_LIST_HEAD(&ip->i_reclaim);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
983 ip->i_delayed_blks = 0;
984 ip->i_size = ip->i_d.di_size;
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1006 xfs_trans_brelse(tp, bp);
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1023 xfs_extnum_t nextents;
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1029 return XFS_ERROR(EFSCORRUPTED);
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1033 ifp = XFS_IFORK_PTR(ip, whichfork);
1036 * We know that the size is valid (it's checked in iformat_btree)
1038 ifp->if_lastex = NULLEXTNUM;
1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1040 ifp->if_flags |= XFS_IFEXTENTS;
1041 xfs_iext_add(ifp, 0, nextents);
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1044 xfs_iext_destroy(ifp);
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1108 ialloc_context, call_again, &ino);
1112 if (*call_again || ino == NULLFSINO) {
1116 ASSERT(*ialloc_context == NULL);
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 xfs_bump_ino_vers2(tp, ip);
1161 if (pip && XFS_INHERIT_GID(pip)) {
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1179 ip->i_d.di_size = 0;
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1185 * di_gen will have been taken care of in xfs_iread.
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1203 if (pip && xfs_inode_is_filestream(pip)) {
1204 error = xfs_filestream_associate(pip, ip);
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1222 } else if ((mode & S_IFMT) == S_IFREG) {
1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1224 di_flags |= XFS_DIFLAG_REALTIME;
1225 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1226 di_flags |= XFS_DIFLAG_EXTSIZE;
1227 ip->i_d.di_extsize = pip->i_d.di_extsize;
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1231 xfs_inherit_noatime)
1232 di_flags |= XFS_DIFLAG_NOATIME;
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1235 di_flags |= XFS_DIFLAG_NODUMP;
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1238 di_flags |= XFS_DIFLAG_SYNC;
1239 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1240 xfs_inherit_nosymlinks)
1241 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1242 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1243 di_flags |= XFS_DIFLAG_PROJINHERIT;
1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1245 xfs_inherit_nodefrag)
1246 di_flags |= XFS_DIFLAG_NODEFRAG;
1247 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1248 di_flags |= XFS_DIFLAG_FILESTREAM;
1249 ip->i_d.di_flags |= di_flags;
1253 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1254 ip->i_df.if_flags = XFS_IFEXTENTS;
1255 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1256 ip->i_df.if_u1.if_extents = NULL;
1262 * Attribute fork settings for new inode.
1264 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1265 ip->i_d.di_anextents = 0;
1268 * Log the new values stuffed into the inode.
1270 xfs_trans_log_inode(tp, ip, flags);
1272 /* now that we have an i_mode we can setup inode ops and unlock */
1273 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1280 * Check to make sure that there are no blocks allocated to the
1281 * file beyond the size of the file. We don't check this for
1282 * files with fixed size extents or real time extents, but we
1283 * at least do it for regular files.
1292 xfs_fileoff_t map_first;
1294 xfs_bmbt_irec_t imaps[2];
1296 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1299 if (XFS_IS_REALTIME_INODE(ip))
1302 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1306 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1308 * The filesystem could be shutting down, so bmapi may return
1311 if (xfs_bmapi(NULL, ip, map_first,
1313 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1315 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1318 ASSERT(nimaps == 1);
1319 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1324 * Calculate the last possible buffered byte in a file. This must
1325 * include data that was buffered beyond the EOF by the write code.
1326 * This also needs to deal with overflowing the xfs_fsize_t type
1327 * which can happen for sizes near the limit.
1329 * We also need to take into account any blocks beyond the EOF. It
1330 * may be the case that they were buffered by a write which failed.
1331 * In that case the pages will still be in memory, but the inode size
1332 * will never have been updated.
1339 xfs_fsize_t last_byte;
1340 xfs_fileoff_t last_block;
1341 xfs_fileoff_t size_last_block;
1344 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1348 * Only check for blocks beyond the EOF if the extents have
1349 * been read in. This eliminates the need for the inode lock,
1350 * and it also saves us from looking when it really isn't
1353 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1354 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1362 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1363 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1365 last_byte = XFS_FSB_TO_B(mp, last_block);
1366 if (last_byte < 0) {
1367 return XFS_MAXIOFFSET(mp);
1369 last_byte += (1 << mp->m_writeio_log);
1370 if (last_byte < 0) {
1371 return XFS_MAXIOFFSET(mp);
1376 #if defined(XFS_RW_TRACE)
1382 xfs_fsize_t new_size,
1383 xfs_off_t toss_start,
1384 xfs_off_t toss_finish)
1386 if (ip->i_rwtrace == NULL) {
1390 ktrace_enter(ip->i_rwtrace,
1393 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1394 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1395 (void*)((long)flag),
1396 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1397 (void*)(unsigned long)(new_size & 0xffffffff),
1398 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1399 (void*)(unsigned long)(toss_start & 0xffffffff),
1400 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1401 (void*)(unsigned long)(toss_finish & 0xffffffff),
1402 (void*)(unsigned long)current_cpu(),
1403 (void*)(unsigned long)current_pid(),
1409 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1413 * Start the truncation of the file to new_size. The new size
1414 * must be smaller than the current size. This routine will
1415 * clear the buffer and page caches of file data in the removed
1416 * range, and xfs_itruncate_finish() will remove the underlying
1419 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1420 * must NOT have the inode lock held at all. This is because we're
1421 * calling into the buffer/page cache code and we can't hold the
1422 * inode lock when we do so.
1424 * We need to wait for any direct I/Os in flight to complete before we
1425 * proceed with the truncate. This is needed to prevent the extents
1426 * being read or written by the direct I/Os from being removed while the
1427 * I/O is in flight as there is no other method of synchronising
1428 * direct I/O with the truncate operation. Also, because we hold
1429 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1430 * started until the truncate completes and drops the lock. Essentially,
1431 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1432 * between direct I/Os and the truncate operation.
1434 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1435 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1436 * in the case that the caller is locking things out of order and
1437 * may not be able to call xfs_itruncate_finish() with the inode lock
1438 * held without dropping the I/O lock. If the caller must drop the
1439 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1440 * must be called again with all the same restrictions as the initial
1444 xfs_itruncate_start(
1447 xfs_fsize_t new_size)
1449 xfs_fsize_t last_byte;
1450 xfs_off_t toss_start;
1455 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1456 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1457 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1458 (flags == XFS_ITRUNC_MAYBE));
1463 /* wait for the completion of any pending DIOs */
1464 if (new_size < ip->i_size)
1468 * Call toss_pages or flushinval_pages to get rid of pages
1469 * overlapping the region being removed. We have to use
1470 * the less efficient flushinval_pages in the case that the
1471 * caller may not be able to finish the truncate without
1472 * dropping the inode's I/O lock. Make sure
1473 * to catch any pages brought in by buffers overlapping
1474 * the EOF by searching out beyond the isize by our
1475 * block size. We round new_size up to a block boundary
1476 * so that we don't toss things on the same block as
1477 * new_size but before it.
1479 * Before calling toss_page or flushinval_pages, make sure to
1480 * call remapf() over the same region if the file is mapped.
1481 * This frees up mapped file references to the pages in the
1482 * given range and for the flushinval_pages case it ensures
1483 * that we get the latest mapped changes flushed out.
1485 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1486 toss_start = XFS_FSB_TO_B(mp, toss_start);
1487 if (toss_start < 0) {
1489 * The place to start tossing is beyond our maximum
1490 * file size, so there is no way that the data extended
1495 last_byte = xfs_file_last_byte(ip);
1496 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1498 if (last_byte > toss_start) {
1499 if (flags & XFS_ITRUNC_DEFINITE) {
1500 xfs_tosspages(ip, toss_start,
1501 -1, FI_REMAPF_LOCKED);
1503 error = xfs_flushinval_pages(ip, toss_start,
1504 -1, FI_REMAPF_LOCKED);
1509 if (new_size == 0) {
1510 ASSERT(VN_CACHED(vp) == 0);
1517 * Shrink the file to the given new_size. The new
1518 * size must be smaller than the current size.
1519 * This will free up the underlying blocks
1520 * in the removed range after a call to xfs_itruncate_start()
1521 * or xfs_atruncate_start().
1523 * The transaction passed to this routine must have made
1524 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1525 * This routine may commit the given transaction and
1526 * start new ones, so make sure everything involved in
1527 * the transaction is tidy before calling here.
1528 * Some transaction will be returned to the caller to be
1529 * committed. The incoming transaction must already include
1530 * the inode, and both inode locks must be held exclusively.
1531 * The inode must also be "held" within the transaction. On
1532 * return the inode will be "held" within the returned transaction.
1533 * This routine does NOT require any disk space to be reserved
1534 * for it within the transaction.
1536 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1537 * and it indicates the fork which is to be truncated. For the
1538 * attribute fork we only support truncation to size 0.
1540 * We use the sync parameter to indicate whether or not the first
1541 * transaction we perform might have to be synchronous. For the attr fork,
1542 * it needs to be so if the unlink of the inode is not yet known to be
1543 * permanent in the log. This keeps us from freeing and reusing the
1544 * blocks of the attribute fork before the unlink of the inode becomes
1547 * For the data fork, we normally have to run synchronously if we're
1548 * being called out of the inactive path or we're being called
1549 * out of the create path where we're truncating an existing file.
1550 * Either way, the truncate needs to be sync so blocks don't reappear
1551 * in the file with altered data in case of a crash. wsync filesystems
1552 * can run the first case async because anything that shrinks the inode
1553 * has to run sync so by the time we're called here from inactive, the
1554 * inode size is permanently set to 0.
1556 * Calls from the truncate path always need to be sync unless we're
1557 * in a wsync filesystem and the file has already been unlinked.
1559 * The caller is responsible for correctly setting the sync parameter.
1560 * It gets too hard for us to guess here which path we're being called
1561 * out of just based on inode state.
1564 xfs_itruncate_finish(
1567 xfs_fsize_t new_size,
1571 xfs_fsblock_t first_block;
1572 xfs_fileoff_t first_unmap_block;
1573 xfs_fileoff_t last_block;
1574 xfs_filblks_t unmap_len=0;
1579 xfs_bmap_free_t free_list;
1582 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1583 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1584 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1585 ASSERT(*tp != NULL);
1586 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1587 ASSERT(ip->i_transp == *tp);
1588 ASSERT(ip->i_itemp != NULL);
1589 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1593 mp = (ntp)->t_mountp;
1594 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1597 * We only support truncating the entire attribute fork.
1599 if (fork == XFS_ATTR_FORK) {
1602 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1603 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1605 * The first thing we do is set the size to new_size permanently
1606 * on disk. This way we don't have to worry about anyone ever
1607 * being able to look at the data being freed even in the face
1608 * of a crash. What we're getting around here is the case where
1609 * we free a block, it is allocated to another file, it is written
1610 * to, and then we crash. If the new data gets written to the
1611 * file but the log buffers containing the free and reallocation
1612 * don't, then we'd end up with garbage in the blocks being freed.
1613 * As long as we make the new_size permanent before actually
1614 * freeing any blocks it doesn't matter if they get writtten to.
1616 * The callers must signal into us whether or not the size
1617 * setting here must be synchronous. There are a few cases
1618 * where it doesn't have to be synchronous. Those cases
1619 * occur if the file is unlinked and we know the unlink is
1620 * permanent or if the blocks being truncated are guaranteed
1621 * to be beyond the inode eof (regardless of the link count)
1622 * and the eof value is permanent. Both of these cases occur
1623 * only on wsync-mounted filesystems. In those cases, we're
1624 * guaranteed that no user will ever see the data in the blocks
1625 * that are being truncated so the truncate can run async.
1626 * In the free beyond eof case, the file may wind up with
1627 * more blocks allocated to it than it needs if we crash
1628 * and that won't get fixed until the next time the file
1629 * is re-opened and closed but that's ok as that shouldn't
1630 * be too many blocks.
1632 * However, we can't just make all wsync xactions run async
1633 * because there's one call out of the create path that needs
1634 * to run sync where it's truncating an existing file to size
1635 * 0 whose size is > 0.
1637 * It's probably possible to come up with a test in this
1638 * routine that would correctly distinguish all the above
1639 * cases from the values of the function parameters and the
1640 * inode state but for sanity's sake, I've decided to let the
1641 * layers above just tell us. It's simpler to correctly figure
1642 * out in the layer above exactly under what conditions we
1643 * can run async and I think it's easier for others read and
1644 * follow the logic in case something has to be changed.
1645 * cscope is your friend -- rcc.
1647 * The attribute fork is much simpler.
1649 * For the attribute fork we allow the caller to tell us whether
1650 * the unlink of the inode that led to this call is yet permanent
1651 * in the on disk log. If it is not and we will be freeing extents
1652 * in this inode then we make the first transaction synchronous
1653 * to make sure that the unlink is permanent by the time we free
1656 if (fork == XFS_DATA_FORK) {
1657 if (ip->i_d.di_nextents > 0) {
1659 * If we are not changing the file size then do
1660 * not update the on-disk file size - we may be
1661 * called from xfs_inactive_free_eofblocks(). If we
1662 * update the on-disk file size and then the system
1663 * crashes before the contents of the file are
1664 * flushed to disk then the files may be full of
1665 * holes (ie NULL files bug).
1667 if (ip->i_size != new_size) {
1668 ip->i_d.di_size = new_size;
1669 ip->i_size = new_size;
1670 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1674 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1675 if (ip->i_d.di_anextents > 0)
1676 xfs_trans_set_sync(ntp);
1678 ASSERT(fork == XFS_DATA_FORK ||
1679 (fork == XFS_ATTR_FORK &&
1680 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1681 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1684 * Since it is possible for space to become allocated beyond
1685 * the end of the file (in a crash where the space is allocated
1686 * but the inode size is not yet updated), simply remove any
1687 * blocks which show up between the new EOF and the maximum
1688 * possible file size. If the first block to be removed is
1689 * beyond the maximum file size (ie it is the same as last_block),
1690 * then there is nothing to do.
1692 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1693 ASSERT(first_unmap_block <= last_block);
1695 if (last_block == first_unmap_block) {
1698 unmap_len = last_block - first_unmap_block + 1;
1702 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1703 * will tell us whether it freed the entire range or
1704 * not. If this is a synchronous mount (wsync),
1705 * then we can tell bunmapi to keep all the
1706 * transactions asynchronous since the unlink
1707 * transaction that made this inode inactive has
1708 * already hit the disk. There's no danger of
1709 * the freed blocks being reused, there being a
1710 * crash, and the reused blocks suddenly reappearing
1711 * in this file with garbage in them once recovery
1714 XFS_BMAP_INIT(&free_list, &first_block);
1715 error = xfs_bunmapi(ntp, ip,
1716 first_unmap_block, unmap_len,
1717 XFS_BMAPI_AFLAG(fork) |
1718 (sync ? 0 : XFS_BMAPI_ASYNC),
1719 XFS_ITRUNC_MAX_EXTENTS,
1720 &first_block, &free_list,
1724 * If the bunmapi call encounters an error,
1725 * return to the caller where the transaction
1726 * can be properly aborted. We just need to
1727 * make sure we're not holding any resources
1728 * that we were not when we came in.
1730 xfs_bmap_cancel(&free_list);
1735 * Duplicate the transaction that has the permanent
1736 * reservation and commit the old transaction.
1738 error = xfs_bmap_finish(tp, &free_list, &committed);
1742 * If the bmap finish call encounters an error,
1743 * return to the caller where the transaction
1744 * can be properly aborted. We just need to
1745 * make sure we're not holding any resources
1746 * that we were not when we came in.
1748 * Aborting from this point might lose some
1749 * blocks in the file system, but oh well.
1751 xfs_bmap_cancel(&free_list);
1754 * If the passed in transaction committed
1755 * in xfs_bmap_finish(), then we want to
1756 * add the inode to this one before returning.
1757 * This keeps things simple for the higher
1758 * level code, because it always knows that
1759 * the inode is locked and held in the
1760 * transaction that returns to it whether
1761 * errors occur or not. We don't mark the
1762 * inode dirty so that this transaction can
1763 * be easily aborted if possible.
1765 xfs_trans_ijoin(ntp, ip,
1766 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1767 xfs_trans_ihold(ntp, ip);
1774 * The first xact was committed,
1775 * so add the inode to the new one.
1776 * Mark it dirty so it will be logged
1777 * and moved forward in the log as
1778 * part of every commit.
1780 xfs_trans_ijoin(ntp, ip,
1781 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1782 xfs_trans_ihold(ntp, ip);
1783 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1785 ntp = xfs_trans_dup(ntp);
1786 (void) xfs_trans_commit(*tp, 0);
1788 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1789 XFS_TRANS_PERM_LOG_RES,
1790 XFS_ITRUNCATE_LOG_COUNT);
1792 * Add the inode being truncated to the next chained
1795 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1796 xfs_trans_ihold(ntp, ip);
1801 * Only update the size in the case of the data fork, but
1802 * always re-log the inode so that our permanent transaction
1803 * can keep on rolling it forward in the log.
1805 if (fork == XFS_DATA_FORK) {
1806 xfs_isize_check(mp, ip, new_size);
1808 * If we are not changing the file size then do
1809 * not update the on-disk file size - we may be
1810 * called from xfs_inactive_free_eofblocks(). If we
1811 * update the on-disk file size and then the system
1812 * crashes before the contents of the file are
1813 * flushed to disk then the files may be full of
1814 * holes (ie NULL files bug).
1816 if (ip->i_size != new_size) {
1817 ip->i_d.di_size = new_size;
1818 ip->i_size = new_size;
1821 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1822 ASSERT((new_size != 0) ||
1823 (fork == XFS_ATTR_FORK) ||
1824 (ip->i_delayed_blks == 0));
1825 ASSERT((new_size != 0) ||
1826 (fork == XFS_ATTR_FORK) ||
1827 (ip->i_d.di_nextents == 0));
1828 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1836 * Do the first part of growing a file: zero any data in the last
1837 * block that is beyond the old EOF. We need to do this before
1838 * the inode is joined to the transaction to modify the i_size.
1839 * That way we can drop the inode lock and call into the buffer
1840 * cache to get the buffer mapping the EOF.
1845 xfs_fsize_t new_size,
1848 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1849 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1850 ASSERT(new_size > ip->i_size);
1853 * Zero any pages that may have been created by
1854 * xfs_write_file() beyond the end of the file
1855 * and any blocks between the old and new file sizes.
1857 return xfs_zero_eof(ip, new_size, ip->i_size);
1863 * This routine is called to extend the size of a file.
1864 * The inode must have both the iolock and the ilock locked
1865 * for update and it must be a part of the current transaction.
1866 * The xfs_igrow_start() function must have been called previously.
1867 * If the change_flag is not zero, the inode change timestamp will
1874 xfs_fsize_t new_size,
1877 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1878 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1879 ASSERT(ip->i_transp == tp);
1880 ASSERT(new_size > ip->i_size);
1883 * Update the file size. Update the inode change timestamp
1884 * if change_flag set.
1886 ip->i_d.di_size = new_size;
1887 ip->i_size = new_size;
1889 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1890 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1896 * This is called when the inode's link count goes to 0.
1897 * We place the on-disk inode on a list in the AGI. It
1898 * will be pulled from this list when the inode is freed.
1910 xfs_agnumber_t agno;
1911 xfs_daddr_t agdaddr;
1918 ASSERT(ip->i_d.di_nlink == 0);
1919 ASSERT(ip->i_d.di_mode != 0);
1920 ASSERT(ip->i_transp == tp);
1924 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1925 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1928 * Get the agi buffer first. It ensures lock ordering
1931 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1932 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1937 * Validate the magic number of the agi block.
1939 agi = XFS_BUF_TO_AGI(agibp);
1941 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1942 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1943 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1944 XFS_RANDOM_IUNLINK))) {
1945 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1946 xfs_trans_brelse(tp, agibp);
1947 return XFS_ERROR(EFSCORRUPTED);
1950 * Get the index into the agi hash table for the
1951 * list this inode will go on.
1953 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1955 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1956 ASSERT(agi->agi_unlinked[bucket_index]);
1957 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1959 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1961 * There is already another inode in the bucket we need
1962 * to add ourselves to. Add us at the front of the list.
1963 * Here we put the head pointer into our next pointer,
1964 * and then we fall through to point the head at us.
1966 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1970 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1971 /* both on-disk, don't endian flip twice */
1972 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1973 offset = ip->i_boffset +
1974 offsetof(xfs_dinode_t, di_next_unlinked);
1975 xfs_trans_inode_buf(tp, ibp);
1976 xfs_trans_log_buf(tp, ibp, offset,
1977 (offset + sizeof(xfs_agino_t) - 1));
1978 xfs_inobp_check(mp, ibp);
1982 * Point the bucket head pointer at the inode being inserted.
1985 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1986 offset = offsetof(xfs_agi_t, agi_unlinked) +
1987 (sizeof(xfs_agino_t) * bucket_index);
1988 xfs_trans_log_buf(tp, agibp, offset,
1989 (offset + sizeof(xfs_agino_t) - 1));
1994 * Pull the on-disk inode from the AGI unlinked list.
2007 xfs_agnumber_t agno;
2008 xfs_daddr_t agdaddr;
2010 xfs_agino_t next_agino;
2011 xfs_buf_t *last_ibp;
2012 xfs_dinode_t *last_dip = NULL;
2014 int offset, last_offset = 0;
2019 * First pull the on-disk inode from the AGI unlinked list.
2023 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2024 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2027 * Get the agi buffer first. It ensures lock ordering
2030 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2031 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2034 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2035 error, mp->m_fsname);
2039 * Validate the magic number of the agi block.
2041 agi = XFS_BUF_TO_AGI(agibp);
2043 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2044 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2045 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2046 XFS_RANDOM_IUNLINK_REMOVE))) {
2047 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2049 xfs_trans_brelse(tp, agibp);
2051 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2053 return XFS_ERROR(EFSCORRUPTED);
2056 * Get the index into the agi hash table for the
2057 * list this inode will go on.
2059 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2061 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2062 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2063 ASSERT(agi->agi_unlinked[bucket_index]);
2065 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2067 * We're at the head of the list. Get the inode's
2068 * on-disk buffer to see if there is anyone after us
2069 * on the list. Only modify our next pointer if it
2070 * is not already NULLAGINO. This saves us the overhead
2071 * of dealing with the buffer when there is no need to
2074 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2077 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2078 error, mp->m_fsname);
2081 next_agino = be32_to_cpu(dip->di_next_unlinked);
2082 ASSERT(next_agino != 0);
2083 if (next_agino != NULLAGINO) {
2084 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2085 offset = ip->i_boffset +
2086 offsetof(xfs_dinode_t, di_next_unlinked);
2087 xfs_trans_inode_buf(tp, ibp);
2088 xfs_trans_log_buf(tp, ibp, offset,
2089 (offset + sizeof(xfs_agino_t) - 1));
2090 xfs_inobp_check(mp, ibp);
2092 xfs_trans_brelse(tp, ibp);
2095 * Point the bucket head pointer at the next inode.
2097 ASSERT(next_agino != 0);
2098 ASSERT(next_agino != agino);
2099 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2100 offset = offsetof(xfs_agi_t, agi_unlinked) +
2101 (sizeof(xfs_agino_t) * bucket_index);
2102 xfs_trans_log_buf(tp, agibp, offset,
2103 (offset + sizeof(xfs_agino_t) - 1));
2106 * We need to search the list for the inode being freed.
2108 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2110 while (next_agino != agino) {
2112 * If the last inode wasn't the one pointing to
2113 * us, then release its buffer since we're not
2114 * going to do anything with it.
2116 if (last_ibp != NULL) {
2117 xfs_trans_brelse(tp, last_ibp);
2119 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2121 &last_ibp, &last_offset);
2124 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2125 error, mp->m_fsname);
2128 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2129 ASSERT(next_agino != NULLAGINO);
2130 ASSERT(next_agino != 0);
2133 * Now last_ibp points to the buffer previous to us on
2134 * the unlinked list. Pull us from the list.
2136 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2139 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2140 error, mp->m_fsname);
2143 next_agino = be32_to_cpu(dip->di_next_unlinked);
2144 ASSERT(next_agino != 0);
2145 ASSERT(next_agino != agino);
2146 if (next_agino != NULLAGINO) {
2147 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2148 offset = ip->i_boffset +
2149 offsetof(xfs_dinode_t, di_next_unlinked);
2150 xfs_trans_inode_buf(tp, ibp);
2151 xfs_trans_log_buf(tp, ibp, offset,
2152 (offset + sizeof(xfs_agino_t) - 1));
2153 xfs_inobp_check(mp, ibp);
2155 xfs_trans_brelse(tp, ibp);
2158 * Point the previous inode on the list to the next inode.
2160 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2161 ASSERT(next_agino != 0);
2162 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2163 xfs_trans_inode_buf(tp, last_ibp);
2164 xfs_trans_log_buf(tp, last_ibp, offset,
2165 (offset + sizeof(xfs_agino_t) - 1));
2166 xfs_inobp_check(mp, last_ibp);
2171 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2173 return (((ip->i_itemp == NULL) ||
2174 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2175 (ip->i_update_core == 0));
2180 xfs_inode_t *free_ip,
2184 xfs_mount_t *mp = free_ip->i_mount;
2185 int blks_per_cluster;
2188 int i, j, found, pre_flushed;
2191 xfs_inode_t *ip, **ip_found;
2192 xfs_inode_log_item_t *iip;
2193 xfs_log_item_t *lip;
2194 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2196 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2197 blks_per_cluster = 1;
2198 ninodes = mp->m_sb.sb_inopblock;
2199 nbufs = XFS_IALLOC_BLOCKS(mp);
2201 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2202 mp->m_sb.sb_blocksize;
2203 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2204 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2207 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2209 for (j = 0; j < nbufs; j++, inum += ninodes) {
2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 XFS_INO_TO_AGBNO(mp, inum));
2215 * Look for each inode in memory and attempt to lock it,
2216 * we can be racing with flush and tail pushing here.
2217 * any inode we get the locks on, add to an array of
2218 * inode items to process later.
2220 * The get the buffer lock, we could beat a flush
2221 * or tail pushing thread to the lock here, in which
2222 * case they will go looking for the inode buffer
2223 * and fail, we need some other form of interlock
2227 for (i = 0; i < ninodes; i++) {
2228 read_lock(&pag->pag_ici_lock);
2229 ip = radix_tree_lookup(&pag->pag_ici_root,
2230 XFS_INO_TO_AGINO(mp, (inum + i)));
2232 /* Inode not in memory or we found it already,
2235 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2236 read_unlock(&pag->pag_ici_lock);
2240 if (xfs_inode_clean(ip)) {
2241 read_unlock(&pag->pag_ici_lock);
2245 /* If we can get the locks then add it to the
2246 * list, otherwise by the time we get the bp lock
2247 * below it will already be attached to the
2251 /* This inode will already be locked - by us, lets
2255 if (ip == free_ip) {
2256 if (xfs_iflock_nowait(ip)) {
2257 xfs_iflags_set(ip, XFS_ISTALE);
2258 if (xfs_inode_clean(ip)) {
2261 ip_found[found++] = ip;
2264 read_unlock(&pag->pag_ici_lock);
2268 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2269 if (xfs_iflock_nowait(ip)) {
2270 xfs_iflags_set(ip, XFS_ISTALE);
2272 if (xfs_inode_clean(ip)) {
2274 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2276 ip_found[found++] = ip;
2279 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2282 read_unlock(&pag->pag_ici_lock);
2285 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2286 mp->m_bsize * blks_per_cluster,
2290 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2292 if (lip->li_type == XFS_LI_INODE) {
2293 iip = (xfs_inode_log_item_t *)lip;
2294 ASSERT(iip->ili_logged == 1);
2295 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2296 spin_lock(&mp->m_ail_lock);
2297 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2298 spin_unlock(&mp->m_ail_lock);
2299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2302 lip = lip->li_bio_list;
2305 for (i = 0; i < found; i++) {
2310 ip->i_update_core = 0;
2312 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2316 iip->ili_last_fields = iip->ili_format.ilf_fields;
2317 iip->ili_format.ilf_fields = 0;
2318 iip->ili_logged = 1;
2319 spin_lock(&mp->m_ail_lock);
2320 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2321 spin_unlock(&mp->m_ail_lock);
2323 xfs_buf_attach_iodone(bp,
2324 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2325 xfs_istale_done, (xfs_log_item_t *)iip);
2326 if (ip != free_ip) {
2327 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2331 if (found || pre_flushed)
2332 xfs_trans_stale_inode_buf(tp, bp);
2333 xfs_trans_binval(tp, bp);
2336 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2337 xfs_put_perag(mp, pag);
2341 * This is called to return an inode to the inode free list.
2342 * The inode should already be truncated to 0 length and have
2343 * no pages associated with it. This routine also assumes that
2344 * the inode is already a part of the transaction.
2346 * The on-disk copy of the inode will have been added to the list
2347 * of unlinked inodes in the AGI. We need to remove the inode from
2348 * that list atomically with respect to freeing it here.
2354 xfs_bmap_free_t *flist)
2358 xfs_ino_t first_ino;
2362 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2363 ASSERT(ip->i_transp == tp);
2364 ASSERT(ip->i_d.di_nlink == 0);
2365 ASSERT(ip->i_d.di_nextents == 0);
2366 ASSERT(ip->i_d.di_anextents == 0);
2367 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2368 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2369 ASSERT(ip->i_d.di_nblocks == 0);
2372 * Pull the on-disk inode from the AGI unlinked list.
2374 error = xfs_iunlink_remove(tp, ip);
2379 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2383 ip->i_d.di_mode = 0; /* mark incore inode as free */
2384 ip->i_d.di_flags = 0;
2385 ip->i_d.di_dmevmask = 0;
2386 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2387 ip->i_df.if_ext_max =
2388 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2389 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2390 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2392 * Bump the generation count so no one will be confused
2393 * by reincarnations of this inode.
2397 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2399 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
2404 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2405 * from picking up this inode when it is reclaimed (its incore state
2406 * initialzed but not flushed to disk yet). The in-core di_mode is
2407 * already cleared and a corresponding transaction logged.
2408 * The hack here just synchronizes the in-core to on-disk
2409 * di_mode value in advance before the actual inode sync to disk.
2410 * This is OK because the inode is already unlinked and would never
2411 * change its di_mode again for this inode generation.
2412 * This is a temporary hack that would require a proper fix
2415 dip->di_core.di_mode = 0;
2418 xfs_ifree_cluster(ip, tp, first_ino);
2425 * Reallocate the space for if_broot based on the number of records
2426 * being added or deleted as indicated in rec_diff. Move the records
2427 * and pointers in if_broot to fit the new size. When shrinking this
2428 * will eliminate holes between the records and pointers created by
2429 * the caller. When growing this will create holes to be filled in
2432 * The caller must not request to add more records than would fit in
2433 * the on-disk inode root. If the if_broot is currently NULL, then
2434 * if we adding records one will be allocated. The caller must also
2435 * not request that the number of records go below zero, although
2436 * it can go to zero.
2438 * ip -- the inode whose if_broot area is changing
2439 * ext_diff -- the change in the number of records, positive or negative,
2440 * requested for the if_broot array.
2450 xfs_bmbt_block_t *new_broot;
2457 * Handle the degenerate case quietly.
2459 if (rec_diff == 0) {
2463 ifp = XFS_IFORK_PTR(ip, whichfork);
2466 * If there wasn't any memory allocated before, just
2467 * allocate it now and get out.
2469 if (ifp->if_broot_bytes == 0) {
2470 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2471 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2473 ifp->if_broot_bytes = (int)new_size;
2478 * If there is already an existing if_broot, then we need
2479 * to realloc() it and shift the pointers to their new
2480 * location. The records don't change location because
2481 * they are kept butted up against the btree block header.
2483 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2484 new_max = cur_max + rec_diff;
2485 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2486 ifp->if_broot = (xfs_bmbt_block_t *)
2487 kmem_realloc(ifp->if_broot,
2489 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2491 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2492 ifp->if_broot_bytes);
2493 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2495 ifp->if_broot_bytes = (int)new_size;
2496 ASSERT(ifp->if_broot_bytes <=
2497 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2498 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2503 * rec_diff is less than 0. In this case, we are shrinking the
2504 * if_broot buffer. It must already exist. If we go to zero
2505 * records, just get rid of the root and clear the status bit.
2507 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2508 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2509 new_max = cur_max + rec_diff;
2510 ASSERT(new_max >= 0);
2512 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2516 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2518 * First copy over the btree block header.
2520 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2523 ifp->if_flags &= ~XFS_IFBROOT;
2527 * Only copy the records and pointers if there are any.
2531 * First copy the records.
2533 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2534 ifp->if_broot_bytes);
2535 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2537 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2540 * Then copy the pointers.
2542 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2543 ifp->if_broot_bytes);
2544 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2546 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2548 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2549 ifp->if_broot = new_broot;
2550 ifp->if_broot_bytes = (int)new_size;
2551 ASSERT(ifp->if_broot_bytes <=
2552 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2558 * This is called when the amount of space needed for if_data
2559 * is increased or decreased. The change in size is indicated by
2560 * the number of bytes that need to be added or deleted in the
2561 * byte_diff parameter.
2563 * If the amount of space needed has decreased below the size of the
2564 * inline buffer, then switch to using the inline buffer. Otherwise,
2565 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2566 * to what is needed.
2568 * ip -- the inode whose if_data area is changing
2569 * byte_diff -- the change in the number of bytes, positive or negative,
2570 * requested for the if_data array.
2582 if (byte_diff == 0) {
2586 ifp = XFS_IFORK_PTR(ip, whichfork);
2587 new_size = (int)ifp->if_bytes + byte_diff;
2588 ASSERT(new_size >= 0);
2590 if (new_size == 0) {
2591 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2592 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2594 ifp->if_u1.if_data = NULL;
2596 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2598 * If the valid extents/data can fit in if_inline_ext/data,
2599 * copy them from the malloc'd vector and free it.
2601 if (ifp->if_u1.if_data == NULL) {
2602 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2603 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2604 ASSERT(ifp->if_real_bytes != 0);
2605 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2607 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2608 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2613 * Stuck with malloc/realloc.
2614 * For inline data, the underlying buffer must be
2615 * a multiple of 4 bytes in size so that it can be
2616 * logged and stay on word boundaries. We enforce
2619 real_size = roundup(new_size, 4);
2620 if (ifp->if_u1.if_data == NULL) {
2621 ASSERT(ifp->if_real_bytes == 0);
2622 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2623 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2625 * Only do the realloc if the underlying size
2626 * is really changing.
2628 if (ifp->if_real_bytes != real_size) {
2629 ifp->if_u1.if_data =
2630 kmem_realloc(ifp->if_u1.if_data,
2636 ASSERT(ifp->if_real_bytes == 0);
2637 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2638 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2642 ifp->if_real_bytes = real_size;
2643 ifp->if_bytes = new_size;
2644 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2651 * Map inode to disk block and offset.
2653 * mp -- the mount point structure for the current file system
2654 * tp -- the current transaction
2655 * ino -- the inode number of the inode to be located
2656 * imap -- this structure is filled in with the information necessary
2657 * to retrieve the given inode from disk
2658 * flags -- flags to pass to xfs_dilocate indicating whether or not
2659 * lookups in the inode btree were OK or not
2669 xfs_fsblock_t fsbno;
2674 fsbno = imap->im_blkno ?
2675 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2676 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2680 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2681 imap->im_len = XFS_FSB_TO_BB(mp, len);
2682 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2683 imap->im_ioffset = (ushort)off;
2684 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2695 ifp = XFS_IFORK_PTR(ip, whichfork);
2696 if (ifp->if_broot != NULL) {
2697 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2698 ifp->if_broot = NULL;
2702 * If the format is local, then we can't have an extents
2703 * array so just look for an inline data array. If we're
2704 * not local then we may or may not have an extents list,
2705 * so check and free it up if we do.
2707 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2708 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2709 (ifp->if_u1.if_data != NULL)) {
2710 ASSERT(ifp->if_real_bytes != 0);
2711 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2712 ifp->if_u1.if_data = NULL;
2713 ifp->if_real_bytes = 0;
2715 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2716 ((ifp->if_flags & XFS_IFEXTIREC) ||
2717 ((ifp->if_u1.if_extents != NULL) &&
2718 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2719 ASSERT(ifp->if_real_bytes != 0);
2720 xfs_iext_destroy(ifp);
2722 ASSERT(ifp->if_u1.if_extents == NULL ||
2723 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2724 ASSERT(ifp->if_real_bytes == 0);
2725 if (whichfork == XFS_ATTR_FORK) {
2726 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2732 * This is called free all the memory associated with an inode.
2733 * It must free the inode itself and any buffers allocated for
2734 * if_extents/if_data and if_broot. It must also free the lock
2735 * associated with the inode.
2741 switch (ip->i_d.di_mode & S_IFMT) {
2745 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2749 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2750 mrfree(&ip->i_lock);
2751 mrfree(&ip->i_iolock);
2752 freesema(&ip->i_flock);
2754 #ifdef XFS_INODE_TRACE
2755 ktrace_free(ip->i_trace);
2757 #ifdef XFS_BMAP_TRACE
2758 ktrace_free(ip->i_xtrace);
2760 #ifdef XFS_BMBT_TRACE
2761 ktrace_free(ip->i_btrace);
2764 ktrace_free(ip->i_rwtrace);
2766 #ifdef XFS_ILOCK_TRACE
2767 ktrace_free(ip->i_lock_trace);
2769 #ifdef XFS_DIR2_TRACE
2770 ktrace_free(ip->i_dir_trace);
2774 * Only if we are shutting down the fs will we see an
2775 * inode still in the AIL. If it is there, we should remove
2776 * it to prevent a use-after-free from occurring.
2778 xfs_mount_t *mp = ip->i_mount;
2779 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2781 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2782 XFS_FORCED_SHUTDOWN(ip->i_mount));
2783 if (lip->li_flags & XFS_LI_IN_AIL) {
2784 spin_lock(&mp->m_ail_lock);
2785 if (lip->li_flags & XFS_LI_IN_AIL)
2786 xfs_trans_delete_ail(mp, lip);
2788 spin_unlock(&mp->m_ail_lock);
2790 xfs_inode_item_destroy(ip);
2792 kmem_zone_free(xfs_inode_zone, ip);
2797 * Increment the pin count of the given buffer.
2798 * This value is protected by ipinlock spinlock in the mount structure.
2804 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2806 atomic_inc(&ip->i_pincount);
2810 * Decrement the pin count of the given inode, and wake up
2811 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2812 * inode must have been previously pinned with a call to xfs_ipin().
2818 ASSERT(atomic_read(&ip->i_pincount) > 0);
2820 if (atomic_dec_and_test(&ip->i_pincount))
2821 wake_up(&ip->i_ipin_wait);
2825 * This is called to wait for the given inode to be unpinned.
2826 * It will sleep until this happens. The caller must have the
2827 * inode locked in at least shared mode so that the buffer cannot
2828 * be subsequently pinned once someone is waiting for it to be
2835 xfs_inode_log_item_t *iip;
2838 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2840 if (atomic_read(&ip->i_pincount) == 0) {
2845 if (iip && iip->ili_last_lsn) {
2846 lsn = iip->ili_last_lsn;
2852 * Give the log a push so we don't wait here too long.
2854 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2856 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2861 * xfs_iextents_copy()
2863 * This is called to copy the REAL extents (as opposed to the delayed
2864 * allocation extents) from the inode into the given buffer. It
2865 * returns the number of bytes copied into the buffer.
2867 * If there are no delayed allocation extents, then we can just
2868 * memcpy() the extents into the buffer. Otherwise, we need to
2869 * examine each extent in turn and skip those which are delayed.
2881 xfs_fsblock_t start_block;
2883 ifp = XFS_IFORK_PTR(ip, whichfork);
2884 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2885 ASSERT(ifp->if_bytes > 0);
2887 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2888 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2892 * There are some delayed allocation extents in the
2893 * inode, so copy the extents one at a time and skip
2894 * the delayed ones. There must be at least one
2895 * non-delayed extent.
2898 for (i = 0; i < nrecs; i++) {
2899 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2900 start_block = xfs_bmbt_get_startblock(ep);
2901 if (ISNULLSTARTBLOCK(start_block)) {
2903 * It's a delayed allocation extent, so skip it.
2908 /* Translate to on disk format */
2909 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2910 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2914 ASSERT(copied != 0);
2915 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2917 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2921 * Each of the following cases stores data into the same region
2922 * of the on-disk inode, so only one of them can be valid at
2923 * any given time. While it is possible to have conflicting formats
2924 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2925 * in EXTENTS format, this can only happen when the fork has
2926 * changed formats after being modified but before being flushed.
2927 * In these cases, the format always takes precedence, because the
2928 * format indicates the current state of the fork.
2935 xfs_inode_log_item_t *iip,
2942 #ifdef XFS_TRANS_DEBUG
2945 static const short brootflag[2] =
2946 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2947 static const short dataflag[2] =
2948 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2949 static const short extflag[2] =
2950 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2954 ifp = XFS_IFORK_PTR(ip, whichfork);
2956 * This can happen if we gave up in iformat in an error path,
2957 * for the attribute fork.
2960 ASSERT(whichfork == XFS_ATTR_FORK);
2963 cp = XFS_DFORK_PTR(dip, whichfork);
2965 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2966 case XFS_DINODE_FMT_LOCAL:
2967 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2968 (ifp->if_bytes > 0)) {
2969 ASSERT(ifp->if_u1.if_data != NULL);
2970 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2971 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2975 case XFS_DINODE_FMT_EXTENTS:
2976 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2977 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2978 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2979 (ifp->if_bytes == 0));
2980 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2981 (ifp->if_bytes > 0));
2982 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2983 (ifp->if_bytes > 0)) {
2984 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2985 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2990 case XFS_DINODE_FMT_BTREE:
2991 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2992 (ifp->if_broot_bytes > 0)) {
2993 ASSERT(ifp->if_broot != NULL);
2994 ASSERT(ifp->if_broot_bytes <=
2995 (XFS_IFORK_SIZE(ip, whichfork) +
2996 XFS_BROOT_SIZE_ADJ));
2997 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2998 (xfs_bmdr_block_t *)cp,
2999 XFS_DFORK_SIZE(dip, mp, whichfork));
3003 case XFS_DINODE_FMT_DEV:
3004 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3005 ASSERT(whichfork == XFS_DATA_FORK);
3006 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3010 case XFS_DINODE_FMT_UUID:
3011 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3012 ASSERT(whichfork == XFS_DATA_FORK);
3013 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3027 * xfs_iflush() will write a modified inode's changes out to the
3028 * inode's on disk home. The caller must have the inode lock held
3029 * in at least shared mode and the inode flush semaphore must be
3030 * held as well. The inode lock will still be held upon return from
3031 * the call and the caller is free to unlock it.
3032 * The inode flush lock will be unlocked when the inode reaches the disk.
3033 * The flags indicate how the inode's buffer should be written out.
3040 xfs_inode_log_item_t *iip;
3047 int clcount; /* count of inodes clustered */
3049 struct hlist_node *entry;
3050 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3052 XFS_STATS_INC(xs_iflush_count);
3054 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3055 ASSERT(issemalocked(&(ip->i_flock)));
3056 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3057 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3063 * If the inode isn't dirty, then just release the inode
3064 * flush lock and do nothing.
3066 if ((ip->i_update_core == 0) &&
3067 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3068 ASSERT((iip != NULL) ?
3069 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3075 * We can't flush the inode until it is unpinned, so
3076 * wait for it. We know noone new can pin it, because
3077 * we are holding the inode lock shared and you need
3078 * to hold it exclusively to pin the inode.
3080 xfs_iunpin_wait(ip);
3083 * This may have been unpinned because the filesystem is shutting
3084 * down forcibly. If that's the case we must not write this inode
3085 * to disk, because the log record didn't make it to disk!
3087 if (XFS_FORCED_SHUTDOWN(mp)) {
3088 ip->i_update_core = 0;
3090 iip->ili_format.ilf_fields = 0;
3092 return XFS_ERROR(EIO);
3096 * Get the buffer containing the on-disk inode.
3098 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3105 * Decide how buffer will be flushed out. This is done before
3106 * the call to xfs_iflush_int because this field is zeroed by it.
3108 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3110 * Flush out the inode buffer according to the directions
3111 * of the caller. In the cases where the caller has given
3112 * us a choice choose the non-delwri case. This is because
3113 * the inode is in the AIL and we need to get it out soon.
3116 case XFS_IFLUSH_SYNC:
3117 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3120 case XFS_IFLUSH_ASYNC:
3121 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3124 case XFS_IFLUSH_DELWRI:
3134 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3135 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3136 case XFS_IFLUSH_DELWRI:
3139 case XFS_IFLUSH_ASYNC:
3142 case XFS_IFLUSH_SYNC:
3153 * First flush out the inode that xfs_iflush was called with.
3155 error = xfs_iflush_int(ip, bp);
3162 * see if other inodes can be gathered into this write
3164 spin_lock(&ip->i_cluster->icl_lock);
3165 ip->i_cluster->icl_buf = bp;
3168 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3173 * Do an un-protected check to see if the inode is dirty and
3174 * is a candidate for flushing. These checks will be repeated
3175 * later after the appropriate locks are acquired.
3178 if ((iq->i_update_core == 0) &&
3180 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3181 xfs_ipincount(iq) == 0) {
3186 * Try to get locks. If any are unavailable,
3187 * then this inode cannot be flushed and is skipped.
3190 /* get inode locks (just i_lock) */
3191 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3192 /* get inode flush lock */
3193 if (xfs_iflock_nowait(iq)) {
3194 /* check if pinned */
3195 if (xfs_ipincount(iq) == 0) {
3196 /* arriving here means that
3197 * this inode can be flushed.
3198 * first re-check that it's
3202 if ((iq->i_update_core != 0)||
3204 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3206 error = xfs_iflush_int(iq, bp);
3210 goto cluster_corrupt_out;
3219 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3222 spin_unlock(&ip->i_cluster->icl_lock);
3225 XFS_STATS_INC(xs_icluster_flushcnt);
3226 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3230 * If the buffer is pinned then push on the log so we won't
3231 * get stuck waiting in the write for too long.
3233 if (XFS_BUF_ISPINNED(bp)){
3234 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3237 if (flags & INT_DELWRI) {
3238 xfs_bdwrite(mp, bp);
3239 } else if (flags & INT_ASYNC) {
3240 xfs_bawrite(mp, bp);
3242 error = xfs_bwrite(mp, bp);
3248 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3249 xfs_iflush_abort(ip);
3251 * Unlocks the flush lock
3253 return XFS_ERROR(EFSCORRUPTED);
3255 cluster_corrupt_out:
3256 /* Corruption detected in the clustering loop. Invalidate the
3257 * inode buffer and shut down the filesystem.
3259 spin_unlock(&ip->i_cluster->icl_lock);
3262 * Clean up the buffer. If it was B_DELWRI, just release it --
3263 * brelse can handle it with no problems. If not, shut down the
3264 * filesystem before releasing the buffer.
3266 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3270 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3274 * Just like incore_relse: if we have b_iodone functions,
3275 * mark the buffer as an error and call them. Otherwise
3276 * mark it as stale and brelse.
3278 if (XFS_BUF_IODONE_FUNC(bp)) {
3279 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3283 XFS_BUF_ERROR(bp,EIO);
3291 xfs_iflush_abort(iq);
3293 * Unlocks the flush lock
3295 return XFS_ERROR(EFSCORRUPTED);
3304 xfs_inode_log_item_t *iip;
3307 #ifdef XFS_TRANS_DEBUG
3311 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3312 ASSERT(issemalocked(&(ip->i_flock)));
3313 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3314 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3321 * If the inode isn't dirty, then just release the inode
3322 * flush lock and do nothing.
3324 if ((ip->i_update_core == 0) &&
3325 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3330 /* set *dip = inode's place in the buffer */
3331 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3334 * Clear i_update_core before copying out the data.
3335 * This is for coordination with our timestamp updates
3336 * that don't hold the inode lock. They will always
3337 * update the timestamps BEFORE setting i_update_core,
3338 * so if we clear i_update_core after they set it we
3339 * are guaranteed to see their updates to the timestamps.
3340 * I believe that this depends on strongly ordered memory
3341 * semantics, but we have that. We use the SYNCHRONIZE
3342 * macro to make sure that the compiler does not reorder
3343 * the i_update_core access below the data copy below.
3345 ip->i_update_core = 0;
3349 * Make sure to get the latest atime from the Linux inode.
3351 xfs_synchronize_atime(ip);
3353 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3354 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3355 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3356 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3357 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3360 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3361 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3362 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3363 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3364 ip->i_ino, ip, ip->i_d.di_magic);
3367 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3369 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3370 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3371 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3372 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3373 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3377 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3379 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3380 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3381 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3382 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3383 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3384 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3389 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3390 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3391 XFS_RANDOM_IFLUSH_5)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3395 ip->i_d.di_nextents + ip->i_d.di_anextents,
3400 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3401 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3402 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3403 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3404 ip->i_ino, ip->i_d.di_forkoff, ip);
3408 * bump the flush iteration count, used to detect flushes which
3409 * postdate a log record during recovery.
3412 ip->i_d.di_flushiter++;
3415 * Copy the dirty parts of the inode into the on-disk
3416 * inode. We always copy out the core of the inode,
3417 * because if the inode is dirty at all the core must
3420 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3422 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3423 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3424 ip->i_d.di_flushiter = 0;
3427 * If this is really an old format inode and the superblock version
3428 * has not been updated to support only new format inodes, then
3429 * convert back to the old inode format. If the superblock version
3430 * has been updated, then make the conversion permanent.
3432 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3433 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3434 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3435 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3439 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3440 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3443 * The superblock version has already been bumped,
3444 * so just make the conversion to the new inode
3447 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3448 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3449 ip->i_d.di_onlink = 0;
3450 dip->di_core.di_onlink = 0;
3451 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3452 memset(&(dip->di_core.di_pad[0]), 0,
3453 sizeof(dip->di_core.di_pad));
3454 ASSERT(ip->i_d.di_projid == 0);
3458 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3462 if (XFS_IFORK_Q(ip)) {
3464 * The only error from xfs_iflush_fork is on the data fork.
3466 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3468 xfs_inobp_check(mp, bp);
3471 * We've recorded everything logged in the inode, so we'd
3472 * like to clear the ilf_fields bits so we don't log and
3473 * flush things unnecessarily. However, we can't stop
3474 * logging all this information until the data we've copied
3475 * into the disk buffer is written to disk. If we did we might
3476 * overwrite the copy of the inode in the log with all the
3477 * data after re-logging only part of it, and in the face of
3478 * a crash we wouldn't have all the data we need to recover.
3480 * What we do is move the bits to the ili_last_fields field.
3481 * When logging the inode, these bits are moved back to the
3482 * ilf_fields field. In the xfs_iflush_done() routine we
3483 * clear ili_last_fields, since we know that the information
3484 * those bits represent is permanently on disk. As long as
3485 * the flush completes before the inode is logged again, then
3486 * both ilf_fields and ili_last_fields will be cleared.
3488 * We can play with the ilf_fields bits here, because the inode
3489 * lock must be held exclusively in order to set bits there
3490 * and the flush lock protects the ili_last_fields bits.
3491 * Set ili_logged so the flush done
3492 * routine can tell whether or not to look in the AIL.
3493 * Also, store the current LSN of the inode so that we can tell
3494 * whether the item has moved in the AIL from xfs_iflush_done().
3495 * In order to read the lsn we need the AIL lock, because
3496 * it is a 64 bit value that cannot be read atomically.
3498 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3499 iip->ili_last_fields = iip->ili_format.ilf_fields;
3500 iip->ili_format.ilf_fields = 0;
3501 iip->ili_logged = 1;
3503 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3504 spin_lock(&mp->m_ail_lock);
3505 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3506 spin_unlock(&mp->m_ail_lock);
3509 * Attach the function xfs_iflush_done to the inode's
3510 * buffer. This will remove the inode from the AIL
3511 * and unlock the inode's flush lock when the inode is
3512 * completely written to disk.
3514 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3515 xfs_iflush_done, (xfs_log_item_t *)iip);
3517 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3518 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3521 * We're flushing an inode which is not in the AIL and has
3522 * not been logged but has i_update_core set. For this
3523 * case we can use a B_DELWRI flush and immediately drop
3524 * the inode flush lock because we can avoid the whole
3525 * AIL state thing. It's OK to drop the flush lock now,
3526 * because we've already locked the buffer and to do anything
3527 * you really need both.
3530 ASSERT(iip->ili_logged == 0);
3531 ASSERT(iip->ili_last_fields == 0);
3532 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3540 return XFS_ERROR(EFSCORRUPTED);
3545 * Flush all inactive inodes in mp.
3555 XFS_MOUNT_ILOCK(mp);
3561 /* Make sure we skip markers inserted by sync */
3562 if (ip->i_mount == NULL) {
3567 vp = XFS_ITOV_NULL(ip);
3569 XFS_MOUNT_IUNLOCK(mp);
3570 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3574 ASSERT(vn_count(vp) == 0);
3577 } while (ip != mp->m_inodes);
3579 XFS_MOUNT_IUNLOCK(mp);
3583 * xfs_iaccess: check accessibility of inode for mode.
3592 mode_t orgmode = mode;
3593 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3595 if (mode & S_IWUSR) {
3596 umode_t imode = inode->i_mode;
3598 if (IS_RDONLY(inode) &&
3599 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3600 return XFS_ERROR(EROFS);
3602 if (IS_IMMUTABLE(inode))
3603 return XFS_ERROR(EACCES);
3607 * If there's an Access Control List it's used instead of
3610 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3611 return error ? XFS_ERROR(error) : 0;
3613 if (current_fsuid(cr) != ip->i_d.di_uid) {
3615 if (!in_group_p((gid_t)ip->i_d.di_gid))
3620 * If the DACs are ok we don't need any capability check.
3622 if ((ip->i_d.di_mode & mode) == mode)
3625 * Read/write DACs are always overridable.
3626 * Executable DACs are overridable if at least one exec bit is set.
3628 if (!(orgmode & S_IXUSR) ||
3629 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3630 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3633 if ((orgmode == S_IRUSR) ||
3634 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3635 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3638 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3640 return XFS_ERROR(EACCES);
3642 return XFS_ERROR(EACCES);
3646 * xfs_iroundup: round up argument to next power of two
3655 if ((v & (v - 1)) == 0)
3657 ASSERT((v & 0x80000000) == 0);
3658 if ((v & (v + 1)) == 0)
3660 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3664 if ((v & (v + 1)) == 0)
3671 #ifdef XFS_ILOCK_TRACE
3672 ktrace_t *xfs_ilock_trace_buf;
3675 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3677 ktrace_enter(ip->i_lock_trace,
3679 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3680 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3681 (void *)ra, /* caller of ilock */
3682 (void *)(unsigned long)current_cpu(),
3683 (void *)(unsigned long)current_pid(),
3684 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3689 * Return a pointer to the extent record at file index idx.
3691 xfs_bmbt_rec_host_t *
3693 xfs_ifork_t *ifp, /* inode fork pointer */
3694 xfs_extnum_t idx) /* index of target extent */
3697 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3698 return ifp->if_u1.if_ext_irec->er_extbuf;
3699 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3700 xfs_ext_irec_t *erp; /* irec pointer */
3701 int erp_idx = 0; /* irec index */
3702 xfs_extnum_t page_idx = idx; /* ext index in target list */
3704 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3705 return &erp->er_extbuf[page_idx];
3706 } else if (ifp->if_bytes) {
3707 return &ifp->if_u1.if_extents[idx];
3714 * Insert new item(s) into the extent records for incore inode
3715 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3719 xfs_ifork_t *ifp, /* inode fork pointer */
3720 xfs_extnum_t idx, /* starting index of new items */
3721 xfs_extnum_t count, /* number of inserted items */
3722 xfs_bmbt_irec_t *new) /* items to insert */
3724 xfs_extnum_t i; /* extent record index */
3726 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3727 xfs_iext_add(ifp, idx, count);
3728 for (i = idx; i < idx + count; i++, new++)
3729 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3733 * This is called when the amount of space required for incore file
3734 * extents needs to be increased. The ext_diff parameter stores the
3735 * number of new extents being added and the idx parameter contains
3736 * the extent index where the new extents will be added. If the new
3737 * extents are being appended, then we just need to (re)allocate and
3738 * initialize the space. Otherwise, if the new extents are being
3739 * inserted into the middle of the existing entries, a bit more work
3740 * is required to make room for the new extents to be inserted. The
3741 * caller is responsible for filling in the new extent entries upon
3746 xfs_ifork_t *ifp, /* inode fork pointer */
3747 xfs_extnum_t idx, /* index to begin adding exts */
3748 int ext_diff) /* number of extents to add */
3750 int byte_diff; /* new bytes being added */
3751 int new_size; /* size of extents after adding */
3752 xfs_extnum_t nextents; /* number of extents in file */
3754 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3755 ASSERT((idx >= 0) && (idx <= nextents));
3756 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3757 new_size = ifp->if_bytes + byte_diff;
3759 * If the new number of extents (nextents + ext_diff)
3760 * fits inside the inode, then continue to use the inline
3763 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3764 if (idx < nextents) {
3765 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3766 &ifp->if_u2.if_inline_ext[idx],
3767 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3768 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3770 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3771 ifp->if_real_bytes = 0;
3772 ifp->if_lastex = nextents + ext_diff;
3775 * Otherwise use a linear (direct) extent list.
3776 * If the extents are currently inside the inode,
3777 * xfs_iext_realloc_direct will switch us from
3778 * inline to direct extent allocation mode.
3780 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3781 xfs_iext_realloc_direct(ifp, new_size);
3782 if (idx < nextents) {
3783 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3784 &ifp->if_u1.if_extents[idx],
3785 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3786 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3789 /* Indirection array */
3791 xfs_ext_irec_t *erp;
3795 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3796 if (ifp->if_flags & XFS_IFEXTIREC) {
3797 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3799 xfs_iext_irec_init(ifp);
3800 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3801 erp = ifp->if_u1.if_ext_irec;
3803 /* Extents fit in target extent page */
3804 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3805 if (page_idx < erp->er_extcount) {
3806 memmove(&erp->er_extbuf[page_idx + ext_diff],
3807 &erp->er_extbuf[page_idx],
3808 (erp->er_extcount - page_idx) *
3809 sizeof(xfs_bmbt_rec_t));
3810 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3812 erp->er_extcount += ext_diff;
3813 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3815 /* Insert a new extent page */
3817 xfs_iext_add_indirect_multi(ifp,
3818 erp_idx, page_idx, ext_diff);
3821 * If extent(s) are being appended to the last page in
3822 * the indirection array and the new extent(s) don't fit
3823 * in the page, then erp is NULL and erp_idx is set to
3824 * the next index needed in the indirection array.
3827 int count = ext_diff;
3830 erp = xfs_iext_irec_new(ifp, erp_idx);
3831 erp->er_extcount = count;
3832 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3839 ifp->if_bytes = new_size;
3843 * This is called when incore extents are being added to the indirection
3844 * array and the new extents do not fit in the target extent list. The
3845 * erp_idx parameter contains the irec index for the target extent list
3846 * in the indirection array, and the idx parameter contains the extent
3847 * index within the list. The number of extents being added is stored
3848 * in the count parameter.
3850 * |-------| |-------|
3851 * | | | | idx - number of extents before idx
3853 * | | | | count - number of extents being inserted at idx
3854 * |-------| |-------|
3855 * | count | | nex2 | nex2 - number of extents after idx + count
3856 * |-------| |-------|
3859 xfs_iext_add_indirect_multi(
3860 xfs_ifork_t *ifp, /* inode fork pointer */
3861 int erp_idx, /* target extent irec index */
3862 xfs_extnum_t idx, /* index within target list */
3863 int count) /* new extents being added */
3865 int byte_diff; /* new bytes being added */
3866 xfs_ext_irec_t *erp; /* pointer to irec entry */
3867 xfs_extnum_t ext_diff; /* number of extents to add */
3868 xfs_extnum_t ext_cnt; /* new extents still needed */
3869 xfs_extnum_t nex2; /* extents after idx + count */
3870 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3871 int nlists; /* number of irec's (lists) */
3873 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3874 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3875 nex2 = erp->er_extcount - idx;
3876 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3879 * Save second part of target extent list
3880 * (all extents past */
3882 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3883 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3884 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3885 erp->er_extcount -= nex2;
3886 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3887 memset(&erp->er_extbuf[idx], 0, byte_diff);
3891 * Add the new extents to the end of the target
3892 * list, then allocate new irec record(s) and
3893 * extent buffer(s) as needed to store the rest
3894 * of the new extents.
3897 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3899 erp->er_extcount += ext_diff;
3900 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3901 ext_cnt -= ext_diff;
3905 erp = xfs_iext_irec_new(ifp, erp_idx);
3906 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3907 erp->er_extcount = ext_diff;
3908 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3909 ext_cnt -= ext_diff;
3912 /* Add nex2 extents back to indirection array */
3914 xfs_extnum_t ext_avail;
3917 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3918 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3921 * If nex2 extents fit in the current page, append
3922 * nex2_ep after the new extents.
3924 if (nex2 <= ext_avail) {
3925 i = erp->er_extcount;
3928 * Otherwise, check if space is available in the
3931 else if ((erp_idx < nlists - 1) &&
3932 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3933 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3936 /* Create a hole for nex2 extents */
3937 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3938 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3941 * Final choice, create a new extent page for
3946 erp = xfs_iext_irec_new(ifp, erp_idx);
3948 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3949 kmem_free(nex2_ep, byte_diff);
3950 erp->er_extcount += nex2;
3951 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3956 * This is called when the amount of space required for incore file
3957 * extents needs to be decreased. The ext_diff parameter stores the
3958 * number of extents to be removed and the idx parameter contains
3959 * the extent index where the extents will be removed from.
3961 * If the amount of space needed has decreased below the linear
3962 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3963 * extent array. Otherwise, use kmem_realloc() to adjust the
3964 * size to what is needed.
3968 xfs_ifork_t *ifp, /* inode fork pointer */
3969 xfs_extnum_t idx, /* index to begin removing exts */
3970 int ext_diff) /* number of extents to remove */
3972 xfs_extnum_t nextents; /* number of extents in file */
3973 int new_size; /* size of extents after removal */
3975 ASSERT(ext_diff > 0);
3976 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3977 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3979 if (new_size == 0) {
3980 xfs_iext_destroy(ifp);
3981 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3982 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3983 } else if (ifp->if_real_bytes) {
3984 xfs_iext_remove_direct(ifp, idx, ext_diff);
3986 xfs_iext_remove_inline(ifp, idx, ext_diff);
3988 ifp->if_bytes = new_size;
3992 * This removes ext_diff extents from the inline buffer, beginning
3993 * at extent index idx.
3996 xfs_iext_remove_inline(
3997 xfs_ifork_t *ifp, /* inode fork pointer */
3998 xfs_extnum_t idx, /* index to begin removing exts */
3999 int ext_diff) /* number of extents to remove */
4001 int nextents; /* number of extents in file */
4003 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4004 ASSERT(idx < XFS_INLINE_EXTS);
4005 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4006 ASSERT(((nextents - ext_diff) > 0) &&
4007 (nextents - ext_diff) < XFS_INLINE_EXTS);
4009 if (idx + ext_diff < nextents) {
4010 memmove(&ifp->if_u2.if_inline_ext[idx],
4011 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4012 (nextents - (idx + ext_diff)) *
4013 sizeof(xfs_bmbt_rec_t));
4014 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4015 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4017 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4018 ext_diff * sizeof(xfs_bmbt_rec_t));
4023 * This removes ext_diff extents from a linear (direct) extent list,
4024 * beginning at extent index idx. If the extents are being removed
4025 * from the end of the list (ie. truncate) then we just need to re-
4026 * allocate the list to remove the extra space. Otherwise, if the
4027 * extents are being removed from the middle of the existing extent
4028 * entries, then we first need to move the extent records beginning
4029 * at idx + ext_diff up in the list to overwrite the records being
4030 * removed, then remove the extra space via kmem_realloc.
4033 xfs_iext_remove_direct(
4034 xfs_ifork_t *ifp, /* inode fork pointer */
4035 xfs_extnum_t idx, /* index to begin removing exts */
4036 int ext_diff) /* number of extents to remove */
4038 xfs_extnum_t nextents; /* number of extents in file */
4039 int new_size; /* size of extents after removal */
4041 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4042 new_size = ifp->if_bytes -
4043 (ext_diff * sizeof(xfs_bmbt_rec_t));
4044 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4046 if (new_size == 0) {
4047 xfs_iext_destroy(ifp);
4050 /* Move extents up in the list (if needed) */
4051 if (idx + ext_diff < nextents) {
4052 memmove(&ifp->if_u1.if_extents[idx],
4053 &ifp->if_u1.if_extents[idx + ext_diff],
4054 (nextents - (idx + ext_diff)) *
4055 sizeof(xfs_bmbt_rec_t));
4057 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4058 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4060 * Reallocate the direct extent list. If the extents
4061 * will fit inside the inode then xfs_iext_realloc_direct
4062 * will switch from direct to inline extent allocation
4065 xfs_iext_realloc_direct(ifp, new_size);
4066 ifp->if_bytes = new_size;
4070 * This is called when incore extents are being removed from the
4071 * indirection array and the extents being removed span multiple extent
4072 * buffers. The idx parameter contains the file extent index where we
4073 * want to begin removing extents, and the count parameter contains
4074 * how many extents need to be removed.
4076 * |-------| |-------|
4077 * | nex1 | | | nex1 - number of extents before idx
4078 * |-------| | count |
4079 * | | | | count - number of extents being removed at idx
4080 * | count | |-------|
4081 * | | | nex2 | nex2 - number of extents after idx + count
4082 * |-------| |-------|
4085 xfs_iext_remove_indirect(
4086 xfs_ifork_t *ifp, /* inode fork pointer */
4087 xfs_extnum_t idx, /* index to begin removing extents */
4088 int count) /* number of extents to remove */
4090 xfs_ext_irec_t *erp; /* indirection array pointer */
4091 int erp_idx = 0; /* indirection array index */
4092 xfs_extnum_t ext_cnt; /* extents left to remove */
4093 xfs_extnum_t ext_diff; /* extents to remove in current list */
4094 xfs_extnum_t nex1; /* number of extents before idx */
4095 xfs_extnum_t nex2; /* extents after idx + count */
4096 int nlists; /* entries in indirection array */
4097 int page_idx = idx; /* index in target extent list */
4099 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4100 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4101 ASSERT(erp != NULL);
4102 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4106 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4107 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4109 * Check for deletion of entire list;
4110 * xfs_iext_irec_remove() updates extent offsets.
4112 if (ext_diff == erp->er_extcount) {
4113 xfs_iext_irec_remove(ifp, erp_idx);
4114 ext_cnt -= ext_diff;
4117 ASSERT(erp_idx < ifp->if_real_bytes /
4119 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4126 /* Move extents up (if needed) */
4128 memmove(&erp->er_extbuf[nex1],
4129 &erp->er_extbuf[nex1 + ext_diff],
4130 nex2 * sizeof(xfs_bmbt_rec_t));
4132 /* Zero out rest of page */
4133 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4134 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4135 /* Update remaining counters */
4136 erp->er_extcount -= ext_diff;
4137 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4138 ext_cnt -= ext_diff;
4143 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4144 xfs_iext_irec_compact(ifp);
4148 * Create, destroy, or resize a linear (direct) block of extents.
4151 xfs_iext_realloc_direct(
4152 xfs_ifork_t *ifp, /* inode fork pointer */
4153 int new_size) /* new size of extents */
4155 int rnew_size; /* real new size of extents */
4157 rnew_size = new_size;
4159 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4160 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4161 (new_size != ifp->if_real_bytes)));
4163 /* Free extent records */
4164 if (new_size == 0) {
4165 xfs_iext_destroy(ifp);
4167 /* Resize direct extent list and zero any new bytes */
4168 else if (ifp->if_real_bytes) {
4169 /* Check if extents will fit inside the inode */
4170 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4171 xfs_iext_direct_to_inline(ifp, new_size /
4172 (uint)sizeof(xfs_bmbt_rec_t));
4173 ifp->if_bytes = new_size;
4176 if (!is_power_of_2(new_size)){
4177 rnew_size = xfs_iroundup(new_size);
4179 if (rnew_size != ifp->if_real_bytes) {
4180 ifp->if_u1.if_extents =
4181 kmem_realloc(ifp->if_u1.if_extents,
4186 if (rnew_size > ifp->if_real_bytes) {
4187 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4188 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4189 rnew_size - ifp->if_real_bytes);
4193 * Switch from the inline extent buffer to a direct
4194 * extent list. Be sure to include the inline extent
4195 * bytes in new_size.
4198 new_size += ifp->if_bytes;
4199 if (!is_power_of_2(new_size)) {
4200 rnew_size = xfs_iroundup(new_size);
4202 xfs_iext_inline_to_direct(ifp, rnew_size);
4204 ifp->if_real_bytes = rnew_size;
4205 ifp->if_bytes = new_size;
4209 * Switch from linear (direct) extent records to inline buffer.
4212 xfs_iext_direct_to_inline(
4213 xfs_ifork_t *ifp, /* inode fork pointer */
4214 xfs_extnum_t nextents) /* number of extents in file */
4216 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4217 ASSERT(nextents <= XFS_INLINE_EXTS);
4219 * The inline buffer was zeroed when we switched
4220 * from inline to direct extent allocation mode,
4221 * so we don't need to clear it here.
4223 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4224 nextents * sizeof(xfs_bmbt_rec_t));
4225 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4226 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4227 ifp->if_real_bytes = 0;
4231 * Switch from inline buffer to linear (direct) extent records.
4232 * new_size should already be rounded up to the next power of 2
4233 * by the caller (when appropriate), so use new_size as it is.
4234 * However, since new_size may be rounded up, we can't update
4235 * if_bytes here. It is the caller's responsibility to update
4236 * if_bytes upon return.
4239 xfs_iext_inline_to_direct(
4240 xfs_ifork_t *ifp, /* inode fork pointer */
4241 int new_size) /* number of extents in file */
4243 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4244 memset(ifp->if_u1.if_extents, 0, new_size);
4245 if (ifp->if_bytes) {
4246 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4248 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4249 sizeof(xfs_bmbt_rec_t));
4251 ifp->if_real_bytes = new_size;
4255 * Resize an extent indirection array to new_size bytes.
4258 xfs_iext_realloc_indirect(
4259 xfs_ifork_t *ifp, /* inode fork pointer */
4260 int new_size) /* new indirection array size */
4262 int nlists; /* number of irec's (ex lists) */
4263 int size; /* current indirection array size */
4265 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4266 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4267 size = nlists * sizeof(xfs_ext_irec_t);
4268 ASSERT(ifp->if_real_bytes);
4269 ASSERT((new_size >= 0) && (new_size != size));
4270 if (new_size == 0) {
4271 xfs_iext_destroy(ifp);
4273 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4274 kmem_realloc(ifp->if_u1.if_ext_irec,
4275 new_size, size, KM_SLEEP);
4280 * Switch from indirection array to linear (direct) extent allocations.
4283 xfs_iext_indirect_to_direct(
4284 xfs_ifork_t *ifp) /* inode fork pointer */
4286 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4287 xfs_extnum_t nextents; /* number of extents in file */
4288 int size; /* size of file extents */
4290 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4291 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4292 ASSERT(nextents <= XFS_LINEAR_EXTS);
4293 size = nextents * sizeof(xfs_bmbt_rec_t);
4295 xfs_iext_irec_compact_full(ifp);
4296 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4298 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4299 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4300 ifp->if_flags &= ~XFS_IFEXTIREC;
4301 ifp->if_u1.if_extents = ep;
4302 ifp->if_bytes = size;
4303 if (nextents < XFS_LINEAR_EXTS) {
4304 xfs_iext_realloc_direct(ifp, size);
4309 * Free incore file extents.
4313 xfs_ifork_t *ifp) /* inode fork pointer */
4315 if (ifp->if_flags & XFS_IFEXTIREC) {
4319 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4320 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4321 xfs_iext_irec_remove(ifp, erp_idx);
4323 ifp->if_flags &= ~XFS_IFEXTIREC;
4324 } else if (ifp->if_real_bytes) {
4325 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4326 } else if (ifp->if_bytes) {
4327 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4328 sizeof(xfs_bmbt_rec_t));
4330 ifp->if_u1.if_extents = NULL;
4331 ifp->if_real_bytes = 0;
4336 * Return a pointer to the extent record for file system block bno.
4338 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4339 xfs_iext_bno_to_ext(
4340 xfs_ifork_t *ifp, /* inode fork pointer */
4341 xfs_fileoff_t bno, /* block number to search for */
4342 xfs_extnum_t *idxp) /* index of target extent */
4344 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4345 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4346 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4347 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4348 int high; /* upper boundary in search */
4349 xfs_extnum_t idx = 0; /* index of target extent */
4350 int low; /* lower boundary in search */
4351 xfs_extnum_t nextents; /* number of file extents */
4352 xfs_fileoff_t startoff = 0; /* start offset of extent */
4354 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4355 if (nextents == 0) {
4360 if (ifp->if_flags & XFS_IFEXTIREC) {
4361 /* Find target extent list */
4363 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4364 base = erp->er_extbuf;
4365 high = erp->er_extcount - 1;
4367 base = ifp->if_u1.if_extents;
4368 high = nextents - 1;
4370 /* Binary search extent records */
4371 while (low <= high) {
4372 idx = (low + high) >> 1;
4374 startoff = xfs_bmbt_get_startoff(ep);
4375 blockcount = xfs_bmbt_get_blockcount(ep);
4376 if (bno < startoff) {
4378 } else if (bno >= startoff + blockcount) {
4381 /* Convert back to file-based extent index */
4382 if (ifp->if_flags & XFS_IFEXTIREC) {
4383 idx += erp->er_extoff;
4389 /* Convert back to file-based extent index */
4390 if (ifp->if_flags & XFS_IFEXTIREC) {
4391 idx += erp->er_extoff;
4393 if (bno >= startoff + blockcount) {
4394 if (++idx == nextents) {
4397 ep = xfs_iext_get_ext(ifp, idx);
4405 * Return a pointer to the indirection array entry containing the
4406 * extent record for filesystem block bno. Store the index of the
4407 * target irec in *erp_idxp.
4409 xfs_ext_irec_t * /* pointer to found extent record */
4410 xfs_iext_bno_to_irec(
4411 xfs_ifork_t *ifp, /* inode fork pointer */
4412 xfs_fileoff_t bno, /* block number to search for */
4413 int *erp_idxp) /* irec index of target ext list */
4415 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4416 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4417 int erp_idx; /* indirection array index */
4418 int nlists; /* number of extent irec's (lists) */
4419 int high; /* binary search upper limit */
4420 int low; /* binary search lower limit */
4422 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4423 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4427 while (low <= high) {
4428 erp_idx = (low + high) >> 1;
4429 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4430 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4431 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4433 } else if (erp_next && bno >=
4434 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4440 *erp_idxp = erp_idx;
4445 * Return a pointer to the indirection array entry containing the
4446 * extent record at file extent index *idxp. Store the index of the
4447 * target irec in *erp_idxp and store the page index of the target
4448 * extent record in *idxp.
4451 xfs_iext_idx_to_irec(
4452 xfs_ifork_t *ifp, /* inode fork pointer */
4453 xfs_extnum_t *idxp, /* extent index (file -> page) */
4454 int *erp_idxp, /* pointer to target irec */
4455 int realloc) /* new bytes were just added */
4457 xfs_ext_irec_t *prev; /* pointer to previous irec */
4458 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4459 int erp_idx; /* indirection array index */
4460 int nlists; /* number of irec's (ex lists) */
4461 int high; /* binary search upper limit */
4462 int low; /* binary search lower limit */
4463 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4465 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4466 ASSERT(page_idx >= 0 && page_idx <=
4467 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4468 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4473 /* Binary search extent irec's */
4474 while (low <= high) {
4475 erp_idx = (low + high) >> 1;
4476 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4477 prev = erp_idx > 0 ? erp - 1 : NULL;
4478 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4479 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4481 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4482 (page_idx == erp->er_extoff + erp->er_extcount &&
4485 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4486 erp->er_extcount == XFS_LINEAR_EXTS) {
4490 erp = erp_idx < nlists ? erp + 1 : NULL;
4493 page_idx -= erp->er_extoff;
4498 *erp_idxp = erp_idx;
4503 * Allocate and initialize an indirection array once the space needed
4504 * for incore extents increases above XFS_IEXT_BUFSZ.
4508 xfs_ifork_t *ifp) /* inode fork pointer */
4510 xfs_ext_irec_t *erp; /* indirection array pointer */
4511 xfs_extnum_t nextents; /* number of extents in file */
4513 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4514 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4515 ASSERT(nextents <= XFS_LINEAR_EXTS);
4517 erp = (xfs_ext_irec_t *)
4518 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4520 if (nextents == 0) {
4521 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4522 } else if (!ifp->if_real_bytes) {
4523 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4524 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4525 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4527 erp->er_extbuf = ifp->if_u1.if_extents;
4528 erp->er_extcount = nextents;
4531 ifp->if_flags |= XFS_IFEXTIREC;
4532 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4533 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4534 ifp->if_u1.if_ext_irec = erp;
4540 * Allocate and initialize a new entry in the indirection array.
4544 xfs_ifork_t *ifp, /* inode fork pointer */
4545 int erp_idx) /* index for new irec */
4547 xfs_ext_irec_t *erp; /* indirection array pointer */
4548 int i; /* loop counter */
4549 int nlists; /* number of irec's (ex lists) */
4551 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4552 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4554 /* Resize indirection array */
4555 xfs_iext_realloc_indirect(ifp, ++nlists *
4556 sizeof(xfs_ext_irec_t));
4558 * Move records down in the array so the
4559 * new page can use erp_idx.
4561 erp = ifp->if_u1.if_ext_irec;
4562 for (i = nlists - 1; i > erp_idx; i--) {
4563 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4565 ASSERT(i == erp_idx);
4567 /* Initialize new extent record */
4568 erp = ifp->if_u1.if_ext_irec;
4569 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4570 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4571 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4572 erp[erp_idx].er_extcount = 0;
4573 erp[erp_idx].er_extoff = erp_idx > 0 ?
4574 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4575 return (&erp[erp_idx]);
4579 * Remove a record from the indirection array.
4582 xfs_iext_irec_remove(
4583 xfs_ifork_t *ifp, /* inode fork pointer */
4584 int erp_idx) /* irec index to remove */
4586 xfs_ext_irec_t *erp; /* indirection array pointer */
4587 int i; /* loop counter */
4588 int nlists; /* number of irec's (ex lists) */
4590 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4591 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4592 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4593 if (erp->er_extbuf) {
4594 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4596 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4598 /* Compact extent records */
4599 erp = ifp->if_u1.if_ext_irec;
4600 for (i = erp_idx; i < nlists - 1; i++) {
4601 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4604 * Manually free the last extent record from the indirection
4605 * array. A call to xfs_iext_realloc_indirect() with a size
4606 * of zero would result in a call to xfs_iext_destroy() which
4607 * would in turn call this function again, creating a nasty
4611 xfs_iext_realloc_indirect(ifp,
4612 nlists * sizeof(xfs_ext_irec_t));
4614 kmem_free(ifp->if_u1.if_ext_irec,
4615 sizeof(xfs_ext_irec_t));
4617 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4621 * This is called to clean up large amounts of unused memory allocated
4622 * by the indirection array. Before compacting anything though, verify
4623 * that the indirection array is still needed and switch back to the
4624 * linear extent list (or even the inline buffer) if possible. The
4625 * compaction policy is as follows:
4627 * Full Compaction: Extents fit into a single page (or inline buffer)
4628 * Full Compaction: Extents occupy less than 10% of allocated space
4629 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4630 * No Compaction: Extents occupy at least 50% of allocated space
4633 xfs_iext_irec_compact(
4634 xfs_ifork_t *ifp) /* inode fork pointer */
4636 xfs_extnum_t nextents; /* number of extents in file */
4637 int nlists; /* number of irec's (ex lists) */
4639 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4640 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4641 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4643 if (nextents == 0) {
4644 xfs_iext_destroy(ifp);
4645 } else if (nextents <= XFS_INLINE_EXTS) {
4646 xfs_iext_indirect_to_direct(ifp);
4647 xfs_iext_direct_to_inline(ifp, nextents);
4648 } else if (nextents <= XFS_LINEAR_EXTS) {
4649 xfs_iext_indirect_to_direct(ifp);
4650 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4651 xfs_iext_irec_compact_full(ifp);
4652 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4653 xfs_iext_irec_compact_pages(ifp);
4658 * Combine extents from neighboring extent pages.
4661 xfs_iext_irec_compact_pages(
4662 xfs_ifork_t *ifp) /* inode fork pointer */
4664 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4665 int erp_idx = 0; /* indirection array index */
4666 int nlists; /* number of irec's (ex lists) */
4668 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4669 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4670 while (erp_idx < nlists - 1) {
4671 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4673 if (erp_next->er_extcount <=
4674 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4675 memmove(&erp->er_extbuf[erp->er_extcount],
4676 erp_next->er_extbuf, erp_next->er_extcount *
4677 sizeof(xfs_bmbt_rec_t));
4678 erp->er_extcount += erp_next->er_extcount;
4680 * Free page before removing extent record
4681 * so er_extoffs don't get modified in
4682 * xfs_iext_irec_remove.
4684 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4685 erp_next->er_extbuf = NULL;
4686 xfs_iext_irec_remove(ifp, erp_idx + 1);
4687 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4695 * Fully compact the extent records managed by the indirection array.
4698 xfs_iext_irec_compact_full(
4699 xfs_ifork_t *ifp) /* inode fork pointer */
4701 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4702 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4703 int erp_idx = 0; /* extent irec index */
4704 int ext_avail; /* empty entries in ex list */
4705 int ext_diff; /* number of exts to add */
4706 int nlists; /* number of irec's (ex lists) */
4708 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4709 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4710 erp = ifp->if_u1.if_ext_irec;
4711 ep = &erp->er_extbuf[erp->er_extcount];
4713 ep_next = erp_next->er_extbuf;
4714 while (erp_idx < nlists - 1) {
4715 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4716 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4717 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4718 erp->er_extcount += ext_diff;
4719 erp_next->er_extcount -= ext_diff;
4720 /* Remove next page */
4721 if (erp_next->er_extcount == 0) {
4723 * Free page before removing extent record
4724 * so er_extoffs don't get modified in
4725 * xfs_iext_irec_remove.
4727 kmem_free(erp_next->er_extbuf,
4728 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4729 erp_next->er_extbuf = NULL;
4730 xfs_iext_irec_remove(ifp, erp_idx + 1);
4731 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4732 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4733 /* Update next page */
4735 /* Move rest of page up to become next new page */
4736 memmove(erp_next->er_extbuf, ep_next,
4737 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4738 ep_next = erp_next->er_extbuf;
4739 memset(&ep_next[erp_next->er_extcount], 0,
4740 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4741 sizeof(xfs_bmbt_rec_t));
4743 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4745 if (erp_idx < nlists)
4746 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4750 ep = &erp->er_extbuf[erp->er_extcount];
4752 ep_next = erp_next->er_extbuf;
4757 * This is called to update the er_extoff field in the indirection
4758 * array when extents have been added or removed from one of the
4759 * extent lists. erp_idx contains the irec index to begin updating
4760 * at and ext_diff contains the number of extents that were added
4764 xfs_iext_irec_update_extoffs(
4765 xfs_ifork_t *ifp, /* inode fork pointer */
4766 int erp_idx, /* irec index to update */
4767 int ext_diff) /* number of new extents */
4769 int i; /* loop counter */
4770 int nlists; /* number of irec's (ex lists */
4772 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4773 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4774 for (i = erp_idx; i < nlists; i++) {
4775 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;