]> err.no Git - linux-2.6/blob - fs/xfs/linux-2.6/xfs_super.c
Slab API: remove useless ctor parameter and reorder parameters
[linux-2.6] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_version.h"
50
51 #include <linux/namei.h>
52 #include <linux/init.h>
53 #include <linux/mount.h>
54 #include <linux/mempool.h>
55 #include <linux/writeback.h>
56 #include <linux/kthread.h>
57 #include <linux/freezer.h>
58
59 static struct quotactl_ops xfs_quotactl_operations;
60 static struct super_operations xfs_super_operations;
61 static kmem_zone_t *xfs_vnode_zone;
62 static kmem_zone_t *xfs_ioend_zone;
63 mempool_t *xfs_ioend_pool;
64
65 STATIC struct xfs_mount_args *
66 xfs_args_allocate(
67         struct super_block      *sb,
68         int                     silent)
69 {
70         struct xfs_mount_args   *args;
71
72         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
73         args->logbufs = args->logbufsize = -1;
74         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
75
76         /* Copy the already-parsed mount(2) flags we're interested in */
77         if (sb->s_flags & MS_DIRSYNC)
78                 args->flags |= XFSMNT_DIRSYNC;
79         if (sb->s_flags & MS_SYNCHRONOUS)
80                 args->flags |= XFSMNT_WSYNC;
81         if (silent)
82                 args->flags |= XFSMNT_QUIET;
83         args->flags |= XFSMNT_32BITINODES;
84
85         return args;
86 }
87
88 __uint64_t
89 xfs_max_file_offset(
90         unsigned int            blockshift)
91 {
92         unsigned int            pagefactor = 1;
93         unsigned int            bitshift = BITS_PER_LONG - 1;
94
95         /* Figure out maximum filesize, on Linux this can depend on
96          * the filesystem blocksize (on 32 bit platforms).
97          * __block_prepare_write does this in an [unsigned] long...
98          *      page->index << (PAGE_CACHE_SHIFT - bbits)
99          * So, for page sized blocks (4K on 32 bit platforms),
100          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
101          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
102          * but for smaller blocksizes it is less (bbits = log2 bsize).
103          * Note1: get_block_t takes a long (implicit cast from above)
104          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
105          * can optionally convert the [unsigned] long from above into
106          * an [unsigned] long long.
107          */
108
109 #if BITS_PER_LONG == 32
110 # if defined(CONFIG_LBD)
111         ASSERT(sizeof(sector_t) == 8);
112         pagefactor = PAGE_CACHE_SIZE;
113         bitshift = BITS_PER_LONG;
114 # else
115         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
116 # endif
117 #endif
118
119         return (((__uint64_t)pagefactor) << bitshift) - 1;
120 }
121
122 STATIC_INLINE void
123 xfs_set_inodeops(
124         struct inode            *inode)
125 {
126         switch (inode->i_mode & S_IFMT) {
127         case S_IFREG:
128                 inode->i_op = &xfs_inode_operations;
129                 inode->i_fop = &xfs_file_operations;
130                 inode->i_mapping->a_ops = &xfs_address_space_operations;
131                 break;
132         case S_IFDIR:
133                 inode->i_op = &xfs_dir_inode_operations;
134                 inode->i_fop = &xfs_dir_file_operations;
135                 break;
136         case S_IFLNK:
137                 inode->i_op = &xfs_symlink_inode_operations;
138                 if (inode->i_blocks)
139                         inode->i_mapping->a_ops = &xfs_address_space_operations;
140                 break;
141         default:
142                 inode->i_op = &xfs_inode_operations;
143                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
144                 break;
145         }
146 }
147
148 STATIC_INLINE void
149 xfs_revalidate_inode(
150         xfs_mount_t             *mp,
151         bhv_vnode_t             *vp,
152         xfs_inode_t             *ip)
153 {
154         struct inode            *inode = vn_to_inode(vp);
155
156         inode->i_mode   = ip->i_d.di_mode;
157         inode->i_nlink  = ip->i_d.di_nlink;
158         inode->i_uid    = ip->i_d.di_uid;
159         inode->i_gid    = ip->i_d.di_gid;
160
161         switch (inode->i_mode & S_IFMT) {
162         case S_IFBLK:
163         case S_IFCHR:
164                 inode->i_rdev =
165                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
166                               sysv_minor(ip->i_df.if_u2.if_rdev));
167                 break;
168         default:
169                 inode->i_rdev = 0;
170                 break;
171         }
172
173         inode->i_generation = ip->i_d.di_gen;
174         i_size_write(inode, ip->i_d.di_size);
175         inode->i_blocks =
176                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
177         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
178         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
179         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
180         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
181         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
182         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
183         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
184                 inode->i_flags |= S_IMMUTABLE;
185         else
186                 inode->i_flags &= ~S_IMMUTABLE;
187         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
188                 inode->i_flags |= S_APPEND;
189         else
190                 inode->i_flags &= ~S_APPEND;
191         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
192                 inode->i_flags |= S_SYNC;
193         else
194                 inode->i_flags &= ~S_SYNC;
195         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
196                 inode->i_flags |= S_NOATIME;
197         else
198                 inode->i_flags &= ~S_NOATIME;
199         vp->v_flag &= ~VMODIFIED;
200 }
201
202 void
203 xfs_initialize_vnode(
204         bhv_desc_t              *bdp,
205         bhv_vnode_t             *vp,
206         bhv_desc_t              *inode_bhv,
207         int                     unlock)
208 {
209         xfs_inode_t             *ip = XFS_BHVTOI(inode_bhv);
210         struct inode            *inode = vn_to_inode(vp);
211
212         if (!inode_bhv->bd_vobj) {
213                 vp->v_vfsp = bhvtovfs(bdp);
214                 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
215                 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
216         }
217
218         /*
219          * We need to set the ops vectors, and unlock the inode, but if
220          * we have been called during the new inode create process, it is
221          * too early to fill in the Linux inode.  We will get called a
222          * second time once the inode is properly set up, and then we can
223          * finish our work.
224          */
225         if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
226                 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
227                 xfs_set_inodeops(inode);
228
229                 xfs_iflags_clear(ip, XFS_INEW);
230                 barrier();
231
232                 unlock_new_inode(inode);
233         }
234 }
235
236 int
237 xfs_blkdev_get(
238         xfs_mount_t             *mp,
239         const char              *name,
240         struct block_device     **bdevp)
241 {
242         int                     error = 0;
243
244         *bdevp = open_bdev_excl(name, 0, mp);
245         if (IS_ERR(*bdevp)) {
246                 error = PTR_ERR(*bdevp);
247                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
248         }
249
250         return -error;
251 }
252
253 void
254 xfs_blkdev_put(
255         struct block_device     *bdev)
256 {
257         if (bdev)
258                 close_bdev_excl(bdev);
259 }
260
261 /*
262  * Try to write out the superblock using barriers.
263  */
264 STATIC int
265 xfs_barrier_test(
266         xfs_mount_t     *mp)
267 {
268         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
269         int             error;
270
271         XFS_BUF_UNDONE(sbp);
272         XFS_BUF_UNREAD(sbp);
273         XFS_BUF_UNDELAYWRITE(sbp);
274         XFS_BUF_WRITE(sbp);
275         XFS_BUF_UNASYNC(sbp);
276         XFS_BUF_ORDERED(sbp);
277
278         xfsbdstrat(mp, sbp);
279         error = xfs_iowait(sbp);
280
281         /*
282          * Clear all the flags we set and possible error state in the
283          * buffer.  We only did the write to try out whether barriers
284          * worked and shouldn't leave any traces in the superblock
285          * buffer.
286          */
287         XFS_BUF_DONE(sbp);
288         XFS_BUF_ERROR(sbp, 0);
289         XFS_BUF_UNORDERED(sbp);
290
291         xfs_buf_relse(sbp);
292         return error;
293 }
294
295 void
296 xfs_mountfs_check_barriers(xfs_mount_t *mp)
297 {
298         int error;
299
300         if (mp->m_logdev_targp != mp->m_ddev_targp) {
301                 xfs_fs_cmn_err(CE_NOTE, mp,
302                   "Disabling barriers, not supported with external log device");
303                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
304                 return;
305         }
306
307         if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
308                                         QUEUE_ORDERED_NONE) {
309                 xfs_fs_cmn_err(CE_NOTE, mp,
310                   "Disabling barriers, not supported by the underlying device");
311                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312                 return;
313         }
314
315         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
316                 xfs_fs_cmn_err(CE_NOTE, mp,
317                   "Disabling barriers, underlying device is readonly");
318                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
319                 return;
320         }
321
322         error = xfs_barrier_test(mp);
323         if (error) {
324                 xfs_fs_cmn_err(CE_NOTE, mp,
325                   "Disabling barriers, trial barrier write failed");
326                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
327                 return;
328         }
329 }
330
331 void
332 xfs_blkdev_issue_flush(
333         xfs_buftarg_t           *buftarg)
334 {
335         blkdev_issue_flush(buftarg->bt_bdev, NULL);
336 }
337
338 STATIC struct inode *
339 xfs_fs_alloc_inode(
340         struct super_block      *sb)
341 {
342         bhv_vnode_t             *vp;
343
344         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
345         if (unlikely(!vp))
346                 return NULL;
347         return vn_to_inode(vp);
348 }
349
350 STATIC void
351 xfs_fs_destroy_inode(
352         struct inode            *inode)
353 {
354         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
355 }
356
357 STATIC void
358 xfs_fs_inode_init_once(
359         kmem_zone_t             *zonep,
360         void                    *vnode)
361 {
362         inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
363 }
364
365 STATIC int
366 xfs_init_zones(void)
367 {
368         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
369                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
370                                         KM_ZONE_SPREAD,
371                                         xfs_fs_inode_init_once);
372         if (!xfs_vnode_zone)
373                 goto out;
374
375         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
376         if (!xfs_ioend_zone)
377                 goto out_destroy_vnode_zone;
378
379         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
380                                                   xfs_ioend_zone);
381         if (!xfs_ioend_pool)
382                 goto out_free_ioend_zone;
383         return 0;
384
385  out_free_ioend_zone:
386         kmem_zone_destroy(xfs_ioend_zone);
387  out_destroy_vnode_zone:
388         kmem_zone_destroy(xfs_vnode_zone);
389  out:
390         return -ENOMEM;
391 }
392
393 STATIC void
394 xfs_destroy_zones(void)
395 {
396         mempool_destroy(xfs_ioend_pool);
397         kmem_zone_destroy(xfs_vnode_zone);
398         kmem_zone_destroy(xfs_ioend_zone);
399 }
400
401 /*
402  * Attempt to flush the inode, this will actually fail
403  * if the inode is pinned, but we dirty the inode again
404  * at the point when it is unpinned after a log write,
405  * since this is when the inode itself becomes flushable.
406  */
407 STATIC int
408 xfs_fs_write_inode(
409         struct inode            *inode,
410         int                     sync)
411 {
412         bhv_vnode_t             *vp = vn_from_inode(inode);
413         int                     error = 0, flags = FLUSH_INODE;
414
415         if (vp) {
416                 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
417                 if (sync) {
418                         filemap_fdatawait(inode->i_mapping);
419                         flags |= FLUSH_SYNC;
420                 }
421                 error = bhv_vop_iflush(vp, flags);
422                 if (error == EAGAIN)
423                         error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
424         }
425         return -error;
426 }
427
428 STATIC void
429 xfs_fs_clear_inode(
430         struct inode            *inode)
431 {
432         bhv_vnode_t             *vp = vn_from_inode(inode);
433
434         vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
435
436         XFS_STATS_INC(vn_rele);
437         XFS_STATS_INC(vn_remove);
438         XFS_STATS_INC(vn_reclaim);
439         XFS_STATS_DEC(vn_active);
440
441         /*
442          * This can happen because xfs_iget_core calls xfs_idestroy if we
443          * find an inode with di_mode == 0 but without IGET_CREATE set.
444          */
445         if (VNHEAD(vp))
446                 bhv_vop_inactive(vp, NULL);
447
448         VN_LOCK(vp);
449         vp->v_flag &= ~VMODIFIED;
450         VN_UNLOCK(vp, 0);
451
452         if (VNHEAD(vp))
453                 if (bhv_vop_reclaim(vp))
454                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
455
456         ASSERT(VNHEAD(vp) == NULL);
457
458 #ifdef XFS_VNODE_TRACE
459         ktrace_free(vp->v_trace);
460 #endif
461 }
462
463 /*
464  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
465  * Doing this has two advantages:
466  * - It saves on stack space, which is tight in certain situations
467  * - It can be used (with care) as a mechanism to avoid deadlocks.
468  * Flushing while allocating in a full filesystem requires both.
469  */
470 STATIC void
471 xfs_syncd_queue_work(
472         struct bhv_vfs  *vfs,
473         void            *data,
474         void            (*syncer)(bhv_vfs_t *, void *))
475 {
476         struct bhv_vfs_sync_work *work;
477
478         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
479         INIT_LIST_HEAD(&work->w_list);
480         work->w_syncer = syncer;
481         work->w_data = data;
482         work->w_vfs = vfs;
483         spin_lock(&vfs->vfs_sync_lock);
484         list_add_tail(&work->w_list, &vfs->vfs_sync_list);
485         spin_unlock(&vfs->vfs_sync_lock);
486         wake_up_process(vfs->vfs_sync_task);
487 }
488
489 /*
490  * Flush delayed allocate data, attempting to free up reserved space
491  * from existing allocations.  At this point a new allocation attempt
492  * has failed with ENOSPC and we are in the process of scratching our
493  * heads, looking about for more room...
494  */
495 STATIC void
496 xfs_flush_inode_work(
497         bhv_vfs_t       *vfs,
498         void            *inode)
499 {
500         filemap_flush(((struct inode *)inode)->i_mapping);
501         iput((struct inode *)inode);
502 }
503
504 void
505 xfs_flush_inode(
506         xfs_inode_t     *ip)
507 {
508         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
509         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
510
511         igrab(inode);
512         xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
513         delay(msecs_to_jiffies(500));
514 }
515
516 /*
517  * This is the "bigger hammer" version of xfs_flush_inode_work...
518  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
519  */
520 STATIC void
521 xfs_flush_device_work(
522         bhv_vfs_t       *vfs,
523         void            *inode)
524 {
525         sync_blockdev(vfs->vfs_super->s_bdev);
526         iput((struct inode *)inode);
527 }
528
529 void
530 xfs_flush_device(
531         xfs_inode_t     *ip)
532 {
533         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
534         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
535
536         igrab(inode);
537         xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
538         delay(msecs_to_jiffies(500));
539         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
540 }
541
542 STATIC void
543 vfs_sync_worker(
544         bhv_vfs_t       *vfsp,
545         void            *unused)
546 {
547         int             error;
548
549         if (!(vfsp->vfs_flag & VFS_RDONLY))
550                 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
551                                         SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER,
552                                         NULL);
553         vfsp->vfs_sync_seq++;
554         wake_up(&vfsp->vfs_wait_single_sync_task);
555 }
556
557 STATIC int
558 xfssyncd(
559         void                    *arg)
560 {
561         long                    timeleft;
562         bhv_vfs_t               *vfsp = (bhv_vfs_t *) arg;
563         bhv_vfs_sync_work_t     *work, *n;
564         LIST_HEAD               (tmp);
565
566         set_freezable();
567         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
568         for (;;) {
569                 timeleft = schedule_timeout_interruptible(timeleft);
570                 /* swsusp */
571                 try_to_freeze();
572                 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
573                         break;
574
575                 spin_lock(&vfsp->vfs_sync_lock);
576                 /*
577                  * We can get woken by laptop mode, to do a sync -
578                  * that's the (only!) case where the list would be
579                  * empty with time remaining.
580                  */
581                 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
582                         if (!timeleft)
583                                 timeleft = xfs_syncd_centisecs *
584                                                         msecs_to_jiffies(10);
585                         INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
586                         list_add_tail(&vfsp->vfs_sync_work.w_list,
587                                         &vfsp->vfs_sync_list);
588                 }
589                 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
590                         list_move(&work->w_list, &tmp);
591                 spin_unlock(&vfsp->vfs_sync_lock);
592
593                 list_for_each_entry_safe(work, n, &tmp, w_list) {
594                         (*work->w_syncer)(vfsp, work->w_data);
595                         list_del(&work->w_list);
596                         if (work == &vfsp->vfs_sync_work)
597                                 continue;
598                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
599                 }
600         }
601
602         return 0;
603 }
604
605 STATIC int
606 xfs_fs_start_syncd(
607         bhv_vfs_t               *vfsp)
608 {
609         vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
610         vfsp->vfs_sync_work.w_vfs = vfsp;
611         vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
612         if (IS_ERR(vfsp->vfs_sync_task))
613                 return -PTR_ERR(vfsp->vfs_sync_task);
614         return 0;
615 }
616
617 STATIC void
618 xfs_fs_stop_syncd(
619         bhv_vfs_t               *vfsp)
620 {
621         kthread_stop(vfsp->vfs_sync_task);
622 }
623
624 STATIC void
625 xfs_fs_put_super(
626         struct super_block      *sb)
627 {
628         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
629         int                     error;
630
631         xfs_fs_stop_syncd(vfsp);
632         bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
633         error = bhv_vfs_unmount(vfsp, 0, NULL);
634         if (error) {
635                 printk("XFS: unmount got error=%d\n", error);
636                 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
637         } else {
638                 vfs_deallocate(vfsp);
639         }
640 }
641
642 STATIC void
643 xfs_fs_write_super(
644         struct super_block      *sb)
645 {
646         if (!(sb->s_flags & MS_RDONLY))
647                 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
648         sb->s_dirt = 0;
649 }
650
651 STATIC int
652 xfs_fs_sync_super(
653         struct super_block      *sb,
654         int                     wait)
655 {
656         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
657         int                     error;
658         int                     flags;
659
660         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
661                 /*
662                  * First stage of freeze - no more writers will make progress
663                  * now we are here, so we flush delwri and delalloc buffers
664                  * here, then wait for all I/O to complete.  Data is frozen at
665                  * that point. Metadata is not frozen, transactions can still
666                  * occur here so don't bother flushing the buftarg (i.e
667                  * SYNC_QUIESCE) because it'll just get dirty again.
668                  */
669                 flags = SYNC_DATA_QUIESCE;
670         } else
671                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
672
673         error = bhv_vfs_sync(vfsp, flags, NULL);
674         sb->s_dirt = 0;
675
676         if (unlikely(laptop_mode)) {
677                 int     prev_sync_seq = vfsp->vfs_sync_seq;
678
679                 /*
680                  * The disk must be active because we're syncing.
681                  * We schedule xfssyncd now (now that the disk is
682                  * active) instead of later (when it might not be).
683                  */
684                 wake_up_process(vfsp->vfs_sync_task);
685                 /*
686                  * We have to wait for the sync iteration to complete.
687                  * If we don't, the disk activity caused by the sync
688                  * will come after the sync is completed, and that
689                  * triggers another sync from laptop mode.
690                  */
691                 wait_event(vfsp->vfs_wait_single_sync_task,
692                                 vfsp->vfs_sync_seq != prev_sync_seq);
693         }
694
695         return -error;
696 }
697
698 STATIC int
699 xfs_fs_statfs(
700         struct dentry           *dentry,
701         struct kstatfs          *statp)
702 {
703         return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
704                                 vn_from_inode(dentry->d_inode));
705 }
706
707 STATIC int
708 xfs_fs_remount(
709         struct super_block      *sb,
710         int                     *flags,
711         char                    *options)
712 {
713         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
714         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
715         int                     error;
716
717         error = bhv_vfs_parseargs(vfsp, options, args, 1);
718         if (!error)
719                 error = bhv_vfs_mntupdate(vfsp, flags, args);
720         kmem_free(args, sizeof(*args));
721         return -error;
722 }
723
724 STATIC void
725 xfs_fs_lockfs(
726         struct super_block      *sb)
727 {
728         bhv_vfs_freeze(vfs_from_sb(sb));
729 }
730
731 STATIC int
732 xfs_fs_show_options(
733         struct seq_file         *m,
734         struct vfsmount         *mnt)
735 {
736         return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
737 }
738
739 STATIC int
740 xfs_fs_quotasync(
741         struct super_block      *sb,
742         int                     type)
743 {
744         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
745 }
746
747 STATIC int
748 xfs_fs_getxstate(
749         struct super_block      *sb,
750         struct fs_quota_stat    *fqs)
751 {
752         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
753 }
754
755 STATIC int
756 xfs_fs_setxstate(
757         struct super_block      *sb,
758         unsigned int            flags,
759         int                     op)
760 {
761         return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
762 }
763
764 STATIC int
765 xfs_fs_getxquota(
766         struct super_block      *sb,
767         int                     type,
768         qid_t                   id,
769         struct fs_disk_quota    *fdq)
770 {
771         return -bhv_vfs_quotactl(vfs_from_sb(sb),
772                                  (type == USRQUOTA) ? Q_XGETQUOTA :
773                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
774                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
775 }
776
777 STATIC int
778 xfs_fs_setxquota(
779         struct super_block      *sb,
780         int                     type,
781         qid_t                   id,
782         struct fs_disk_quota    *fdq)
783 {
784         return -bhv_vfs_quotactl(vfs_from_sb(sb),
785                                  (type == USRQUOTA) ? Q_XSETQLIM :
786                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
787                                    Q_XSETPQLIM), id, (caddr_t)fdq);
788 }
789
790 STATIC int
791 xfs_fs_fill_super(
792         struct super_block      *sb,
793         void                    *data,
794         int                     silent)
795 {
796         struct bhv_vnode        *rootvp;
797         struct bhv_vfs          *vfsp = vfs_allocate(sb);
798         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
799         struct kstatfs          statvfs;
800         int                     error;
801
802         bhv_insert_all_vfsops(vfsp);
803
804         error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
805         if (error) {
806                 bhv_remove_all_vfsops(vfsp, 1);
807                 goto fail_vfsop;
808         }
809
810         sb_min_blocksize(sb, BBSIZE);
811         sb->s_export_op = &xfs_export_operations;
812         sb->s_qcop = &xfs_quotactl_operations;
813         sb->s_op = &xfs_super_operations;
814
815         error = bhv_vfs_mount(vfsp, args, NULL);
816         if (error) {
817                 bhv_remove_all_vfsops(vfsp, 1);
818                 goto fail_vfsop;
819         }
820
821         error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
822         if (error)
823                 goto fail_unmount;
824
825         sb->s_dirt = 1;
826         sb->s_magic = statvfs.f_type;
827         sb->s_blocksize = statvfs.f_bsize;
828         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
829         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
830         sb->s_time_gran = 1;
831         set_posix_acl_flag(sb);
832
833         error = bhv_vfs_root(vfsp, &rootvp);
834         if (error)
835                 goto fail_unmount;
836
837         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
838         if (!sb->s_root) {
839                 error = ENOMEM;
840                 goto fail_vnrele;
841         }
842         if (is_bad_inode(sb->s_root->d_inode)) {
843                 error = EINVAL;
844                 goto fail_vnrele;
845         }
846         if ((error = xfs_fs_start_syncd(vfsp)))
847                 goto fail_vnrele;
848         vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
849
850         kmem_free(args, sizeof(*args));
851         return 0;
852
853 fail_vnrele:
854         if (sb->s_root) {
855                 dput(sb->s_root);
856                 sb->s_root = NULL;
857         } else {
858                 VN_RELE(rootvp);
859         }
860
861 fail_unmount:
862         bhv_vfs_unmount(vfsp, 0, NULL);
863
864 fail_vfsop:
865         vfs_deallocate(vfsp);
866         kmem_free(args, sizeof(*args));
867         return -error;
868 }
869
870 STATIC int
871 xfs_fs_get_sb(
872         struct file_system_type *fs_type,
873         int                     flags,
874         const char              *dev_name,
875         void                    *data,
876         struct vfsmount         *mnt)
877 {
878         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
879                            mnt);
880 }
881
882 static struct super_operations xfs_super_operations = {
883         .alloc_inode            = xfs_fs_alloc_inode,
884         .destroy_inode          = xfs_fs_destroy_inode,
885         .write_inode            = xfs_fs_write_inode,
886         .clear_inode            = xfs_fs_clear_inode,
887         .put_super              = xfs_fs_put_super,
888         .write_super            = xfs_fs_write_super,
889         .sync_fs                = xfs_fs_sync_super,
890         .write_super_lockfs     = xfs_fs_lockfs,
891         .statfs                 = xfs_fs_statfs,
892         .remount_fs             = xfs_fs_remount,
893         .show_options           = xfs_fs_show_options,
894 };
895
896 static struct quotactl_ops xfs_quotactl_operations = {
897         .quota_sync             = xfs_fs_quotasync,
898         .get_xstate             = xfs_fs_getxstate,
899         .set_xstate             = xfs_fs_setxstate,
900         .get_xquota             = xfs_fs_getxquota,
901         .set_xquota             = xfs_fs_setxquota,
902 };
903
904 static struct file_system_type xfs_fs_type = {
905         .owner                  = THIS_MODULE,
906         .name                   = "xfs",
907         .get_sb                 = xfs_fs_get_sb,
908         .kill_sb                = kill_block_super,
909         .fs_flags               = FS_REQUIRES_DEV,
910 };
911
912
913 STATIC int __init
914 init_xfs_fs( void )
915 {
916         int                     error;
917         struct sysinfo          si;
918         static char             message[] __initdata = KERN_INFO \
919                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
920
921         printk(message);
922
923         si_meminfo(&si);
924         xfs_physmem = si.totalram;
925
926         ktrace_init(64);
927
928         error = xfs_init_zones();
929         if (error < 0)
930                 goto undo_zones;
931
932         error = xfs_buf_init();
933         if (error < 0)
934                 goto undo_buffers;
935
936         vn_init();
937         xfs_init();
938         uuid_init();
939         vfs_initquota();
940
941         error = register_filesystem(&xfs_fs_type);
942         if (error)
943                 goto undo_register;
944         return 0;
945
946 undo_register:
947         xfs_buf_terminate();
948
949 undo_buffers:
950         xfs_destroy_zones();
951
952 undo_zones:
953         return error;
954 }
955
956 STATIC void __exit
957 exit_xfs_fs( void )
958 {
959         vfs_exitquota();
960         unregister_filesystem(&xfs_fs_type);
961         xfs_cleanup();
962         xfs_buf_terminate();
963         xfs_destroy_zones();
964         ktrace_uninit();
965 }
966
967 module_init(init_xfs_fs);
968 module_exit(exit_xfs_fs);
969
970 MODULE_AUTHOR("Silicon Graphics, Inc.");
971 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
972 MODULE_LICENSE("GPL");