]> err.no Git - linux-2.6/blob - fs/xfs/linux-2.6/xfs_buf.c
[XFS] kill superflous buffer locking
[linux-2.6] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42         .shrink = xfsbufd_wakeup,
43         .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52         xfs_buf_t       *bp,
53         char            *id,
54         void            *data,
55         void            *ra)
56 {
57         ktrace_enter(xfs_buf_trace_buf,
58                 bp, id,
59                 (void *)(unsigned long)bp->b_flags,
60                 (void *)(unsigned long)bp->b_hold.counter,
61                 (void *)(unsigned long)bp->b_sema.count.counter,
62                 (void *)current,
63                 data, ra,
64                 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65                 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66                 (void *)(unsigned long)bp->b_buffer_length,
67                 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE      4096
71 #define XB_TRACE(bp, id, data)  \
72         xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data)  do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp)       do { } while (0)
83 # define XB_CLEAR_OWNER(bp)     do { } while (0)
84 # define XB_GET_OWNER(bp)       do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97         kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100  *      Page Region interfaces.
101  *
102  *      For pages in filesystems where the blocksize is smaller than the
103  *      pagesize, we use the page->private field (long) to hold a bitmap
104  *      of uptodate regions within the page.
105  *
106  *      Each such region is "bytes per page / bits per long" bytes long.
107  *
108  *      NBPPR == number-of-bytes-per-page-region
109  *      BTOPR == bytes-to-page-region (rounded up)
110  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
111  */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125         size_t          offset,
126         size_t          length)
127 {
128         unsigned long   mask;
129         int             first, final;
130
131         first = BTOPR(offset);
132         final = BTOPRT(offset + length - 1);
133         first = min(first, final);
134
135         mask = ~0UL;
136         mask <<= BITS_PER_LONG - (final - first);
137         mask >>= BITS_PER_LONG - (final);
138
139         ASSERT(offset + length <= PAGE_CACHE_SIZE);
140         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142         return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147         struct page     *page,
148         size_t          offset,
149         size_t          length)
150 {
151         set_page_private(page,
152                 page_private(page) | page_region_mask(offset, length));
153         if (page_private(page) == ~0UL)
154                 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159         struct page     *page,
160         size_t          offset,
161         size_t          length)
162 {
163         unsigned long   mask = page_region_mask(offset, length);
164
165         return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169  *      Mapping of multi-page buffers into contiguous virtual space
170  */
171
172 typedef struct a_list {
173         void            *vm_addr;
174         struct a_list   *next;
175 } a_list_t;
176
177 static a_list_t         *as_free_head;
178 static int              as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182  *      Try to batch vunmaps because they are costly.
183  */
184 STATIC void
185 free_address(
186         void            *addr)
187 {
188         a_list_t        *aentry;
189
190 #ifdef CONFIG_XEN
191         /*
192          * Xen needs to be able to make sure it can get an exclusive
193          * RO mapping of pages it wants to turn into a pagetable.  If
194          * a newly allocated page is also still being vmap()ed by xfs,
195          * it will cause pagetable construction to fail.  This is a
196          * quick workaround to always eagerly unmap pages so that Xen
197          * is happy.
198          */
199         vunmap(addr);
200         return;
201 #endif
202
203         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204         if (likely(aentry)) {
205                 spin_lock(&as_lock);
206                 aentry->next = as_free_head;
207                 aentry->vm_addr = addr;
208                 as_free_head = aentry;
209                 as_list_len++;
210                 spin_unlock(&as_lock);
211         } else {
212                 vunmap(addr);
213         }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219         a_list_t        *aentry, *old;
220
221         if (as_free_head == NULL)
222                 return;
223
224         spin_lock(&as_lock);
225         aentry = as_free_head;
226         as_free_head = NULL;
227         as_list_len = 0;
228         spin_unlock(&as_lock);
229
230         while ((old = aentry) != NULL) {
231                 vunmap(aentry->vm_addr);
232                 aentry = aentry->next;
233                 kfree(old);
234         }
235 }
236
237 /*
238  *      Internal xfs_buf_t object manipulation
239  */
240
241 STATIC void
242 _xfs_buf_initialize(
243         xfs_buf_t               *bp,
244         xfs_buftarg_t           *target,
245         xfs_off_t               range_base,
246         size_t                  range_length,
247         xfs_buf_flags_t         flags)
248 {
249         /*
250          * We don't want certain flags to appear in b_flags.
251          */
252         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254         memset(bp, 0, sizeof(xfs_buf_t));
255         atomic_set(&bp->b_hold, 1);
256         init_MUTEX_LOCKED(&bp->b_iodonesema);
257         INIT_LIST_HEAD(&bp->b_list);
258         INIT_LIST_HEAD(&bp->b_hash_list);
259         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260         XB_SET_OWNER(bp);
261         bp->b_target = target;
262         bp->b_file_offset = range_base;
263         /*
264          * Set buffer_length and count_desired to the same value initially.
265          * I/O routines should use count_desired, which will be the same in
266          * most cases but may be reset (e.g. XFS recovery).
267          */
268         bp->b_buffer_length = bp->b_count_desired = range_length;
269         bp->b_flags = flags;
270         bp->b_bn = XFS_BUF_DADDR_NULL;
271         atomic_set(&bp->b_pin_count, 0);
272         init_waitqueue_head(&bp->b_waiters);
273
274         XFS_STATS_INC(xb_create);
275         XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279  *      Allocate a page array capable of holding a specified number
280  *      of pages, and point the page buf at it.
281  */
282 STATIC int
283 _xfs_buf_get_pages(
284         xfs_buf_t               *bp,
285         int                     page_count,
286         xfs_buf_flags_t         flags)
287 {
288         /* Make sure that we have a page list */
289         if (bp->b_pages == NULL) {
290                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291                 bp->b_page_count = page_count;
292                 if (page_count <= XB_PAGES) {
293                         bp->b_pages = bp->b_page_array;
294                 } else {
295                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
296                                         page_count, xb_to_km(flags));
297                         if (bp->b_pages == NULL)
298                                 return -ENOMEM;
299                 }
300                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301         }
302         return 0;
303 }
304
305 /*
306  *      Frees b_pages if it was allocated.
307  */
308 STATIC void
309 _xfs_buf_free_pages(
310         xfs_buf_t       *bp)
311 {
312         if (bp->b_pages != bp->b_page_array) {
313                 kmem_free(bp->b_pages,
314                           bp->b_page_count * sizeof(struct page *));
315         }
316 }
317
318 /*
319  *      Releases the specified buffer.
320  *
321  *      The modification state of any associated pages is left unchanged.
322  *      The buffer most not be on any hash - use xfs_buf_rele instead for
323  *      hashed and refcounted buffers
324  */
325 void
326 xfs_buf_free(
327         xfs_buf_t               *bp)
328 {
329         XB_TRACE(bp, "free", 0);
330
331         ASSERT(list_empty(&bp->b_hash_list));
332
333         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
334                 uint            i;
335
336                 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337                         free_address(bp->b_addr - bp->b_offset);
338
339                 for (i = 0; i < bp->b_page_count; i++) {
340                         struct page     *page = bp->b_pages[i];
341
342                         if (bp->b_flags & _XBF_PAGE_CACHE)
343                                 ASSERT(!PagePrivate(page));
344                         page_cache_release(page);
345                 }
346                 _xfs_buf_free_pages(bp);
347         }
348
349         xfs_buf_deallocate(bp);
350 }
351
352 /*
353  *      Finds all pages for buffer in question and builds it's page list.
354  */
355 STATIC int
356 _xfs_buf_lookup_pages(
357         xfs_buf_t               *bp,
358         uint                    flags)
359 {
360         struct address_space    *mapping = bp->b_target->bt_mapping;
361         size_t                  blocksize = bp->b_target->bt_bsize;
362         size_t                  size = bp->b_count_desired;
363         size_t                  nbytes, offset;
364         gfp_t                   gfp_mask = xb_to_gfp(flags);
365         unsigned short          page_count, i;
366         pgoff_t                 first;
367         xfs_off_t               end;
368         int                     error;
369
370         end = bp->b_file_offset + bp->b_buffer_length;
371         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
372
373         error = _xfs_buf_get_pages(bp, page_count, flags);
374         if (unlikely(error))
375                 return error;
376         bp->b_flags |= _XBF_PAGE_CACHE;
377
378         offset = bp->b_offset;
379         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
380
381         for (i = 0; i < bp->b_page_count; i++) {
382                 struct page     *page;
383                 uint            retries = 0;
384
385               retry:
386                 page = find_or_create_page(mapping, first + i, gfp_mask);
387                 if (unlikely(page == NULL)) {
388                         if (flags & XBF_READ_AHEAD) {
389                                 bp->b_page_count = i;
390                                 for (i = 0; i < bp->b_page_count; i++)
391                                         unlock_page(bp->b_pages[i]);
392                                 return -ENOMEM;
393                         }
394
395                         /*
396                          * This could deadlock.
397                          *
398                          * But until all the XFS lowlevel code is revamped to
399                          * handle buffer allocation failures we can't do much.
400                          */
401                         if (!(++retries % 100))
402                                 printk(KERN_ERR
403                                         "XFS: possible memory allocation "
404                                         "deadlock in %s (mode:0x%x)\n",
405                                         __FUNCTION__, gfp_mask);
406
407                         XFS_STATS_INC(xb_page_retries);
408                         xfsbufd_wakeup(0, gfp_mask);
409                         congestion_wait(WRITE, HZ/50);
410                         goto retry;
411                 }
412                 unlock_page(page);
413
414                 XFS_STATS_INC(xb_page_found);
415
416                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
417                 size -= nbytes;
418
419                 ASSERT(!PagePrivate(page));
420                 if (!PageUptodate(page)) {
421                         page_count--;
422                         if (blocksize < PAGE_CACHE_SIZE && !PagePrivate(page)) {
423                                 if (test_page_region(page, offset, nbytes))
424                                         page_count++;
425                         }
426                 }
427
428                 bp->b_pages[i] = page;
429                 offset = 0;
430         }
431
432         if (page_count == bp->b_page_count)
433                 bp->b_flags |= XBF_DONE;
434
435         XB_TRACE(bp, "lookup_pages", (long)page_count);
436         return error;
437 }
438
439 /*
440  *      Map buffer into kernel address-space if nessecary.
441  */
442 STATIC int
443 _xfs_buf_map_pages(
444         xfs_buf_t               *bp,
445         uint                    flags)
446 {
447         /* A single page buffer is always mappable */
448         if (bp->b_page_count == 1) {
449                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
450                 bp->b_flags |= XBF_MAPPED;
451         } else if (flags & XBF_MAPPED) {
452                 if (as_list_len > 64)
453                         purge_addresses();
454                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
455                                         VM_MAP, PAGE_KERNEL);
456                 if (unlikely(bp->b_addr == NULL))
457                         return -ENOMEM;
458                 bp->b_addr += bp->b_offset;
459                 bp->b_flags |= XBF_MAPPED;
460         }
461
462         return 0;
463 }
464
465 /*
466  *      Finding and Reading Buffers
467  */
468
469 /*
470  *      Look up, and creates if absent, a lockable buffer for
471  *      a given range of an inode.  The buffer is returned
472  *      locked.  If other overlapping buffers exist, they are
473  *      released before the new buffer is created and locked,
474  *      which may imply that this call will block until those buffers
475  *      are unlocked.  No I/O is implied by this call.
476  */
477 xfs_buf_t *
478 _xfs_buf_find(
479         xfs_buftarg_t           *btp,   /* block device target          */
480         xfs_off_t               ioff,   /* starting offset of range     */
481         size_t                  isize,  /* length of range              */
482         xfs_buf_flags_t         flags,
483         xfs_buf_t               *new_bp)
484 {
485         xfs_off_t               range_base;
486         size_t                  range_length;
487         xfs_bufhash_t           *hash;
488         xfs_buf_t               *bp, *n;
489
490         range_base = (ioff << BBSHIFT);
491         range_length = (isize << BBSHIFT);
492
493         /* Check for IOs smaller than the sector size / not sector aligned */
494         ASSERT(!(range_length < (1 << btp->bt_sshift)));
495         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
496
497         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
498
499         spin_lock(&hash->bh_lock);
500
501         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
502                 ASSERT(btp == bp->b_target);
503                 if (bp->b_file_offset == range_base &&
504                     bp->b_buffer_length == range_length) {
505                         /*
506                          * If we look at something, bring it to the
507                          * front of the list for next time.
508                          */
509                         atomic_inc(&bp->b_hold);
510                         list_move(&bp->b_hash_list, &hash->bh_list);
511                         goto found;
512                 }
513         }
514
515         /* No match found */
516         if (new_bp) {
517                 _xfs_buf_initialize(new_bp, btp, range_base,
518                                 range_length, flags);
519                 new_bp->b_hash = hash;
520                 list_add(&new_bp->b_hash_list, &hash->bh_list);
521         } else {
522                 XFS_STATS_INC(xb_miss_locked);
523         }
524
525         spin_unlock(&hash->bh_lock);
526         return new_bp;
527
528 found:
529         spin_unlock(&hash->bh_lock);
530
531         /* Attempt to get the semaphore without sleeping,
532          * if this does not work then we need to drop the
533          * spinlock and do a hard attempt on the semaphore.
534          */
535         if (down_trylock(&bp->b_sema)) {
536                 if (!(flags & XBF_TRYLOCK)) {
537                         /* wait for buffer ownership */
538                         XB_TRACE(bp, "get_lock", 0);
539                         xfs_buf_lock(bp);
540                         XFS_STATS_INC(xb_get_locked_waited);
541                 } else {
542                         /* We asked for a trylock and failed, no need
543                          * to look at file offset and length here, we
544                          * know that this buffer at least overlaps our
545                          * buffer and is locked, therefore our buffer
546                          * either does not exist, or is this buffer.
547                          */
548                         xfs_buf_rele(bp);
549                         XFS_STATS_INC(xb_busy_locked);
550                         return NULL;
551                 }
552         } else {
553                 /* trylock worked */
554                 XB_SET_OWNER(bp);
555         }
556
557         if (bp->b_flags & XBF_STALE) {
558                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
559                 bp->b_flags &= XBF_MAPPED;
560         }
561         XB_TRACE(bp, "got_lock", 0);
562         XFS_STATS_INC(xb_get_locked);
563         return bp;
564 }
565
566 /*
567  *      Assembles a buffer covering the specified range.
568  *      Storage in memory for all portions of the buffer will be allocated,
569  *      although backing storage may not be.
570  */
571 xfs_buf_t *
572 xfs_buf_get_flags(
573         xfs_buftarg_t           *target,/* target for buffer            */
574         xfs_off_t               ioff,   /* starting offset of range     */
575         size_t                  isize,  /* length of range              */
576         xfs_buf_flags_t         flags)
577 {
578         xfs_buf_t               *bp, *new_bp;
579         int                     error = 0, i;
580
581         new_bp = xfs_buf_allocate(flags);
582         if (unlikely(!new_bp))
583                 return NULL;
584
585         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
586         if (bp == new_bp) {
587                 error = _xfs_buf_lookup_pages(bp, flags);
588                 if (error)
589                         goto no_buffer;
590         } else {
591                 xfs_buf_deallocate(new_bp);
592                 if (unlikely(bp == NULL))
593                         return NULL;
594         }
595
596         for (i = 0; i < bp->b_page_count; i++)
597                 mark_page_accessed(bp->b_pages[i]);
598
599         if (!(bp->b_flags & XBF_MAPPED)) {
600                 error = _xfs_buf_map_pages(bp, flags);
601                 if (unlikely(error)) {
602                         printk(KERN_WARNING "%s: failed to map pages\n",
603                                         __FUNCTION__);
604                         goto no_buffer;
605                 }
606         }
607
608         XFS_STATS_INC(xb_get);
609
610         /*
611          * Always fill in the block number now, the mapped cases can do
612          * their own overlay of this later.
613          */
614         bp->b_bn = ioff;
615         bp->b_count_desired = bp->b_buffer_length;
616
617         XB_TRACE(bp, "get", (unsigned long)flags);
618         return bp;
619
620  no_buffer:
621         if (flags & (XBF_LOCK | XBF_TRYLOCK))
622                 xfs_buf_unlock(bp);
623         xfs_buf_rele(bp);
624         return NULL;
625 }
626
627 xfs_buf_t *
628 xfs_buf_read_flags(
629         xfs_buftarg_t           *target,
630         xfs_off_t               ioff,
631         size_t                  isize,
632         xfs_buf_flags_t         flags)
633 {
634         xfs_buf_t               *bp;
635
636         flags |= XBF_READ;
637
638         bp = xfs_buf_get_flags(target, ioff, isize, flags);
639         if (bp) {
640                 if (!XFS_BUF_ISDONE(bp)) {
641                         XB_TRACE(bp, "read", (unsigned long)flags);
642                         XFS_STATS_INC(xb_get_read);
643                         xfs_buf_iostart(bp, flags);
644                 } else if (flags & XBF_ASYNC) {
645                         XB_TRACE(bp, "read_async", (unsigned long)flags);
646                         /*
647                          * Read ahead call which is already satisfied,
648                          * drop the buffer
649                          */
650                         goto no_buffer;
651                 } else {
652                         XB_TRACE(bp, "read_done", (unsigned long)flags);
653                         /* We do not want read in the flags */
654                         bp->b_flags &= ~XBF_READ;
655                 }
656         }
657
658         return bp;
659
660  no_buffer:
661         if (flags & (XBF_LOCK | XBF_TRYLOCK))
662                 xfs_buf_unlock(bp);
663         xfs_buf_rele(bp);
664         return NULL;
665 }
666
667 /*
668  *      If we are not low on memory then do the readahead in a deadlock
669  *      safe manner.
670  */
671 void
672 xfs_buf_readahead(
673         xfs_buftarg_t           *target,
674         xfs_off_t               ioff,
675         size_t                  isize,
676         xfs_buf_flags_t         flags)
677 {
678         struct backing_dev_info *bdi;
679
680         bdi = target->bt_mapping->backing_dev_info;
681         if (bdi_read_congested(bdi))
682                 return;
683
684         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
685         xfs_buf_read_flags(target, ioff, isize, flags);
686 }
687
688 xfs_buf_t *
689 xfs_buf_get_empty(
690         size_t                  len,
691         xfs_buftarg_t           *target)
692 {
693         xfs_buf_t               *bp;
694
695         bp = xfs_buf_allocate(0);
696         if (bp)
697                 _xfs_buf_initialize(bp, target, 0, len, 0);
698         return bp;
699 }
700
701 static inline struct page *
702 mem_to_page(
703         void                    *addr)
704 {
705         if (((unsigned long)addr < VMALLOC_START) ||
706             ((unsigned long)addr >= VMALLOC_END)) {
707                 return virt_to_page(addr);
708         } else {
709                 return vmalloc_to_page(addr);
710         }
711 }
712
713 int
714 xfs_buf_associate_memory(
715         xfs_buf_t               *bp,
716         void                    *mem,
717         size_t                  len)
718 {
719         int                     rval;
720         int                     i = 0;
721         unsigned long           pageaddr;
722         unsigned long           offset;
723         size_t                  buflen;
724         int                     page_count;
725
726         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
727         offset = (unsigned long)mem - pageaddr;
728         buflen = PAGE_CACHE_ALIGN(len + offset);
729         page_count = buflen >> PAGE_CACHE_SHIFT;
730
731         /* Free any previous set of page pointers */
732         if (bp->b_pages)
733                 _xfs_buf_free_pages(bp);
734
735         bp->b_pages = NULL;
736         bp->b_addr = mem;
737
738         rval = _xfs_buf_get_pages(bp, page_count, 0);
739         if (rval)
740                 return rval;
741
742         bp->b_offset = offset;
743
744         for (i = 0; i < bp->b_page_count; i++) {
745                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
746                 pageaddr += PAGE_CACHE_SIZE;
747         }
748
749         bp->b_count_desired = len;
750         bp->b_buffer_length = buflen;
751         bp->b_flags |= XBF_MAPPED;
752
753         return 0;
754 }
755
756 xfs_buf_t *
757 xfs_buf_get_noaddr(
758         size_t                  len,
759         xfs_buftarg_t           *target)
760 {
761         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
762         int                     error, i;
763         xfs_buf_t               *bp;
764
765         bp = xfs_buf_allocate(0);
766         if (unlikely(bp == NULL))
767                 goto fail;
768         _xfs_buf_initialize(bp, target, 0, len, 0);
769
770         error = _xfs_buf_get_pages(bp, page_count, 0);
771         if (error)
772                 goto fail_free_buf;
773
774         for (i = 0; i < page_count; i++) {
775                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
776                 if (!bp->b_pages[i])
777                         goto fail_free_mem;
778         }
779         bp->b_flags |= _XBF_PAGES;
780
781         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
782         if (unlikely(error)) {
783                 printk(KERN_WARNING "%s: failed to map pages\n",
784                                 __FUNCTION__);
785                 goto fail_free_mem;
786         }
787
788         xfs_buf_unlock(bp);
789
790         XB_TRACE(bp, "no_daddr", len);
791         return bp;
792
793  fail_free_mem:
794         while (--i >= 0)
795                 __free_page(bp->b_pages[i]);
796         _xfs_buf_free_pages(bp);
797  fail_free_buf:
798         xfs_buf_deallocate(bp);
799  fail:
800         return NULL;
801 }
802
803 /*
804  *      Increment reference count on buffer, to hold the buffer concurrently
805  *      with another thread which may release (free) the buffer asynchronously.
806  *      Must hold the buffer already to call this function.
807  */
808 void
809 xfs_buf_hold(
810         xfs_buf_t               *bp)
811 {
812         atomic_inc(&bp->b_hold);
813         XB_TRACE(bp, "hold", 0);
814 }
815
816 /*
817  *      Releases a hold on the specified buffer.  If the
818  *      the hold count is 1, calls xfs_buf_free.
819  */
820 void
821 xfs_buf_rele(
822         xfs_buf_t               *bp)
823 {
824         xfs_bufhash_t           *hash = bp->b_hash;
825
826         XB_TRACE(bp, "rele", bp->b_relse);
827
828         if (unlikely(!hash)) {
829                 ASSERT(!bp->b_relse);
830                 if (atomic_dec_and_test(&bp->b_hold))
831                         xfs_buf_free(bp);
832                 return;
833         }
834
835         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
836                 if (bp->b_relse) {
837                         atomic_inc(&bp->b_hold);
838                         spin_unlock(&hash->bh_lock);
839                         (*(bp->b_relse)) (bp);
840                 } else if (bp->b_flags & XBF_FS_MANAGED) {
841                         spin_unlock(&hash->bh_lock);
842                 } else {
843                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
844                         list_del_init(&bp->b_hash_list);
845                         spin_unlock(&hash->bh_lock);
846                         xfs_buf_free(bp);
847                 }
848         } else {
849                 /*
850                  * Catch reference count leaks
851                  */
852                 ASSERT(atomic_read(&bp->b_hold) >= 0);
853         }
854 }
855
856
857 /*
858  *      Mutual exclusion on buffers.  Locking model:
859  *
860  *      Buffers associated with inodes for which buffer locking
861  *      is not enabled are not protected by semaphores, and are
862  *      assumed to be exclusively owned by the caller.  There is a
863  *      spinlock in the buffer, used by the caller when concurrent
864  *      access is possible.
865  */
866
867 /*
868  *      Locks a buffer object, if it is not already locked.
869  *      Note that this in no way locks the underlying pages, so it is only
870  *      useful for synchronizing concurrent use of buffer objects, not for
871  *      synchronizing independent access to the underlying pages.
872  */
873 int
874 xfs_buf_cond_lock(
875         xfs_buf_t               *bp)
876 {
877         int                     locked;
878
879         locked = down_trylock(&bp->b_sema) == 0;
880         if (locked) {
881                 XB_SET_OWNER(bp);
882         }
883         XB_TRACE(bp, "cond_lock", (long)locked);
884         return locked ? 0 : -EBUSY;
885 }
886
887 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
888 int
889 xfs_buf_lock_value(
890         xfs_buf_t               *bp)
891 {
892         return atomic_read(&bp->b_sema.count);
893 }
894 #endif
895
896 /*
897  *      Locks a buffer object.
898  *      Note that this in no way locks the underlying pages, so it is only
899  *      useful for synchronizing concurrent use of buffer objects, not for
900  *      synchronizing independent access to the underlying pages.
901  */
902 void
903 xfs_buf_lock(
904         xfs_buf_t               *bp)
905 {
906         XB_TRACE(bp, "lock", 0);
907         if (atomic_read(&bp->b_io_remaining))
908                 blk_run_address_space(bp->b_target->bt_mapping);
909         down(&bp->b_sema);
910         XB_SET_OWNER(bp);
911         XB_TRACE(bp, "locked", 0);
912 }
913
914 /*
915  *      Releases the lock on the buffer object.
916  *      If the buffer is marked delwri but is not queued, do so before we
917  *      unlock the buffer as we need to set flags correctly.  We also need to
918  *      take a reference for the delwri queue because the unlocker is going to
919  *      drop their's and they don't know we just queued it.
920  */
921 void
922 xfs_buf_unlock(
923         xfs_buf_t               *bp)
924 {
925         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
926                 atomic_inc(&bp->b_hold);
927                 bp->b_flags |= XBF_ASYNC;
928                 xfs_buf_delwri_queue(bp, 0);
929         }
930
931         XB_CLEAR_OWNER(bp);
932         up(&bp->b_sema);
933         XB_TRACE(bp, "unlock", 0);
934 }
935
936
937 /*
938  *      Pinning Buffer Storage in Memory
939  *      Ensure that no attempt to force a buffer to disk will succeed.
940  */
941 void
942 xfs_buf_pin(
943         xfs_buf_t               *bp)
944 {
945         atomic_inc(&bp->b_pin_count);
946         XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
947 }
948
949 void
950 xfs_buf_unpin(
951         xfs_buf_t               *bp)
952 {
953         if (atomic_dec_and_test(&bp->b_pin_count))
954                 wake_up_all(&bp->b_waiters);
955         XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
956 }
957
958 int
959 xfs_buf_ispin(
960         xfs_buf_t               *bp)
961 {
962         return atomic_read(&bp->b_pin_count);
963 }
964
965 STATIC void
966 xfs_buf_wait_unpin(
967         xfs_buf_t               *bp)
968 {
969         DECLARE_WAITQUEUE       (wait, current);
970
971         if (atomic_read(&bp->b_pin_count) == 0)
972                 return;
973
974         add_wait_queue(&bp->b_waiters, &wait);
975         for (;;) {
976                 set_current_state(TASK_UNINTERRUPTIBLE);
977                 if (atomic_read(&bp->b_pin_count) == 0)
978                         break;
979                 if (atomic_read(&bp->b_io_remaining))
980                         blk_run_address_space(bp->b_target->bt_mapping);
981                 schedule();
982         }
983         remove_wait_queue(&bp->b_waiters, &wait);
984         set_current_state(TASK_RUNNING);
985 }
986
987 /*
988  *      Buffer Utility Routines
989  */
990
991 STATIC void
992 xfs_buf_iodone_work(
993         struct work_struct      *work)
994 {
995         xfs_buf_t               *bp =
996                 container_of(work, xfs_buf_t, b_iodone_work);
997
998         /*
999          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1000          * ordered flag and reissue them.  Because we can't tell the higher
1001          * layers directly that they should not issue ordered I/O anymore, they
1002          * need to check if the ordered flag was cleared during I/O completion.
1003          */
1004         if ((bp->b_error == EOPNOTSUPP) &&
1005             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1006                 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1007                 bp->b_flags &= ~XBF_ORDERED;
1008                 xfs_buf_iorequest(bp);
1009         } else if (bp->b_iodone)
1010                 (*(bp->b_iodone))(bp);
1011         else if (bp->b_flags & XBF_ASYNC)
1012                 xfs_buf_relse(bp);
1013 }
1014
1015 void
1016 xfs_buf_ioend(
1017         xfs_buf_t               *bp,
1018         int                     schedule)
1019 {
1020         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1021         if (bp->b_error == 0)
1022                 bp->b_flags |= XBF_DONE;
1023
1024         XB_TRACE(bp, "iodone", bp->b_iodone);
1025
1026         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1027                 if (schedule) {
1028                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1029                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1030                 } else {
1031                         xfs_buf_iodone_work(&bp->b_iodone_work);
1032                 }
1033         } else {
1034                 up(&bp->b_iodonesema);
1035         }
1036 }
1037
1038 void
1039 xfs_buf_ioerror(
1040         xfs_buf_t               *bp,
1041         int                     error)
1042 {
1043         ASSERT(error >= 0 && error <= 0xffff);
1044         bp->b_error = (unsigned short)error;
1045         XB_TRACE(bp, "ioerror", (unsigned long)error);
1046 }
1047
1048 /*
1049  *      Initiate I/O on a buffer, based on the flags supplied.
1050  *      The b_iodone routine in the buffer supplied will only be called
1051  *      when all of the subsidiary I/O requests, if any, have been completed.
1052  */
1053 int
1054 xfs_buf_iostart(
1055         xfs_buf_t               *bp,
1056         xfs_buf_flags_t         flags)
1057 {
1058         int                     status = 0;
1059
1060         XB_TRACE(bp, "iostart", (unsigned long)flags);
1061
1062         if (flags & XBF_DELWRI) {
1063                 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1064                 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1065                 xfs_buf_delwri_queue(bp, 1);
1066                 return status;
1067         }
1068
1069         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1070                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1071         bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1072                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1073
1074         BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1075
1076         /* For writes allow an alternate strategy routine to precede
1077          * the actual I/O request (which may not be issued at all in
1078          * a shutdown situation, for example).
1079          */
1080         status = (flags & XBF_WRITE) ?
1081                 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1082
1083         /* Wait for I/O if we are not an async request.
1084          * Note: async I/O request completion will release the buffer,
1085          * and that can already be done by this point.  So using the
1086          * buffer pointer from here on, after async I/O, is invalid.
1087          */
1088         if (!status && !(flags & XBF_ASYNC))
1089                 status = xfs_buf_iowait(bp);
1090
1091         return status;
1092 }
1093
1094 STATIC_INLINE void
1095 _xfs_buf_ioend(
1096         xfs_buf_t               *bp,
1097         int                     schedule)
1098 {
1099         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1100                 xfs_buf_ioend(bp, schedule);
1101 }
1102
1103 STATIC void
1104 xfs_buf_bio_end_io(
1105         struct bio              *bio,
1106         int                     error)
1107 {
1108         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1109         unsigned int            blocksize = bp->b_target->bt_bsize;
1110         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1111
1112         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1113                 bp->b_error = EIO;
1114
1115         do {
1116                 struct page     *page = bvec->bv_page;
1117
1118                 ASSERT(!PagePrivate(page));
1119                 if (unlikely(bp->b_error)) {
1120                         if (bp->b_flags & XBF_READ)
1121                                 ClearPageUptodate(page);
1122                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1123                         SetPageUptodate(page);
1124                 } else if (!PagePrivate(page) &&
1125                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1126                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1127                 }
1128
1129                 if (--bvec >= bio->bi_io_vec)
1130                         prefetchw(&bvec->bv_page->flags);
1131         } while (bvec >= bio->bi_io_vec);
1132
1133         _xfs_buf_ioend(bp, 1);
1134         bio_put(bio);
1135 }
1136
1137 STATIC void
1138 _xfs_buf_ioapply(
1139         xfs_buf_t               *bp)
1140 {
1141         int                     rw, map_i, total_nr_pages, nr_pages;
1142         struct bio              *bio;
1143         int                     offset = bp->b_offset;
1144         int                     size = bp->b_count_desired;
1145         sector_t                sector = bp->b_bn;
1146         unsigned int            blocksize = bp->b_target->bt_bsize;
1147
1148         total_nr_pages = bp->b_page_count;
1149         map_i = 0;
1150
1151         if (bp->b_flags & XBF_ORDERED) {
1152                 ASSERT(!(bp->b_flags & XBF_READ));
1153                 rw = WRITE_BARRIER;
1154         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1155                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1156                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1157                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1158         } else {
1159                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1160                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1161         }
1162
1163         /* Special code path for reading a sub page size buffer in --
1164          * we populate up the whole page, and hence the other metadata
1165          * in the same page.  This optimization is only valid when the
1166          * filesystem block size is not smaller than the page size.
1167          */
1168         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1169             (bp->b_flags & XBF_READ) &&
1170             (blocksize >= PAGE_CACHE_SIZE)) {
1171                 bio = bio_alloc(GFP_NOIO, 1);
1172
1173                 bio->bi_bdev = bp->b_target->bt_bdev;
1174                 bio->bi_sector = sector - (offset >> BBSHIFT);
1175                 bio->bi_end_io = xfs_buf_bio_end_io;
1176                 bio->bi_private = bp;
1177
1178                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1179                 size = 0;
1180
1181                 atomic_inc(&bp->b_io_remaining);
1182
1183                 goto submit_io;
1184         }
1185
1186 next_chunk:
1187         atomic_inc(&bp->b_io_remaining);
1188         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1189         if (nr_pages > total_nr_pages)
1190                 nr_pages = total_nr_pages;
1191
1192         bio = bio_alloc(GFP_NOIO, nr_pages);
1193         bio->bi_bdev = bp->b_target->bt_bdev;
1194         bio->bi_sector = sector;
1195         bio->bi_end_io = xfs_buf_bio_end_io;
1196         bio->bi_private = bp;
1197
1198         for (; size && nr_pages; nr_pages--, map_i++) {
1199                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1200
1201                 if (nbytes > size)
1202                         nbytes = size;
1203
1204                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1205                 if (rbytes < nbytes)
1206                         break;
1207
1208                 offset = 0;
1209                 sector += nbytes >> BBSHIFT;
1210                 size -= nbytes;
1211                 total_nr_pages--;
1212         }
1213
1214 submit_io:
1215         if (likely(bio->bi_size)) {
1216                 submit_bio(rw, bio);
1217                 if (size)
1218                         goto next_chunk;
1219         } else {
1220                 bio_put(bio);
1221                 xfs_buf_ioerror(bp, EIO);
1222         }
1223 }
1224
1225 int
1226 xfs_buf_iorequest(
1227         xfs_buf_t               *bp)
1228 {
1229         XB_TRACE(bp, "iorequest", 0);
1230
1231         if (bp->b_flags & XBF_DELWRI) {
1232                 xfs_buf_delwri_queue(bp, 1);
1233                 return 0;
1234         }
1235
1236         if (bp->b_flags & XBF_WRITE) {
1237                 xfs_buf_wait_unpin(bp);
1238         }
1239
1240         xfs_buf_hold(bp);
1241
1242         /* Set the count to 1 initially, this will stop an I/O
1243          * completion callout which happens before we have started
1244          * all the I/O from calling xfs_buf_ioend too early.
1245          */
1246         atomic_set(&bp->b_io_remaining, 1);
1247         _xfs_buf_ioapply(bp);
1248         _xfs_buf_ioend(bp, 0);
1249
1250         xfs_buf_rele(bp);
1251         return 0;
1252 }
1253
1254 /*
1255  *      Waits for I/O to complete on the buffer supplied.
1256  *      It returns immediately if no I/O is pending.
1257  *      It returns the I/O error code, if any, or 0 if there was no error.
1258  */
1259 int
1260 xfs_buf_iowait(
1261         xfs_buf_t               *bp)
1262 {
1263         XB_TRACE(bp, "iowait", 0);
1264         if (atomic_read(&bp->b_io_remaining))
1265                 blk_run_address_space(bp->b_target->bt_mapping);
1266         down(&bp->b_iodonesema);
1267         XB_TRACE(bp, "iowaited", (long)bp->b_error);
1268         return bp->b_error;
1269 }
1270
1271 xfs_caddr_t
1272 xfs_buf_offset(
1273         xfs_buf_t               *bp,
1274         size_t                  offset)
1275 {
1276         struct page             *page;
1277
1278         if (bp->b_flags & XBF_MAPPED)
1279                 return XFS_BUF_PTR(bp) + offset;
1280
1281         offset += bp->b_offset;
1282         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1283         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1284 }
1285
1286 /*
1287  *      Move data into or out of a buffer.
1288  */
1289 void
1290 xfs_buf_iomove(
1291         xfs_buf_t               *bp,    /* buffer to process            */
1292         size_t                  boff,   /* starting buffer offset       */
1293         size_t                  bsize,  /* length to copy               */
1294         caddr_t                 data,   /* data address                 */
1295         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1296 {
1297         size_t                  bend, cpoff, csize;
1298         struct page             *page;
1299
1300         bend = boff + bsize;
1301         while (boff < bend) {
1302                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1303                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1304                 csize = min_t(size_t,
1305                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1306
1307                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1308
1309                 switch (mode) {
1310                 case XBRW_ZERO:
1311                         memset(page_address(page) + cpoff, 0, csize);
1312                         break;
1313                 case XBRW_READ:
1314                         memcpy(data, page_address(page) + cpoff, csize);
1315                         break;
1316                 case XBRW_WRITE:
1317                         memcpy(page_address(page) + cpoff, data, csize);
1318                 }
1319
1320                 boff += csize;
1321                 data += csize;
1322         }
1323 }
1324
1325 /*
1326  *      Handling of buffer targets (buftargs).
1327  */
1328
1329 /*
1330  *      Wait for any bufs with callbacks that have been submitted but
1331  *      have not yet returned... walk the hash list for the target.
1332  */
1333 void
1334 xfs_wait_buftarg(
1335         xfs_buftarg_t   *btp)
1336 {
1337         xfs_buf_t       *bp, *n;
1338         xfs_bufhash_t   *hash;
1339         uint            i;
1340
1341         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1342                 hash = &btp->bt_hash[i];
1343 again:
1344                 spin_lock(&hash->bh_lock);
1345                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1346                         ASSERT(btp == bp->b_target);
1347                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1348                                 spin_unlock(&hash->bh_lock);
1349                                 /*
1350                                  * Catch superblock reference count leaks
1351                                  * immediately
1352                                  */
1353                                 BUG_ON(bp->b_bn == 0);
1354                                 delay(100);
1355                                 goto again;
1356                         }
1357                 }
1358                 spin_unlock(&hash->bh_lock);
1359         }
1360 }
1361
1362 /*
1363  *      Allocate buffer hash table for a given target.
1364  *      For devices containing metadata (i.e. not the log/realtime devices)
1365  *      we need to allocate a much larger hash table.
1366  */
1367 STATIC void
1368 xfs_alloc_bufhash(
1369         xfs_buftarg_t           *btp,
1370         int                     external)
1371 {
1372         unsigned int            i;
1373
1374         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1375         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1376         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1377                                         sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1378         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1379                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1380                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1381         }
1382 }
1383
1384 STATIC void
1385 xfs_free_bufhash(
1386         xfs_buftarg_t           *btp)
1387 {
1388         kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1389         btp->bt_hash = NULL;
1390 }
1391
1392 /*
1393  *      buftarg list for delwrite queue processing
1394  */
1395 static LIST_HEAD(xfs_buftarg_list);
1396 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1397
1398 STATIC void
1399 xfs_register_buftarg(
1400         xfs_buftarg_t           *btp)
1401 {
1402         spin_lock(&xfs_buftarg_lock);
1403         list_add(&btp->bt_list, &xfs_buftarg_list);
1404         spin_unlock(&xfs_buftarg_lock);
1405 }
1406
1407 STATIC void
1408 xfs_unregister_buftarg(
1409         xfs_buftarg_t           *btp)
1410 {
1411         spin_lock(&xfs_buftarg_lock);
1412         list_del(&btp->bt_list);
1413         spin_unlock(&xfs_buftarg_lock);
1414 }
1415
1416 void
1417 xfs_free_buftarg(
1418         xfs_buftarg_t           *btp,
1419         int                     external)
1420 {
1421         xfs_flush_buftarg(btp, 1);
1422         xfs_blkdev_issue_flush(btp);
1423         if (external)
1424                 xfs_blkdev_put(btp->bt_bdev);
1425         xfs_free_bufhash(btp);
1426         iput(btp->bt_mapping->host);
1427
1428         /* Unregister the buftarg first so that we don't get a
1429          * wakeup finding a non-existent task
1430          */
1431         xfs_unregister_buftarg(btp);
1432         kthread_stop(btp->bt_task);
1433
1434         kmem_free(btp, sizeof(*btp));
1435 }
1436
1437 STATIC int
1438 xfs_setsize_buftarg_flags(
1439         xfs_buftarg_t           *btp,
1440         unsigned int            blocksize,
1441         unsigned int            sectorsize,
1442         int                     verbose)
1443 {
1444         btp->bt_bsize = blocksize;
1445         btp->bt_sshift = ffs(sectorsize) - 1;
1446         btp->bt_smask = sectorsize - 1;
1447
1448         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1449                 printk(KERN_WARNING
1450                         "XFS: Cannot set_blocksize to %u on device %s\n",
1451                         sectorsize, XFS_BUFTARG_NAME(btp));
1452                 return EINVAL;
1453         }
1454
1455         if (verbose &&
1456             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1457                 printk(KERN_WARNING
1458                         "XFS: %u byte sectors in use on device %s.  "
1459                         "This is suboptimal; %u or greater is ideal.\n",
1460                         sectorsize, XFS_BUFTARG_NAME(btp),
1461                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1462         }
1463
1464         return 0;
1465 }
1466
1467 /*
1468  *      When allocating the initial buffer target we have not yet
1469  *      read in the superblock, so don't know what sized sectors
1470  *      are being used is at this early stage.  Play safe.
1471  */
1472 STATIC int
1473 xfs_setsize_buftarg_early(
1474         xfs_buftarg_t           *btp,
1475         struct block_device     *bdev)
1476 {
1477         return xfs_setsize_buftarg_flags(btp,
1478                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1479 }
1480
1481 int
1482 xfs_setsize_buftarg(
1483         xfs_buftarg_t           *btp,
1484         unsigned int            blocksize,
1485         unsigned int            sectorsize)
1486 {
1487         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1488 }
1489
1490 STATIC int
1491 xfs_mapping_buftarg(
1492         xfs_buftarg_t           *btp,
1493         struct block_device     *bdev)
1494 {
1495         struct backing_dev_info *bdi;
1496         struct inode            *inode;
1497         struct address_space    *mapping;
1498         static const struct address_space_operations mapping_aops = {
1499                 .sync_page = block_sync_page,
1500                 .migratepage = fail_migrate_page,
1501         };
1502
1503         inode = new_inode(bdev->bd_inode->i_sb);
1504         if (!inode) {
1505                 printk(KERN_WARNING
1506                         "XFS: Cannot allocate mapping inode for device %s\n",
1507                         XFS_BUFTARG_NAME(btp));
1508                 return ENOMEM;
1509         }
1510         inode->i_mode = S_IFBLK;
1511         inode->i_bdev = bdev;
1512         inode->i_rdev = bdev->bd_dev;
1513         bdi = blk_get_backing_dev_info(bdev);
1514         if (!bdi)
1515                 bdi = &default_backing_dev_info;
1516         mapping = &inode->i_data;
1517         mapping->a_ops = &mapping_aops;
1518         mapping->backing_dev_info = bdi;
1519         mapping_set_gfp_mask(mapping, GFP_NOFS);
1520         btp->bt_mapping = mapping;
1521         return 0;
1522 }
1523
1524 STATIC int
1525 xfs_alloc_delwrite_queue(
1526         xfs_buftarg_t           *btp)
1527 {
1528         int     error = 0;
1529
1530         INIT_LIST_HEAD(&btp->bt_list);
1531         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1532         spin_lock_init(&btp->bt_delwrite_lock);
1533         btp->bt_flags = 0;
1534         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1535         if (IS_ERR(btp->bt_task)) {
1536                 error = PTR_ERR(btp->bt_task);
1537                 goto out_error;
1538         }
1539         xfs_register_buftarg(btp);
1540 out_error:
1541         return error;
1542 }
1543
1544 xfs_buftarg_t *
1545 xfs_alloc_buftarg(
1546         struct block_device     *bdev,
1547         int                     external)
1548 {
1549         xfs_buftarg_t           *btp;
1550
1551         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1552
1553         btp->bt_dev =  bdev->bd_dev;
1554         btp->bt_bdev = bdev;
1555         if (xfs_setsize_buftarg_early(btp, bdev))
1556                 goto error;
1557         if (xfs_mapping_buftarg(btp, bdev))
1558                 goto error;
1559         if (xfs_alloc_delwrite_queue(btp))
1560                 goto error;
1561         xfs_alloc_bufhash(btp, external);
1562         return btp;
1563
1564 error:
1565         kmem_free(btp, sizeof(*btp));
1566         return NULL;
1567 }
1568
1569
1570 /*
1571  *      Delayed write buffer handling
1572  */
1573 STATIC void
1574 xfs_buf_delwri_queue(
1575         xfs_buf_t               *bp,
1576         int                     unlock)
1577 {
1578         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1579         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1580
1581         XB_TRACE(bp, "delwri_q", (long)unlock);
1582         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1583
1584         spin_lock(dwlk);
1585         /* If already in the queue, dequeue and place at tail */
1586         if (!list_empty(&bp->b_list)) {
1587                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1588                 if (unlock)
1589                         atomic_dec(&bp->b_hold);
1590                 list_del(&bp->b_list);
1591         }
1592
1593         bp->b_flags |= _XBF_DELWRI_Q;
1594         list_add_tail(&bp->b_list, dwq);
1595         bp->b_queuetime = jiffies;
1596         spin_unlock(dwlk);
1597
1598         if (unlock)
1599                 xfs_buf_unlock(bp);
1600 }
1601
1602 void
1603 xfs_buf_delwri_dequeue(
1604         xfs_buf_t               *bp)
1605 {
1606         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1607         int                     dequeued = 0;
1608
1609         spin_lock(dwlk);
1610         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1611                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1612                 list_del_init(&bp->b_list);
1613                 dequeued = 1;
1614         }
1615         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1616         spin_unlock(dwlk);
1617
1618         if (dequeued)
1619                 xfs_buf_rele(bp);
1620
1621         XB_TRACE(bp, "delwri_dq", (long)dequeued);
1622 }
1623
1624 STATIC void
1625 xfs_buf_runall_queues(
1626         struct workqueue_struct *queue)
1627 {
1628         flush_workqueue(queue);
1629 }
1630
1631 STATIC int
1632 xfsbufd_wakeup(
1633         int                     priority,
1634         gfp_t                   mask)
1635 {
1636         xfs_buftarg_t           *btp;
1637
1638         spin_lock(&xfs_buftarg_lock);
1639         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1640                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1641                         continue;
1642                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1643                 wake_up_process(btp->bt_task);
1644         }
1645         spin_unlock(&xfs_buftarg_lock);
1646         return 0;
1647 }
1648
1649 /*
1650  * Move as many buffers as specified to the supplied list
1651  * idicating if we skipped any buffers to prevent deadlocks.
1652  */
1653 STATIC int
1654 xfs_buf_delwri_split(
1655         xfs_buftarg_t   *target,
1656         struct list_head *list,
1657         unsigned long   age)
1658 {
1659         xfs_buf_t       *bp, *n;
1660         struct list_head *dwq = &target->bt_delwrite_queue;
1661         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1662         int             skipped = 0;
1663         int             force;
1664
1665         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1666         INIT_LIST_HEAD(list);
1667         spin_lock(dwlk);
1668         list_for_each_entry_safe(bp, n, dwq, b_list) {
1669                 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1670                 ASSERT(bp->b_flags & XBF_DELWRI);
1671
1672                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1673                         if (!force &&
1674                             time_before(jiffies, bp->b_queuetime + age)) {
1675                                 xfs_buf_unlock(bp);
1676                                 break;
1677                         }
1678
1679                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1680                                          _XBF_RUN_QUEUES);
1681                         bp->b_flags |= XBF_WRITE;
1682                         list_move_tail(&bp->b_list, list);
1683                 } else
1684                         skipped++;
1685         }
1686         spin_unlock(dwlk);
1687
1688         return skipped;
1689
1690 }
1691
1692 STATIC int
1693 xfsbufd(
1694         void            *data)
1695 {
1696         struct list_head tmp;
1697         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1698         int             count;
1699         xfs_buf_t       *bp;
1700
1701         current->flags |= PF_MEMALLOC;
1702
1703         set_freezable();
1704
1705         do {
1706                 if (unlikely(freezing(current))) {
1707                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1708                         refrigerator();
1709                 } else {
1710                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1711                 }
1712
1713                 schedule_timeout_interruptible(
1714                         xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1715
1716                 xfs_buf_delwri_split(target, &tmp,
1717                                 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1718
1719                 count = 0;
1720                 while (!list_empty(&tmp)) {
1721                         bp = list_entry(tmp.next, xfs_buf_t, b_list);
1722                         ASSERT(target == bp->b_target);
1723
1724                         list_del_init(&bp->b_list);
1725                         xfs_buf_iostrategy(bp);
1726                         count++;
1727                 }
1728
1729                 if (as_list_len > 0)
1730                         purge_addresses();
1731                 if (count)
1732                         blk_run_address_space(target->bt_mapping);
1733
1734         } while (!kthread_should_stop());
1735
1736         return 0;
1737 }
1738
1739 /*
1740  *      Go through all incore buffers, and release buffers if they belong to
1741  *      the given device. This is used in filesystem error handling to
1742  *      preserve the consistency of its metadata.
1743  */
1744 int
1745 xfs_flush_buftarg(
1746         xfs_buftarg_t   *target,
1747         int             wait)
1748 {
1749         struct list_head tmp;
1750         xfs_buf_t       *bp, *n;
1751         int             pincount = 0;
1752
1753         xfs_buf_runall_queues(xfsdatad_workqueue);
1754         xfs_buf_runall_queues(xfslogd_workqueue);
1755
1756         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1757         pincount = xfs_buf_delwri_split(target, &tmp, 0);
1758
1759         /*
1760          * Dropped the delayed write list lock, now walk the temporary list
1761          */
1762         list_for_each_entry_safe(bp, n, &tmp, b_list) {
1763                 ASSERT(target == bp->b_target);
1764                 if (wait)
1765                         bp->b_flags &= ~XBF_ASYNC;
1766                 else
1767                         list_del_init(&bp->b_list);
1768
1769                 xfs_buf_iostrategy(bp);
1770         }
1771
1772         if (wait)
1773                 blk_run_address_space(target->bt_mapping);
1774
1775         /*
1776          * Remaining list items must be flushed before returning
1777          */
1778         while (!list_empty(&tmp)) {
1779                 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1780
1781                 list_del_init(&bp->b_list);
1782                 xfs_iowait(bp);
1783                 xfs_buf_relse(bp);
1784         }
1785
1786         return pincount;
1787 }
1788
1789 int __init
1790 xfs_buf_init(void)
1791 {
1792 #ifdef XFS_BUF_TRACE
1793         xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1794 #endif
1795
1796         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1797                                                 KM_ZONE_HWALIGN, NULL);
1798         if (!xfs_buf_zone)
1799                 goto out_free_trace_buf;
1800
1801         xfslogd_workqueue = create_workqueue("xfslogd");
1802         if (!xfslogd_workqueue)
1803                 goto out_free_buf_zone;
1804
1805         xfsdatad_workqueue = create_workqueue("xfsdatad");
1806         if (!xfsdatad_workqueue)
1807                 goto out_destroy_xfslogd_workqueue;
1808
1809         register_shrinker(&xfs_buf_shake);
1810         return 0;
1811
1812  out_destroy_xfslogd_workqueue:
1813         destroy_workqueue(xfslogd_workqueue);
1814  out_free_buf_zone:
1815         kmem_zone_destroy(xfs_buf_zone);
1816  out_free_trace_buf:
1817 #ifdef XFS_BUF_TRACE
1818         ktrace_free(xfs_buf_trace_buf);
1819 #endif
1820         return -ENOMEM;
1821 }
1822
1823 void
1824 xfs_buf_terminate(void)
1825 {
1826         unregister_shrinker(&xfs_buf_shake);
1827         destroy_workqueue(xfsdatad_workqueue);
1828         destroy_workqueue(xfslogd_workqueue);
1829         kmem_zone_destroy(xfs_buf_zone);
1830 #ifdef XFS_BUF_TRACE
1831         ktrace_free(xfs_buf_trace_buf);
1832 #endif
1833 }
1834
1835 #ifdef CONFIG_KDB_MODULES
1836 struct list_head *
1837 xfs_get_buftarg_list(void)
1838 {
1839         return &xfs_buftarg_list;
1840 }
1841 #endif