]> err.no Git - linux-2.6/blob - fs/xfs/linux-2.6/xfs_buf.c
Merge git://git.infradead.org/~kmpark/onenand-mtd-2.6
[linux-2.6] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42         .shrink = xfsbufd_wakeup,
43         .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52         xfs_buf_t       *bp,
53         char            *id,
54         void            *data,
55         void            *ra)
56 {
57         ktrace_enter(xfs_buf_trace_buf,
58                 bp, id,
59                 (void *)(unsigned long)bp->b_flags,
60                 (void *)(unsigned long)bp->b_hold.counter,
61                 (void *)(unsigned long)bp->b_sema.count.counter,
62                 (void *)current,
63                 data, ra,
64                 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65                 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66                 (void *)(unsigned long)bp->b_buffer_length,
67                 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE      4096
71 #define XB_TRACE(bp, id, data)  \
72         xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data)  do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp)       do { } while (0)
83 # define XB_CLEAR_OWNER(bp)     do { } while (0)
84 # define XB_GET_OWNER(bp)       do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97         kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100  *      Page Region interfaces.
101  *
102  *      For pages in filesystems where the blocksize is smaller than the
103  *      pagesize, we use the page->private field (long) to hold a bitmap
104  *      of uptodate regions within the page.
105  *
106  *      Each such region is "bytes per page / bits per long" bytes long.
107  *
108  *      NBPPR == number-of-bytes-per-page-region
109  *      BTOPR == bytes-to-page-region (rounded up)
110  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
111  */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125         size_t          offset,
126         size_t          length)
127 {
128         unsigned long   mask;
129         int             first, final;
130
131         first = BTOPR(offset);
132         final = BTOPRT(offset + length - 1);
133         first = min(first, final);
134
135         mask = ~0UL;
136         mask <<= BITS_PER_LONG - (final - first);
137         mask >>= BITS_PER_LONG - (final);
138
139         ASSERT(offset + length <= PAGE_CACHE_SIZE);
140         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142         return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147         struct page     *page,
148         size_t          offset,
149         size_t          length)
150 {
151         set_page_private(page,
152                 page_private(page) | page_region_mask(offset, length));
153         if (page_private(page) == ~0UL)
154                 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159         struct page     *page,
160         size_t          offset,
161         size_t          length)
162 {
163         unsigned long   mask = page_region_mask(offset, length);
164
165         return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169  *      Mapping of multi-page buffers into contiguous virtual space
170  */
171
172 typedef struct a_list {
173         void            *vm_addr;
174         struct a_list   *next;
175 } a_list_t;
176
177 static a_list_t         *as_free_head;
178 static int              as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182  *      Try to batch vunmaps because they are costly.
183  */
184 STATIC void
185 free_address(
186         void            *addr)
187 {
188         a_list_t        *aentry;
189
190 #ifdef CONFIG_XEN
191         /*
192          * Xen needs to be able to make sure it can get an exclusive
193          * RO mapping of pages it wants to turn into a pagetable.  If
194          * a newly allocated page is also still being vmap()ed by xfs,
195          * it will cause pagetable construction to fail.  This is a
196          * quick workaround to always eagerly unmap pages so that Xen
197          * is happy.
198          */
199         vunmap(addr);
200         return;
201 #endif
202
203         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204         if (likely(aentry)) {
205                 spin_lock(&as_lock);
206                 aentry->next = as_free_head;
207                 aentry->vm_addr = addr;
208                 as_free_head = aentry;
209                 as_list_len++;
210                 spin_unlock(&as_lock);
211         } else {
212                 vunmap(addr);
213         }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219         a_list_t        *aentry, *old;
220
221         if (as_free_head == NULL)
222                 return;
223
224         spin_lock(&as_lock);
225         aentry = as_free_head;
226         as_free_head = NULL;
227         as_list_len = 0;
228         spin_unlock(&as_lock);
229
230         while ((old = aentry) != NULL) {
231                 vunmap(aentry->vm_addr);
232                 aentry = aentry->next;
233                 kfree(old);
234         }
235 }
236
237 /*
238  *      Internal xfs_buf_t object manipulation
239  */
240
241 STATIC void
242 _xfs_buf_initialize(
243         xfs_buf_t               *bp,
244         xfs_buftarg_t           *target,
245         xfs_off_t               range_base,
246         size_t                  range_length,
247         xfs_buf_flags_t         flags)
248 {
249         /*
250          * We don't want certain flags to appear in b_flags.
251          */
252         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254         memset(bp, 0, sizeof(xfs_buf_t));
255         atomic_set(&bp->b_hold, 1);
256         init_MUTEX_LOCKED(&bp->b_iodonesema);
257         INIT_LIST_HEAD(&bp->b_list);
258         INIT_LIST_HEAD(&bp->b_hash_list);
259         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260         XB_SET_OWNER(bp);
261         bp->b_target = target;
262         bp->b_file_offset = range_base;
263         /*
264          * Set buffer_length and count_desired to the same value initially.
265          * I/O routines should use count_desired, which will be the same in
266          * most cases but may be reset (e.g. XFS recovery).
267          */
268         bp->b_buffer_length = bp->b_count_desired = range_length;
269         bp->b_flags = flags;
270         bp->b_bn = XFS_BUF_DADDR_NULL;
271         atomic_set(&bp->b_pin_count, 0);
272         init_waitqueue_head(&bp->b_waiters);
273
274         XFS_STATS_INC(xb_create);
275         XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279  *      Allocate a page array capable of holding a specified number
280  *      of pages, and point the page buf at it.
281  */
282 STATIC int
283 _xfs_buf_get_pages(
284         xfs_buf_t               *bp,
285         int                     page_count,
286         xfs_buf_flags_t         flags)
287 {
288         /* Make sure that we have a page list */
289         if (bp->b_pages == NULL) {
290                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291                 bp->b_page_count = page_count;
292                 if (page_count <= XB_PAGES) {
293                         bp->b_pages = bp->b_page_array;
294                 } else {
295                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
296                                         page_count, xb_to_km(flags));
297                         if (bp->b_pages == NULL)
298                                 return -ENOMEM;
299                 }
300                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301         }
302         return 0;
303 }
304
305 /*
306  *      Frees b_pages if it was allocated.
307  */
308 STATIC void
309 _xfs_buf_free_pages(
310         xfs_buf_t       *bp)
311 {
312         if (bp->b_pages != bp->b_page_array) {
313                 kmem_free(bp->b_pages,
314                           bp->b_page_count * sizeof(struct page *));
315         }
316 }
317
318 /*
319  *      Releases the specified buffer.
320  *
321  *      The modification state of any associated pages is left unchanged.
322  *      The buffer most not be on any hash - use xfs_buf_rele instead for
323  *      hashed and refcounted buffers
324  */
325 void
326 xfs_buf_free(
327         xfs_buf_t               *bp)
328 {
329         XB_TRACE(bp, "free", 0);
330
331         ASSERT(list_empty(&bp->b_hash_list));
332
333         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
334                 uint            i;
335
336                 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337                         free_address(bp->b_addr - bp->b_offset);
338
339                 for (i = 0; i < bp->b_page_count; i++) {
340                         struct page     *page = bp->b_pages[i];
341
342                         if (bp->b_flags & _XBF_PAGE_CACHE)
343                                 ASSERT(!PagePrivate(page));
344                         page_cache_release(page);
345                 }
346                 _xfs_buf_free_pages(bp);
347         }
348
349         xfs_buf_deallocate(bp);
350 }
351
352 /*
353  *      Finds all pages for buffer in question and builds it's page list.
354  */
355 STATIC int
356 _xfs_buf_lookup_pages(
357         xfs_buf_t               *bp,
358         uint                    flags)
359 {
360         struct address_space    *mapping = bp->b_target->bt_mapping;
361         size_t                  blocksize = bp->b_target->bt_bsize;
362         size_t                  size = bp->b_count_desired;
363         size_t                  nbytes, offset;
364         gfp_t                   gfp_mask = xb_to_gfp(flags);
365         unsigned short          page_count, i;
366         pgoff_t                 first;
367         xfs_off_t               end;
368         int                     error;
369
370         end = bp->b_file_offset + bp->b_buffer_length;
371         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
372
373         error = _xfs_buf_get_pages(bp, page_count, flags);
374         if (unlikely(error))
375                 return error;
376         bp->b_flags |= _XBF_PAGE_CACHE;
377
378         offset = bp->b_offset;
379         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
380
381         for (i = 0; i < bp->b_page_count; i++) {
382                 struct page     *page;
383                 uint            retries = 0;
384
385               retry:
386                 page = find_or_create_page(mapping, first + i, gfp_mask);
387                 if (unlikely(page == NULL)) {
388                         if (flags & XBF_READ_AHEAD) {
389                                 bp->b_page_count = i;
390                                 for (i = 0; i < bp->b_page_count; i++)
391                                         unlock_page(bp->b_pages[i]);
392                                 return -ENOMEM;
393                         }
394
395                         /*
396                          * This could deadlock.
397                          *
398                          * But until all the XFS lowlevel code is revamped to
399                          * handle buffer allocation failures we can't do much.
400                          */
401                         if (!(++retries % 100))
402                                 printk(KERN_ERR
403                                         "XFS: possible memory allocation "
404                                         "deadlock in %s (mode:0x%x)\n",
405                                         __FUNCTION__, gfp_mask);
406
407                         XFS_STATS_INC(xb_page_retries);
408                         xfsbufd_wakeup(0, gfp_mask);
409                         congestion_wait(WRITE, HZ/50);
410                         goto retry;
411                 }
412
413                 XFS_STATS_INC(xb_page_found);
414
415                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416                 size -= nbytes;
417
418                 ASSERT(!PagePrivate(page));
419                 if (!PageUptodate(page)) {
420                         page_count--;
421                         if (blocksize >= PAGE_CACHE_SIZE) {
422                                 if (flags & XBF_READ)
423                                         bp->b_locked = 1;
424                         } else if (!PagePrivate(page)) {
425                                 if (test_page_region(page, offset, nbytes))
426                                         page_count++;
427                         }
428                 }
429
430                 bp->b_pages[i] = page;
431                 offset = 0;
432         }
433
434         if (!bp->b_locked) {
435                 for (i = 0; i < bp->b_page_count; i++)
436                         unlock_page(bp->b_pages[i]);
437         }
438
439         if (page_count == bp->b_page_count)
440                 bp->b_flags |= XBF_DONE;
441
442         XB_TRACE(bp, "lookup_pages", (long)page_count);
443         return error;
444 }
445
446 /*
447  *      Map buffer into kernel address-space if nessecary.
448  */
449 STATIC int
450 _xfs_buf_map_pages(
451         xfs_buf_t               *bp,
452         uint                    flags)
453 {
454         /* A single page buffer is always mappable */
455         if (bp->b_page_count == 1) {
456                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457                 bp->b_flags |= XBF_MAPPED;
458         } else if (flags & XBF_MAPPED) {
459                 if (as_list_len > 64)
460                         purge_addresses();
461                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462                                         VM_MAP, PAGE_KERNEL);
463                 if (unlikely(bp->b_addr == NULL))
464                         return -ENOMEM;
465                 bp->b_addr += bp->b_offset;
466                 bp->b_flags |= XBF_MAPPED;
467         }
468
469         return 0;
470 }
471
472 /*
473  *      Finding and Reading Buffers
474  */
475
476 /*
477  *      Look up, and creates if absent, a lockable buffer for
478  *      a given range of an inode.  The buffer is returned
479  *      locked.  If other overlapping buffers exist, they are
480  *      released before the new buffer is created and locked,
481  *      which may imply that this call will block until those buffers
482  *      are unlocked.  No I/O is implied by this call.
483  */
484 xfs_buf_t *
485 _xfs_buf_find(
486         xfs_buftarg_t           *btp,   /* block device target          */
487         xfs_off_t               ioff,   /* starting offset of range     */
488         size_t                  isize,  /* length of range              */
489         xfs_buf_flags_t         flags,
490         xfs_buf_t               *new_bp)
491 {
492         xfs_off_t               range_base;
493         size_t                  range_length;
494         xfs_bufhash_t           *hash;
495         xfs_buf_t               *bp, *n;
496
497         range_base = (ioff << BBSHIFT);
498         range_length = (isize << BBSHIFT);
499
500         /* Check for IOs smaller than the sector size / not sector aligned */
501         ASSERT(!(range_length < (1 << btp->bt_sshift)));
502         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
503
504         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
505
506         spin_lock(&hash->bh_lock);
507
508         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509                 ASSERT(btp == bp->b_target);
510                 if (bp->b_file_offset == range_base &&
511                     bp->b_buffer_length == range_length) {
512                         /*
513                          * If we look at something, bring it to the
514                          * front of the list for next time.
515                          */
516                         atomic_inc(&bp->b_hold);
517                         list_move(&bp->b_hash_list, &hash->bh_list);
518                         goto found;
519                 }
520         }
521
522         /* No match found */
523         if (new_bp) {
524                 _xfs_buf_initialize(new_bp, btp, range_base,
525                                 range_length, flags);
526                 new_bp->b_hash = hash;
527                 list_add(&new_bp->b_hash_list, &hash->bh_list);
528         } else {
529                 XFS_STATS_INC(xb_miss_locked);
530         }
531
532         spin_unlock(&hash->bh_lock);
533         return new_bp;
534
535 found:
536         spin_unlock(&hash->bh_lock);
537
538         /* Attempt to get the semaphore without sleeping,
539          * if this does not work then we need to drop the
540          * spinlock and do a hard attempt on the semaphore.
541          */
542         if (down_trylock(&bp->b_sema)) {
543                 if (!(flags & XBF_TRYLOCK)) {
544                         /* wait for buffer ownership */
545                         XB_TRACE(bp, "get_lock", 0);
546                         xfs_buf_lock(bp);
547                         XFS_STATS_INC(xb_get_locked_waited);
548                 } else {
549                         /* We asked for a trylock and failed, no need
550                          * to look at file offset and length here, we
551                          * know that this buffer at least overlaps our
552                          * buffer and is locked, therefore our buffer
553                          * either does not exist, or is this buffer.
554                          */
555                         xfs_buf_rele(bp);
556                         XFS_STATS_INC(xb_busy_locked);
557                         return NULL;
558                 }
559         } else {
560                 /* trylock worked */
561                 XB_SET_OWNER(bp);
562         }
563
564         if (bp->b_flags & XBF_STALE) {
565                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566                 bp->b_flags &= XBF_MAPPED;
567         }
568         XB_TRACE(bp, "got_lock", 0);
569         XFS_STATS_INC(xb_get_locked);
570         return bp;
571 }
572
573 /*
574  *      Assembles a buffer covering the specified range.
575  *      Storage in memory for all portions of the buffer will be allocated,
576  *      although backing storage may not be.
577  */
578 xfs_buf_t *
579 xfs_buf_get_flags(
580         xfs_buftarg_t           *target,/* target for buffer            */
581         xfs_off_t               ioff,   /* starting offset of range     */
582         size_t                  isize,  /* length of range              */
583         xfs_buf_flags_t         flags)
584 {
585         xfs_buf_t               *bp, *new_bp;
586         int                     error = 0, i;
587
588         new_bp = xfs_buf_allocate(flags);
589         if (unlikely(!new_bp))
590                 return NULL;
591
592         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
593         if (bp == new_bp) {
594                 error = _xfs_buf_lookup_pages(bp, flags);
595                 if (error)
596                         goto no_buffer;
597         } else {
598                 xfs_buf_deallocate(new_bp);
599                 if (unlikely(bp == NULL))
600                         return NULL;
601         }
602
603         for (i = 0; i < bp->b_page_count; i++)
604                 mark_page_accessed(bp->b_pages[i]);
605
606         if (!(bp->b_flags & XBF_MAPPED)) {
607                 error = _xfs_buf_map_pages(bp, flags);
608                 if (unlikely(error)) {
609                         printk(KERN_WARNING "%s: failed to map pages\n",
610                                         __FUNCTION__);
611                         goto no_buffer;
612                 }
613         }
614
615         XFS_STATS_INC(xb_get);
616
617         /*
618          * Always fill in the block number now, the mapped cases can do
619          * their own overlay of this later.
620          */
621         bp->b_bn = ioff;
622         bp->b_count_desired = bp->b_buffer_length;
623
624         XB_TRACE(bp, "get", (unsigned long)flags);
625         return bp;
626
627  no_buffer:
628         if (flags & (XBF_LOCK | XBF_TRYLOCK))
629                 xfs_buf_unlock(bp);
630         xfs_buf_rele(bp);
631         return NULL;
632 }
633
634 xfs_buf_t *
635 xfs_buf_read_flags(
636         xfs_buftarg_t           *target,
637         xfs_off_t               ioff,
638         size_t                  isize,
639         xfs_buf_flags_t         flags)
640 {
641         xfs_buf_t               *bp;
642
643         flags |= XBF_READ;
644
645         bp = xfs_buf_get_flags(target, ioff, isize, flags);
646         if (bp) {
647                 if (!XFS_BUF_ISDONE(bp)) {
648                         XB_TRACE(bp, "read", (unsigned long)flags);
649                         XFS_STATS_INC(xb_get_read);
650                         xfs_buf_iostart(bp, flags);
651                 } else if (flags & XBF_ASYNC) {
652                         XB_TRACE(bp, "read_async", (unsigned long)flags);
653                         /*
654                          * Read ahead call which is already satisfied,
655                          * drop the buffer
656                          */
657                         goto no_buffer;
658                 } else {
659                         XB_TRACE(bp, "read_done", (unsigned long)flags);
660                         /* We do not want read in the flags */
661                         bp->b_flags &= ~XBF_READ;
662                 }
663         }
664
665         return bp;
666
667  no_buffer:
668         if (flags & (XBF_LOCK | XBF_TRYLOCK))
669                 xfs_buf_unlock(bp);
670         xfs_buf_rele(bp);
671         return NULL;
672 }
673
674 /*
675  *      If we are not low on memory then do the readahead in a deadlock
676  *      safe manner.
677  */
678 void
679 xfs_buf_readahead(
680         xfs_buftarg_t           *target,
681         xfs_off_t               ioff,
682         size_t                  isize,
683         xfs_buf_flags_t         flags)
684 {
685         struct backing_dev_info *bdi;
686
687         bdi = target->bt_mapping->backing_dev_info;
688         if (bdi_read_congested(bdi))
689                 return;
690
691         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
692         xfs_buf_read_flags(target, ioff, isize, flags);
693 }
694
695 xfs_buf_t *
696 xfs_buf_get_empty(
697         size_t                  len,
698         xfs_buftarg_t           *target)
699 {
700         xfs_buf_t               *bp;
701
702         bp = xfs_buf_allocate(0);
703         if (bp)
704                 _xfs_buf_initialize(bp, target, 0, len, 0);
705         return bp;
706 }
707
708 static inline struct page *
709 mem_to_page(
710         void                    *addr)
711 {
712         if (((unsigned long)addr < VMALLOC_START) ||
713             ((unsigned long)addr >= VMALLOC_END)) {
714                 return virt_to_page(addr);
715         } else {
716                 return vmalloc_to_page(addr);
717         }
718 }
719
720 int
721 xfs_buf_associate_memory(
722         xfs_buf_t               *bp,
723         void                    *mem,
724         size_t                  len)
725 {
726         int                     rval;
727         int                     i = 0;
728         unsigned long           pageaddr;
729         unsigned long           offset;
730         size_t                  buflen;
731         int                     page_count;
732
733         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
734         offset = (unsigned long)mem - pageaddr;
735         buflen = PAGE_CACHE_ALIGN(len + offset);
736         page_count = buflen >> PAGE_CACHE_SHIFT;
737
738         /* Free any previous set of page pointers */
739         if (bp->b_pages)
740                 _xfs_buf_free_pages(bp);
741
742         bp->b_pages = NULL;
743         bp->b_addr = mem;
744
745         rval = _xfs_buf_get_pages(bp, page_count, 0);
746         if (rval)
747                 return rval;
748
749         bp->b_offset = offset;
750
751         for (i = 0; i < bp->b_page_count; i++) {
752                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
753                 pageaddr += PAGE_CACHE_SIZE;
754         }
755         bp->b_locked = 0;
756
757         bp->b_count_desired = len;
758         bp->b_buffer_length = buflen;
759         bp->b_flags |= XBF_MAPPED;
760
761         return 0;
762 }
763
764 xfs_buf_t *
765 xfs_buf_get_noaddr(
766         size_t                  len,
767         xfs_buftarg_t           *target)
768 {
769         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
770         int                     error, i;
771         xfs_buf_t               *bp;
772
773         bp = xfs_buf_allocate(0);
774         if (unlikely(bp == NULL))
775                 goto fail;
776         _xfs_buf_initialize(bp, target, 0, len, 0);
777
778         error = _xfs_buf_get_pages(bp, page_count, 0);
779         if (error)
780                 goto fail_free_buf;
781
782         for (i = 0; i < page_count; i++) {
783                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
784                 if (!bp->b_pages[i])
785                         goto fail_free_mem;
786         }
787         bp->b_flags |= _XBF_PAGES;
788
789         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
790         if (unlikely(error)) {
791                 printk(KERN_WARNING "%s: failed to map pages\n",
792                                 __FUNCTION__);
793                 goto fail_free_mem;
794         }
795
796         xfs_buf_unlock(bp);
797
798         XB_TRACE(bp, "no_daddr", len);
799         return bp;
800
801  fail_free_mem:
802         while (--i >= 0)
803                 __free_page(bp->b_pages[i]);
804         _xfs_buf_free_pages(bp);
805  fail_free_buf:
806         xfs_buf_deallocate(bp);
807  fail:
808         return NULL;
809 }
810
811 /*
812  *      Increment reference count on buffer, to hold the buffer concurrently
813  *      with another thread which may release (free) the buffer asynchronously.
814  *      Must hold the buffer already to call this function.
815  */
816 void
817 xfs_buf_hold(
818         xfs_buf_t               *bp)
819 {
820         atomic_inc(&bp->b_hold);
821         XB_TRACE(bp, "hold", 0);
822 }
823
824 /*
825  *      Releases a hold on the specified buffer.  If the
826  *      the hold count is 1, calls xfs_buf_free.
827  */
828 void
829 xfs_buf_rele(
830         xfs_buf_t               *bp)
831 {
832         xfs_bufhash_t           *hash = bp->b_hash;
833
834         XB_TRACE(bp, "rele", bp->b_relse);
835
836         if (unlikely(!hash)) {
837                 ASSERT(!bp->b_relse);
838                 if (atomic_dec_and_test(&bp->b_hold))
839                         xfs_buf_free(bp);
840                 return;
841         }
842
843         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
844                 if (bp->b_relse) {
845                         atomic_inc(&bp->b_hold);
846                         spin_unlock(&hash->bh_lock);
847                         (*(bp->b_relse)) (bp);
848                 } else if (bp->b_flags & XBF_FS_MANAGED) {
849                         spin_unlock(&hash->bh_lock);
850                 } else {
851                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
852                         list_del_init(&bp->b_hash_list);
853                         spin_unlock(&hash->bh_lock);
854                         xfs_buf_free(bp);
855                 }
856         } else {
857                 /*
858                  * Catch reference count leaks
859                  */
860                 ASSERT(atomic_read(&bp->b_hold) >= 0);
861         }
862 }
863
864
865 /*
866  *      Mutual exclusion on buffers.  Locking model:
867  *
868  *      Buffers associated with inodes for which buffer locking
869  *      is not enabled are not protected by semaphores, and are
870  *      assumed to be exclusively owned by the caller.  There is a
871  *      spinlock in the buffer, used by the caller when concurrent
872  *      access is possible.
873  */
874
875 /*
876  *      Locks a buffer object, if it is not already locked.
877  *      Note that this in no way locks the underlying pages, so it is only
878  *      useful for synchronizing concurrent use of buffer objects, not for
879  *      synchronizing independent access to the underlying pages.
880  */
881 int
882 xfs_buf_cond_lock(
883         xfs_buf_t               *bp)
884 {
885         int                     locked;
886
887         locked = down_trylock(&bp->b_sema) == 0;
888         if (locked) {
889                 XB_SET_OWNER(bp);
890         }
891         XB_TRACE(bp, "cond_lock", (long)locked);
892         return locked ? 0 : -EBUSY;
893 }
894
895 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
896 int
897 xfs_buf_lock_value(
898         xfs_buf_t               *bp)
899 {
900         return atomic_read(&bp->b_sema.count);
901 }
902 #endif
903
904 /*
905  *      Locks a buffer object.
906  *      Note that this in no way locks the underlying pages, so it is only
907  *      useful for synchronizing concurrent use of buffer objects, not for
908  *      synchronizing independent access to the underlying pages.
909  */
910 void
911 xfs_buf_lock(
912         xfs_buf_t               *bp)
913 {
914         XB_TRACE(bp, "lock", 0);
915         if (atomic_read(&bp->b_io_remaining))
916                 blk_run_address_space(bp->b_target->bt_mapping);
917         down(&bp->b_sema);
918         XB_SET_OWNER(bp);
919         XB_TRACE(bp, "locked", 0);
920 }
921
922 /*
923  *      Releases the lock on the buffer object.
924  *      If the buffer is marked delwri but is not queued, do so before we
925  *      unlock the buffer as we need to set flags correctly.  We also need to
926  *      take a reference for the delwri queue because the unlocker is going to
927  *      drop their's and they don't know we just queued it.
928  */
929 void
930 xfs_buf_unlock(
931         xfs_buf_t               *bp)
932 {
933         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
934                 atomic_inc(&bp->b_hold);
935                 bp->b_flags |= XBF_ASYNC;
936                 xfs_buf_delwri_queue(bp, 0);
937         }
938
939         XB_CLEAR_OWNER(bp);
940         up(&bp->b_sema);
941         XB_TRACE(bp, "unlock", 0);
942 }
943
944
945 /*
946  *      Pinning Buffer Storage in Memory
947  *      Ensure that no attempt to force a buffer to disk will succeed.
948  */
949 void
950 xfs_buf_pin(
951         xfs_buf_t               *bp)
952 {
953         atomic_inc(&bp->b_pin_count);
954         XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
955 }
956
957 void
958 xfs_buf_unpin(
959         xfs_buf_t               *bp)
960 {
961         if (atomic_dec_and_test(&bp->b_pin_count))
962                 wake_up_all(&bp->b_waiters);
963         XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
964 }
965
966 int
967 xfs_buf_ispin(
968         xfs_buf_t               *bp)
969 {
970         return atomic_read(&bp->b_pin_count);
971 }
972
973 STATIC void
974 xfs_buf_wait_unpin(
975         xfs_buf_t               *bp)
976 {
977         DECLARE_WAITQUEUE       (wait, current);
978
979         if (atomic_read(&bp->b_pin_count) == 0)
980                 return;
981
982         add_wait_queue(&bp->b_waiters, &wait);
983         for (;;) {
984                 set_current_state(TASK_UNINTERRUPTIBLE);
985                 if (atomic_read(&bp->b_pin_count) == 0)
986                         break;
987                 if (atomic_read(&bp->b_io_remaining))
988                         blk_run_address_space(bp->b_target->bt_mapping);
989                 schedule();
990         }
991         remove_wait_queue(&bp->b_waiters, &wait);
992         set_current_state(TASK_RUNNING);
993 }
994
995 /*
996  *      Buffer Utility Routines
997  */
998
999 STATIC void
1000 xfs_buf_iodone_work(
1001         struct work_struct      *work)
1002 {
1003         xfs_buf_t               *bp =
1004                 container_of(work, xfs_buf_t, b_iodone_work);
1005
1006         /*
1007          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1008          * ordered flag and reissue them.  Because we can't tell the higher
1009          * layers directly that they should not issue ordered I/O anymore, they
1010          * need to check if the ordered flag was cleared during I/O completion.
1011          */
1012         if ((bp->b_error == EOPNOTSUPP) &&
1013             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1014                 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1015                 bp->b_flags &= ~XBF_ORDERED;
1016                 xfs_buf_iorequest(bp);
1017         } else if (bp->b_iodone)
1018                 (*(bp->b_iodone))(bp);
1019         else if (bp->b_flags & XBF_ASYNC)
1020                 xfs_buf_relse(bp);
1021 }
1022
1023 void
1024 xfs_buf_ioend(
1025         xfs_buf_t               *bp,
1026         int                     schedule)
1027 {
1028         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1029         if (bp->b_error == 0)
1030                 bp->b_flags |= XBF_DONE;
1031
1032         XB_TRACE(bp, "iodone", bp->b_iodone);
1033
1034         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1035                 if (schedule) {
1036                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1037                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1038                 } else {
1039                         xfs_buf_iodone_work(&bp->b_iodone_work);
1040                 }
1041         } else {
1042                 up(&bp->b_iodonesema);
1043         }
1044 }
1045
1046 void
1047 xfs_buf_ioerror(
1048         xfs_buf_t               *bp,
1049         int                     error)
1050 {
1051         ASSERT(error >= 0 && error <= 0xffff);
1052         bp->b_error = (unsigned short)error;
1053         XB_TRACE(bp, "ioerror", (unsigned long)error);
1054 }
1055
1056 /*
1057  *      Initiate I/O on a buffer, based on the flags supplied.
1058  *      The b_iodone routine in the buffer supplied will only be called
1059  *      when all of the subsidiary I/O requests, if any, have been completed.
1060  */
1061 int
1062 xfs_buf_iostart(
1063         xfs_buf_t               *bp,
1064         xfs_buf_flags_t         flags)
1065 {
1066         int                     status = 0;
1067
1068         XB_TRACE(bp, "iostart", (unsigned long)flags);
1069
1070         if (flags & XBF_DELWRI) {
1071                 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1072                 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1073                 xfs_buf_delwri_queue(bp, 1);
1074                 return status;
1075         }
1076
1077         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1078                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1079         bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1080                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1081
1082         BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1083
1084         /* For writes allow an alternate strategy routine to precede
1085          * the actual I/O request (which may not be issued at all in
1086          * a shutdown situation, for example).
1087          */
1088         status = (flags & XBF_WRITE) ?
1089                 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1090
1091         /* Wait for I/O if we are not an async request.
1092          * Note: async I/O request completion will release the buffer,
1093          * and that can already be done by this point.  So using the
1094          * buffer pointer from here on, after async I/O, is invalid.
1095          */
1096         if (!status && !(flags & XBF_ASYNC))
1097                 status = xfs_buf_iowait(bp);
1098
1099         return status;
1100 }
1101
1102 STATIC_INLINE int
1103 _xfs_buf_iolocked(
1104         xfs_buf_t               *bp)
1105 {
1106         ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1107         if (bp->b_flags & XBF_READ)
1108                 return bp->b_locked;
1109         return 0;
1110 }
1111
1112 STATIC_INLINE void
1113 _xfs_buf_ioend(
1114         xfs_buf_t               *bp,
1115         int                     schedule)
1116 {
1117         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1118                 bp->b_locked = 0;
1119                 xfs_buf_ioend(bp, schedule);
1120         }
1121 }
1122
1123 STATIC void
1124 xfs_buf_bio_end_io(
1125         struct bio              *bio,
1126         int                     error)
1127 {
1128         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1129         unsigned int            blocksize = bp->b_target->bt_bsize;
1130         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1131
1132         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1133                 bp->b_error = EIO;
1134
1135         do {
1136                 struct page     *page = bvec->bv_page;
1137
1138                 ASSERT(!PagePrivate(page));
1139                 if (unlikely(bp->b_error)) {
1140                         if (bp->b_flags & XBF_READ)
1141                                 ClearPageUptodate(page);
1142                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1143                         SetPageUptodate(page);
1144                 } else if (!PagePrivate(page) &&
1145                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1146                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1147                 }
1148
1149                 if (--bvec >= bio->bi_io_vec)
1150                         prefetchw(&bvec->bv_page->flags);
1151
1152                 if (_xfs_buf_iolocked(bp)) {
1153                         unlock_page(page);
1154                 }
1155         } while (bvec >= bio->bi_io_vec);
1156
1157         _xfs_buf_ioend(bp, 1);
1158         bio_put(bio);
1159 }
1160
1161 STATIC void
1162 _xfs_buf_ioapply(
1163         xfs_buf_t               *bp)
1164 {
1165         int                     i, rw, map_i, total_nr_pages, nr_pages;
1166         struct bio              *bio;
1167         int                     offset = bp->b_offset;
1168         int                     size = bp->b_count_desired;
1169         sector_t                sector = bp->b_bn;
1170         unsigned int            blocksize = bp->b_target->bt_bsize;
1171         int                     locking = _xfs_buf_iolocked(bp);
1172
1173         total_nr_pages = bp->b_page_count;
1174         map_i = 0;
1175
1176         if (bp->b_flags & XBF_ORDERED) {
1177                 ASSERT(!(bp->b_flags & XBF_READ));
1178                 rw = WRITE_BARRIER;
1179         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1180                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1181                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1182                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1183         } else {
1184                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1185                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1186         }
1187
1188         /* Special code path for reading a sub page size buffer in --
1189          * we populate up the whole page, and hence the other metadata
1190          * in the same page.  This optimization is only valid when the
1191          * filesystem block size is not smaller than the page size.
1192          */
1193         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1194             (bp->b_flags & XBF_READ) && locking &&
1195             (blocksize >= PAGE_CACHE_SIZE)) {
1196                 bio = bio_alloc(GFP_NOIO, 1);
1197
1198                 bio->bi_bdev = bp->b_target->bt_bdev;
1199                 bio->bi_sector = sector - (offset >> BBSHIFT);
1200                 bio->bi_end_io = xfs_buf_bio_end_io;
1201                 bio->bi_private = bp;
1202
1203                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1204                 size = 0;
1205
1206                 atomic_inc(&bp->b_io_remaining);
1207
1208                 goto submit_io;
1209         }
1210
1211         /* Lock down the pages which we need to for the request */
1212         if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1213                 for (i = 0; size; i++) {
1214                         int             nbytes = PAGE_CACHE_SIZE - offset;
1215                         struct page     *page = bp->b_pages[i];
1216
1217                         if (nbytes > size)
1218                                 nbytes = size;
1219
1220                         lock_page(page);
1221
1222                         size -= nbytes;
1223                         offset = 0;
1224                 }
1225                 offset = bp->b_offset;
1226                 size = bp->b_count_desired;
1227         }
1228
1229 next_chunk:
1230         atomic_inc(&bp->b_io_remaining);
1231         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1232         if (nr_pages > total_nr_pages)
1233                 nr_pages = total_nr_pages;
1234
1235         bio = bio_alloc(GFP_NOIO, nr_pages);
1236         bio->bi_bdev = bp->b_target->bt_bdev;
1237         bio->bi_sector = sector;
1238         bio->bi_end_io = xfs_buf_bio_end_io;
1239         bio->bi_private = bp;
1240
1241         for (; size && nr_pages; nr_pages--, map_i++) {
1242                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1243
1244                 if (nbytes > size)
1245                         nbytes = size;
1246
1247                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1248                 if (rbytes < nbytes)
1249                         break;
1250
1251                 offset = 0;
1252                 sector += nbytes >> BBSHIFT;
1253                 size -= nbytes;
1254                 total_nr_pages--;
1255         }
1256
1257 submit_io:
1258         if (likely(bio->bi_size)) {
1259                 submit_bio(rw, bio);
1260                 if (size)
1261                         goto next_chunk;
1262         } else {
1263                 bio_put(bio);
1264                 xfs_buf_ioerror(bp, EIO);
1265         }
1266 }
1267
1268 int
1269 xfs_buf_iorequest(
1270         xfs_buf_t               *bp)
1271 {
1272         XB_TRACE(bp, "iorequest", 0);
1273
1274         if (bp->b_flags & XBF_DELWRI) {
1275                 xfs_buf_delwri_queue(bp, 1);
1276                 return 0;
1277         }
1278
1279         if (bp->b_flags & XBF_WRITE) {
1280                 xfs_buf_wait_unpin(bp);
1281         }
1282
1283         xfs_buf_hold(bp);
1284
1285         /* Set the count to 1 initially, this will stop an I/O
1286          * completion callout which happens before we have started
1287          * all the I/O from calling xfs_buf_ioend too early.
1288          */
1289         atomic_set(&bp->b_io_remaining, 1);
1290         _xfs_buf_ioapply(bp);
1291         _xfs_buf_ioend(bp, 0);
1292
1293         xfs_buf_rele(bp);
1294         return 0;
1295 }
1296
1297 /*
1298  *      Waits for I/O to complete on the buffer supplied.
1299  *      It returns immediately if no I/O is pending.
1300  *      It returns the I/O error code, if any, or 0 if there was no error.
1301  */
1302 int
1303 xfs_buf_iowait(
1304         xfs_buf_t               *bp)
1305 {
1306         XB_TRACE(bp, "iowait", 0);
1307         if (atomic_read(&bp->b_io_remaining))
1308                 blk_run_address_space(bp->b_target->bt_mapping);
1309         down(&bp->b_iodonesema);
1310         XB_TRACE(bp, "iowaited", (long)bp->b_error);
1311         return bp->b_error;
1312 }
1313
1314 xfs_caddr_t
1315 xfs_buf_offset(
1316         xfs_buf_t               *bp,
1317         size_t                  offset)
1318 {
1319         struct page             *page;
1320
1321         if (bp->b_flags & XBF_MAPPED)
1322                 return XFS_BUF_PTR(bp) + offset;
1323
1324         offset += bp->b_offset;
1325         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1326         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1327 }
1328
1329 /*
1330  *      Move data into or out of a buffer.
1331  */
1332 void
1333 xfs_buf_iomove(
1334         xfs_buf_t               *bp,    /* buffer to process            */
1335         size_t                  boff,   /* starting buffer offset       */
1336         size_t                  bsize,  /* length to copy               */
1337         caddr_t                 data,   /* data address                 */
1338         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1339 {
1340         size_t                  bend, cpoff, csize;
1341         struct page             *page;
1342
1343         bend = boff + bsize;
1344         while (boff < bend) {
1345                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1346                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1347                 csize = min_t(size_t,
1348                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1349
1350                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1351
1352                 switch (mode) {
1353                 case XBRW_ZERO:
1354                         memset(page_address(page) + cpoff, 0, csize);
1355                         break;
1356                 case XBRW_READ:
1357                         memcpy(data, page_address(page) + cpoff, csize);
1358                         break;
1359                 case XBRW_WRITE:
1360                         memcpy(page_address(page) + cpoff, data, csize);
1361                 }
1362
1363                 boff += csize;
1364                 data += csize;
1365         }
1366 }
1367
1368 /*
1369  *      Handling of buffer targets (buftargs).
1370  */
1371
1372 /*
1373  *      Wait for any bufs with callbacks that have been submitted but
1374  *      have not yet returned... walk the hash list for the target.
1375  */
1376 void
1377 xfs_wait_buftarg(
1378         xfs_buftarg_t   *btp)
1379 {
1380         xfs_buf_t       *bp, *n;
1381         xfs_bufhash_t   *hash;
1382         uint            i;
1383
1384         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1385                 hash = &btp->bt_hash[i];
1386 again:
1387                 spin_lock(&hash->bh_lock);
1388                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1389                         ASSERT(btp == bp->b_target);
1390                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1391                                 spin_unlock(&hash->bh_lock);
1392                                 /*
1393                                  * Catch superblock reference count leaks
1394                                  * immediately
1395                                  */
1396                                 BUG_ON(bp->b_bn == 0);
1397                                 delay(100);
1398                                 goto again;
1399                         }
1400                 }
1401                 spin_unlock(&hash->bh_lock);
1402         }
1403 }
1404
1405 /*
1406  *      Allocate buffer hash table for a given target.
1407  *      For devices containing metadata (i.e. not the log/realtime devices)
1408  *      we need to allocate a much larger hash table.
1409  */
1410 STATIC void
1411 xfs_alloc_bufhash(
1412         xfs_buftarg_t           *btp,
1413         int                     external)
1414 {
1415         unsigned int            i;
1416
1417         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1418         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1419         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1420                                         sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1421         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1422                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1423                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1424         }
1425 }
1426
1427 STATIC void
1428 xfs_free_bufhash(
1429         xfs_buftarg_t           *btp)
1430 {
1431         kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1432         btp->bt_hash = NULL;
1433 }
1434
1435 /*
1436  *      buftarg list for delwrite queue processing
1437  */
1438 static LIST_HEAD(xfs_buftarg_list);
1439 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1440
1441 STATIC void
1442 xfs_register_buftarg(
1443         xfs_buftarg_t           *btp)
1444 {
1445         spin_lock(&xfs_buftarg_lock);
1446         list_add(&btp->bt_list, &xfs_buftarg_list);
1447         spin_unlock(&xfs_buftarg_lock);
1448 }
1449
1450 STATIC void
1451 xfs_unregister_buftarg(
1452         xfs_buftarg_t           *btp)
1453 {
1454         spin_lock(&xfs_buftarg_lock);
1455         list_del(&btp->bt_list);
1456         spin_unlock(&xfs_buftarg_lock);
1457 }
1458
1459 void
1460 xfs_free_buftarg(
1461         xfs_buftarg_t           *btp,
1462         int                     external)
1463 {
1464         xfs_flush_buftarg(btp, 1);
1465         xfs_blkdev_issue_flush(btp);
1466         if (external)
1467                 xfs_blkdev_put(btp->bt_bdev);
1468         xfs_free_bufhash(btp);
1469         iput(btp->bt_mapping->host);
1470
1471         /* Unregister the buftarg first so that we don't get a
1472          * wakeup finding a non-existent task
1473          */
1474         xfs_unregister_buftarg(btp);
1475         kthread_stop(btp->bt_task);
1476
1477         kmem_free(btp, sizeof(*btp));
1478 }
1479
1480 STATIC int
1481 xfs_setsize_buftarg_flags(
1482         xfs_buftarg_t           *btp,
1483         unsigned int            blocksize,
1484         unsigned int            sectorsize,
1485         int                     verbose)
1486 {
1487         btp->bt_bsize = blocksize;
1488         btp->bt_sshift = ffs(sectorsize) - 1;
1489         btp->bt_smask = sectorsize - 1;
1490
1491         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1492                 printk(KERN_WARNING
1493                         "XFS: Cannot set_blocksize to %u on device %s\n",
1494                         sectorsize, XFS_BUFTARG_NAME(btp));
1495                 return EINVAL;
1496         }
1497
1498         if (verbose &&
1499             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1500                 printk(KERN_WARNING
1501                         "XFS: %u byte sectors in use on device %s.  "
1502                         "This is suboptimal; %u or greater is ideal.\n",
1503                         sectorsize, XFS_BUFTARG_NAME(btp),
1504                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1505         }
1506
1507         return 0;
1508 }
1509
1510 /*
1511  *      When allocating the initial buffer target we have not yet
1512  *      read in the superblock, so don't know what sized sectors
1513  *      are being used is at this early stage.  Play safe.
1514  */
1515 STATIC int
1516 xfs_setsize_buftarg_early(
1517         xfs_buftarg_t           *btp,
1518         struct block_device     *bdev)
1519 {
1520         return xfs_setsize_buftarg_flags(btp,
1521                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1522 }
1523
1524 int
1525 xfs_setsize_buftarg(
1526         xfs_buftarg_t           *btp,
1527         unsigned int            blocksize,
1528         unsigned int            sectorsize)
1529 {
1530         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1531 }
1532
1533 STATIC int
1534 xfs_mapping_buftarg(
1535         xfs_buftarg_t           *btp,
1536         struct block_device     *bdev)
1537 {
1538         struct backing_dev_info *bdi;
1539         struct inode            *inode;
1540         struct address_space    *mapping;
1541         static const struct address_space_operations mapping_aops = {
1542                 .sync_page = block_sync_page,
1543                 .migratepage = fail_migrate_page,
1544         };
1545
1546         inode = new_inode(bdev->bd_inode->i_sb);
1547         if (!inode) {
1548                 printk(KERN_WARNING
1549                         "XFS: Cannot allocate mapping inode for device %s\n",
1550                         XFS_BUFTARG_NAME(btp));
1551                 return ENOMEM;
1552         }
1553         inode->i_mode = S_IFBLK;
1554         inode->i_bdev = bdev;
1555         inode->i_rdev = bdev->bd_dev;
1556         bdi = blk_get_backing_dev_info(bdev);
1557         if (!bdi)
1558                 bdi = &default_backing_dev_info;
1559         mapping = &inode->i_data;
1560         mapping->a_ops = &mapping_aops;
1561         mapping->backing_dev_info = bdi;
1562         mapping_set_gfp_mask(mapping, GFP_NOFS);
1563         btp->bt_mapping = mapping;
1564         return 0;
1565 }
1566
1567 STATIC int
1568 xfs_alloc_delwrite_queue(
1569         xfs_buftarg_t           *btp)
1570 {
1571         int     error = 0;
1572
1573         INIT_LIST_HEAD(&btp->bt_list);
1574         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1575         spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1576         btp->bt_flags = 0;
1577         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1578         if (IS_ERR(btp->bt_task)) {
1579                 error = PTR_ERR(btp->bt_task);
1580                 goto out_error;
1581         }
1582         xfs_register_buftarg(btp);
1583 out_error:
1584         return error;
1585 }
1586
1587 xfs_buftarg_t *
1588 xfs_alloc_buftarg(
1589         struct block_device     *bdev,
1590         int                     external)
1591 {
1592         xfs_buftarg_t           *btp;
1593
1594         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1595
1596         btp->bt_dev =  bdev->bd_dev;
1597         btp->bt_bdev = bdev;
1598         if (xfs_setsize_buftarg_early(btp, bdev))
1599                 goto error;
1600         if (xfs_mapping_buftarg(btp, bdev))
1601                 goto error;
1602         if (xfs_alloc_delwrite_queue(btp))
1603                 goto error;
1604         xfs_alloc_bufhash(btp, external);
1605         return btp;
1606
1607 error:
1608         kmem_free(btp, sizeof(*btp));
1609         return NULL;
1610 }
1611
1612
1613 /*
1614  *      Delayed write buffer handling
1615  */
1616 STATIC void
1617 xfs_buf_delwri_queue(
1618         xfs_buf_t               *bp,
1619         int                     unlock)
1620 {
1621         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1622         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1623
1624         XB_TRACE(bp, "delwri_q", (long)unlock);
1625         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1626
1627         spin_lock(dwlk);
1628         /* If already in the queue, dequeue and place at tail */
1629         if (!list_empty(&bp->b_list)) {
1630                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1631                 if (unlock)
1632                         atomic_dec(&bp->b_hold);
1633                 list_del(&bp->b_list);
1634         }
1635
1636         bp->b_flags |= _XBF_DELWRI_Q;
1637         list_add_tail(&bp->b_list, dwq);
1638         bp->b_queuetime = jiffies;
1639         spin_unlock(dwlk);
1640
1641         if (unlock)
1642                 xfs_buf_unlock(bp);
1643 }
1644
1645 void
1646 xfs_buf_delwri_dequeue(
1647         xfs_buf_t               *bp)
1648 {
1649         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1650         int                     dequeued = 0;
1651
1652         spin_lock(dwlk);
1653         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1654                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1655                 list_del_init(&bp->b_list);
1656                 dequeued = 1;
1657         }
1658         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1659         spin_unlock(dwlk);
1660
1661         if (dequeued)
1662                 xfs_buf_rele(bp);
1663
1664         XB_TRACE(bp, "delwri_dq", (long)dequeued);
1665 }
1666
1667 STATIC void
1668 xfs_buf_runall_queues(
1669         struct workqueue_struct *queue)
1670 {
1671         flush_workqueue(queue);
1672 }
1673
1674 STATIC int
1675 xfsbufd_wakeup(
1676         int                     priority,
1677         gfp_t                   mask)
1678 {
1679         xfs_buftarg_t           *btp;
1680
1681         spin_lock(&xfs_buftarg_lock);
1682         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1683                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1684                         continue;
1685                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1686                 wake_up_process(btp->bt_task);
1687         }
1688         spin_unlock(&xfs_buftarg_lock);
1689         return 0;
1690 }
1691
1692 /*
1693  * Move as many buffers as specified to the supplied list
1694  * idicating if we skipped any buffers to prevent deadlocks.
1695  */
1696 STATIC int
1697 xfs_buf_delwri_split(
1698         xfs_buftarg_t   *target,
1699         struct list_head *list,
1700         unsigned long   age)
1701 {
1702         xfs_buf_t       *bp, *n;
1703         struct list_head *dwq = &target->bt_delwrite_queue;
1704         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1705         int             skipped = 0;
1706         int             force;
1707
1708         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1709         INIT_LIST_HEAD(list);
1710         spin_lock(dwlk);
1711         list_for_each_entry_safe(bp, n, dwq, b_list) {
1712                 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1713                 ASSERT(bp->b_flags & XBF_DELWRI);
1714
1715                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1716                         if (!force &&
1717                             time_before(jiffies, bp->b_queuetime + age)) {
1718                                 xfs_buf_unlock(bp);
1719                                 break;
1720                         }
1721
1722                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1723                                          _XBF_RUN_QUEUES);
1724                         bp->b_flags |= XBF_WRITE;
1725                         list_move_tail(&bp->b_list, list);
1726                 } else
1727                         skipped++;
1728         }
1729         spin_unlock(dwlk);
1730
1731         return skipped;
1732
1733 }
1734
1735 STATIC int
1736 xfsbufd(
1737         void            *data)
1738 {
1739         struct list_head tmp;
1740         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1741         int             count;
1742         xfs_buf_t       *bp;
1743
1744         current->flags |= PF_MEMALLOC;
1745
1746         set_freezable();
1747
1748         do {
1749                 if (unlikely(freezing(current))) {
1750                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1751                         refrigerator();
1752                 } else {
1753                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1754                 }
1755
1756                 schedule_timeout_interruptible(
1757                         xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1758
1759                 xfs_buf_delwri_split(target, &tmp,
1760                                 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1761
1762                 count = 0;
1763                 while (!list_empty(&tmp)) {
1764                         bp = list_entry(tmp.next, xfs_buf_t, b_list);
1765                         ASSERT(target == bp->b_target);
1766
1767                         list_del_init(&bp->b_list);
1768                         xfs_buf_iostrategy(bp);
1769                         count++;
1770                 }
1771
1772                 if (as_list_len > 0)
1773                         purge_addresses();
1774                 if (count)
1775                         blk_run_address_space(target->bt_mapping);
1776
1777         } while (!kthread_should_stop());
1778
1779         return 0;
1780 }
1781
1782 /*
1783  *      Go through all incore buffers, and release buffers if they belong to
1784  *      the given device. This is used in filesystem error handling to
1785  *      preserve the consistency of its metadata.
1786  */
1787 int
1788 xfs_flush_buftarg(
1789         xfs_buftarg_t   *target,
1790         int             wait)
1791 {
1792         struct list_head tmp;
1793         xfs_buf_t       *bp, *n;
1794         int             pincount = 0;
1795
1796         xfs_buf_runall_queues(xfsdatad_workqueue);
1797         xfs_buf_runall_queues(xfslogd_workqueue);
1798
1799         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800         pincount = xfs_buf_delwri_split(target, &tmp, 0);
1801
1802         /*
1803          * Dropped the delayed write list lock, now walk the temporary list
1804          */
1805         list_for_each_entry_safe(bp, n, &tmp, b_list) {
1806                 ASSERT(target == bp->b_target);
1807                 if (wait)
1808                         bp->b_flags &= ~XBF_ASYNC;
1809                 else
1810                         list_del_init(&bp->b_list);
1811
1812                 xfs_buf_iostrategy(bp);
1813         }
1814
1815         if (wait)
1816                 blk_run_address_space(target->bt_mapping);
1817
1818         /*
1819          * Remaining list items must be flushed before returning
1820          */
1821         while (!list_empty(&tmp)) {
1822                 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1823
1824                 list_del_init(&bp->b_list);
1825                 xfs_iowait(bp);
1826                 xfs_buf_relse(bp);
1827         }
1828
1829         return pincount;
1830 }
1831
1832 int __init
1833 xfs_buf_init(void)
1834 {
1835 #ifdef XFS_BUF_TRACE
1836         xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1837 #endif
1838
1839         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1840                                                 KM_ZONE_HWALIGN, NULL);
1841         if (!xfs_buf_zone)
1842                 goto out_free_trace_buf;
1843
1844         xfslogd_workqueue = create_workqueue("xfslogd");
1845         if (!xfslogd_workqueue)
1846                 goto out_free_buf_zone;
1847
1848         xfsdatad_workqueue = create_workqueue("xfsdatad");
1849         if (!xfsdatad_workqueue)
1850                 goto out_destroy_xfslogd_workqueue;
1851
1852         register_shrinker(&xfs_buf_shake);
1853         return 0;
1854
1855  out_destroy_xfslogd_workqueue:
1856         destroy_workqueue(xfslogd_workqueue);
1857  out_free_buf_zone:
1858         kmem_zone_destroy(xfs_buf_zone);
1859  out_free_trace_buf:
1860 #ifdef XFS_BUF_TRACE
1861         ktrace_free(xfs_buf_trace_buf);
1862 #endif
1863         return -ENOMEM;
1864 }
1865
1866 void
1867 xfs_buf_terminate(void)
1868 {
1869         unregister_shrinker(&xfs_buf_shake);
1870         destroy_workqueue(xfsdatad_workqueue);
1871         destroy_workqueue(xfslogd_workqueue);
1872         kmem_zone_destroy(xfs_buf_zone);
1873 #ifdef XFS_BUF_TRACE
1874         ktrace_free(xfs_buf_trace_buf);
1875 #endif
1876 }
1877
1878 #ifdef CONFIG_KDB_MODULES
1879 struct list_head *
1880 xfs_get_buftarg_list(void)
1881 {
1882         return &xfs_buftarg_list;
1883 }
1884 #endif