2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
57 ktrace_enter(xfs_buf_trace_buf,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
74 #define XB_TRACE(bp, id, data) do { } while (0)
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
100 * Page Region interfaces.
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
106 * Each such region is "bytes per page / bits per long" bytes long.
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
117 #error BITS_PER_LONG must be 32 or 64
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
163 unsigned long mask = page_region_mask(offset, length);
165 return (mask && (page_private(page) & mask) == mask);
169 * Mapping of multi-page buffers into contiguous virtual space
172 typedef struct a_list {
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
182 * Try to batch vunmaps because they are costly.
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204 if (likely(aentry)) {
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
210 spin_unlock(&as_lock);
217 purge_addresses(void)
219 a_list_t *aentry, *old;
221 if (as_free_head == NULL)
225 aentry = as_free_head;
228 spin_unlock(&as_lock);
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
238 * Internal xfs_buf_t object manipulation
244 xfs_buftarg_t *target,
245 xfs_off_t range_base,
247 xfs_buf_flags_t flags)
250 * We don't want certain flags to appear in b_flags.
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_MUTEX_LOCKED(&bp->b_iodonesema);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
268 bp->b_buffer_length = bp->b_count_desired = range_length;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
286 xfs_buf_flags_t flags)
288 /* Make sure that we have a page list */
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
306 * Frees b_pages if it was allocated.
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages,
314 bp->b_page_count * sizeof(struct page *));
319 * Releases the specified buffer.
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
329 XB_TRACE(bp, "free", 0);
331 ASSERT(list_empty(&bp->b_hash_list));
333 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
336 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337 free_address(bp->b_addr - bp->b_offset);
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page = bp->b_pages[i];
342 if (bp->b_flags & _XBF_PAGE_CACHE)
343 ASSERT(!PagePrivate(page));
344 page_cache_release(page);
346 _xfs_buf_free_pages(bp);
349 xfs_buf_deallocate(bp);
353 * Finds all pages for buffer in question and builds it's page list.
356 _xfs_buf_lookup_pages(
360 struct address_space *mapping = bp->b_target->bt_mapping;
361 size_t blocksize = bp->b_target->bt_bsize;
362 size_t size = bp->b_count_desired;
363 size_t nbytes, offset;
364 gfp_t gfp_mask = xb_to_gfp(flags);
365 unsigned short page_count, i;
370 end = bp->b_file_offset + bp->b_buffer_length;
371 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
373 error = _xfs_buf_get_pages(bp, page_count, flags);
376 bp->b_flags |= _XBF_PAGE_CACHE;
378 offset = bp->b_offset;
379 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
381 for (i = 0; i < bp->b_page_count; i++) {
386 page = find_or_create_page(mapping, first + i, gfp_mask);
387 if (unlikely(page == NULL)) {
388 if (flags & XBF_READ_AHEAD) {
389 bp->b_page_count = i;
390 for (i = 0; i < bp->b_page_count; i++)
391 unlock_page(bp->b_pages[i]);
396 * This could deadlock.
398 * But until all the XFS lowlevel code is revamped to
399 * handle buffer allocation failures we can't do much.
401 if (!(++retries % 100))
403 "XFS: possible memory allocation "
404 "deadlock in %s (mode:0x%x)\n",
405 __FUNCTION__, gfp_mask);
407 XFS_STATS_INC(xb_page_retries);
408 xfsbufd_wakeup(0, gfp_mask);
409 congestion_wait(WRITE, HZ/50);
413 XFS_STATS_INC(xb_page_found);
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
418 ASSERT(!PagePrivate(page));
419 if (!PageUptodate(page)) {
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
430 bp->b_pages[i] = page;
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
442 XB_TRACE(bp, "lookup_pages", (long)page_count);
447 * Map buffer into kernel address-space if nessecary.
454 /* A single page buffer is always mappable */
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
459 if (as_list_len > 64)
461 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462 VM_MAP, PAGE_KERNEL);
463 if (unlikely(bp->b_addr == NULL))
465 bp->b_addr += bp->b_offset;
466 bp->b_flags |= XBF_MAPPED;
473 * Finding and Reading Buffers
477 * Look up, and creates if absent, a lockable buffer for
478 * a given range of an inode. The buffer is returned
479 * locked. If other overlapping buffers exist, they are
480 * released before the new buffer is created and locked,
481 * which may imply that this call will block until those buffers
482 * are unlocked. No I/O is implied by this call.
486 xfs_buftarg_t *btp, /* block device target */
487 xfs_off_t ioff, /* starting offset of range */
488 size_t isize, /* length of range */
489 xfs_buf_flags_t flags,
492 xfs_off_t range_base;
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
500 /* Check for IOs smaller than the sector size / not sector aligned */
501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
504 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
506 spin_lock(&hash->bh_lock);
508 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509 ASSERT(btp == bp->b_target);
510 if (bp->b_file_offset == range_base &&
511 bp->b_buffer_length == range_length) {
513 * If we look at something, bring it to the
514 * front of the list for next time.
516 atomic_inc(&bp->b_hold);
517 list_move(&bp->b_hash_list, &hash->bh_list);
524 _xfs_buf_initialize(new_bp, btp, range_base,
525 range_length, flags);
526 new_bp->b_hash = hash;
527 list_add(&new_bp->b_hash_list, &hash->bh_list);
529 XFS_STATS_INC(xb_miss_locked);
532 spin_unlock(&hash->bh_lock);
536 spin_unlock(&hash->bh_lock);
538 /* Attempt to get the semaphore without sleeping,
539 * if this does not work then we need to drop the
540 * spinlock and do a hard attempt on the semaphore.
542 if (down_trylock(&bp->b_sema)) {
543 if (!(flags & XBF_TRYLOCK)) {
544 /* wait for buffer ownership */
545 XB_TRACE(bp, "get_lock", 0);
547 XFS_STATS_INC(xb_get_locked_waited);
549 /* We asked for a trylock and failed, no need
550 * to look at file offset and length here, we
551 * know that this buffer at least overlaps our
552 * buffer and is locked, therefore our buffer
553 * either does not exist, or is this buffer.
556 XFS_STATS_INC(xb_busy_locked);
564 if (bp->b_flags & XBF_STALE) {
565 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566 bp->b_flags &= XBF_MAPPED;
568 XB_TRACE(bp, "got_lock", 0);
569 XFS_STATS_INC(xb_get_locked);
574 * Assembles a buffer covering the specified range.
575 * Storage in memory for all portions of the buffer will be allocated,
576 * although backing storage may not be.
580 xfs_buftarg_t *target,/* target for buffer */
581 xfs_off_t ioff, /* starting offset of range */
582 size_t isize, /* length of range */
583 xfs_buf_flags_t flags)
585 xfs_buf_t *bp, *new_bp;
588 new_bp = xfs_buf_allocate(flags);
589 if (unlikely(!new_bp))
592 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
594 error = _xfs_buf_lookup_pages(bp, flags);
598 xfs_buf_deallocate(new_bp);
599 if (unlikely(bp == NULL))
603 for (i = 0; i < bp->b_page_count; i++)
604 mark_page_accessed(bp->b_pages[i]);
606 if (!(bp->b_flags & XBF_MAPPED)) {
607 error = _xfs_buf_map_pages(bp, flags);
608 if (unlikely(error)) {
609 printk(KERN_WARNING "%s: failed to map pages\n",
615 XFS_STATS_INC(xb_get);
618 * Always fill in the block number now, the mapped cases can do
619 * their own overlay of this later.
622 bp->b_count_desired = bp->b_buffer_length;
624 XB_TRACE(bp, "get", (unsigned long)flags);
628 if (flags & (XBF_LOCK | XBF_TRYLOCK))
636 xfs_buftarg_t *target,
639 xfs_buf_flags_t flags)
645 bp = xfs_buf_get_flags(target, ioff, isize, flags);
647 if (!XFS_BUF_ISDONE(bp)) {
648 XB_TRACE(bp, "read", (unsigned long)flags);
649 XFS_STATS_INC(xb_get_read);
650 xfs_buf_iostart(bp, flags);
651 } else if (flags & XBF_ASYNC) {
652 XB_TRACE(bp, "read_async", (unsigned long)flags);
654 * Read ahead call which is already satisfied,
659 XB_TRACE(bp, "read_done", (unsigned long)flags);
660 /* We do not want read in the flags */
661 bp->b_flags &= ~XBF_READ;
668 if (flags & (XBF_LOCK | XBF_TRYLOCK))
675 * If we are not low on memory then do the readahead in a deadlock
680 xfs_buftarg_t *target,
683 xfs_buf_flags_t flags)
685 struct backing_dev_info *bdi;
687 bdi = target->bt_mapping->backing_dev_info;
688 if (bdi_read_congested(bdi))
691 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
692 xfs_buf_read_flags(target, ioff, isize, flags);
698 xfs_buftarg_t *target)
702 bp = xfs_buf_allocate(0);
704 _xfs_buf_initialize(bp, target, 0, len, 0);
708 static inline struct page *
712 if ((!is_vmalloc_addr(addr))) {
713 return virt_to_page(addr);
715 return vmalloc_to_page(addr);
720 xfs_buf_associate_memory(
727 unsigned long pageaddr;
728 unsigned long offset;
732 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
733 offset = (unsigned long)mem - pageaddr;
734 buflen = PAGE_CACHE_ALIGN(len + offset);
735 page_count = buflen >> PAGE_CACHE_SHIFT;
737 /* Free any previous set of page pointers */
739 _xfs_buf_free_pages(bp);
744 rval = _xfs_buf_get_pages(bp, page_count, 0);
748 bp->b_offset = offset;
750 for (i = 0; i < bp->b_page_count; i++) {
751 bp->b_pages[i] = mem_to_page((void *)pageaddr);
752 pageaddr += PAGE_CACHE_SIZE;
756 bp->b_count_desired = len;
757 bp->b_buffer_length = buflen;
758 bp->b_flags |= XBF_MAPPED;
766 xfs_buftarg_t *target)
768 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
772 bp = xfs_buf_allocate(0);
773 if (unlikely(bp == NULL))
775 _xfs_buf_initialize(bp, target, 0, len, 0);
777 error = _xfs_buf_get_pages(bp, page_count, 0);
781 for (i = 0; i < page_count; i++) {
782 bp->b_pages[i] = alloc_page(GFP_KERNEL);
786 bp->b_flags |= _XBF_PAGES;
788 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
789 if (unlikely(error)) {
790 printk(KERN_WARNING "%s: failed to map pages\n",
797 XB_TRACE(bp, "no_daddr", len);
802 __free_page(bp->b_pages[i]);
803 _xfs_buf_free_pages(bp);
805 xfs_buf_deallocate(bp);
811 * Increment reference count on buffer, to hold the buffer concurrently
812 * with another thread which may release (free) the buffer asynchronously.
813 * Must hold the buffer already to call this function.
819 atomic_inc(&bp->b_hold);
820 XB_TRACE(bp, "hold", 0);
824 * Releases a hold on the specified buffer. If the
825 * the hold count is 1, calls xfs_buf_free.
831 xfs_bufhash_t *hash = bp->b_hash;
833 XB_TRACE(bp, "rele", bp->b_relse);
835 if (unlikely(!hash)) {
836 ASSERT(!bp->b_relse);
837 if (atomic_dec_and_test(&bp->b_hold))
842 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
844 atomic_inc(&bp->b_hold);
845 spin_unlock(&hash->bh_lock);
846 (*(bp->b_relse)) (bp);
847 } else if (bp->b_flags & XBF_FS_MANAGED) {
848 spin_unlock(&hash->bh_lock);
850 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
851 list_del_init(&bp->b_hash_list);
852 spin_unlock(&hash->bh_lock);
857 * Catch reference count leaks
859 ASSERT(atomic_read(&bp->b_hold) >= 0);
865 * Mutual exclusion on buffers. Locking model:
867 * Buffers associated with inodes for which buffer locking
868 * is not enabled are not protected by semaphores, and are
869 * assumed to be exclusively owned by the caller. There is a
870 * spinlock in the buffer, used by the caller when concurrent
871 * access is possible.
875 * Locks a buffer object, if it is not already locked.
876 * Note that this in no way locks the underlying pages, so it is only
877 * useful for synchronizing concurrent use of buffer objects, not for
878 * synchronizing independent access to the underlying pages.
886 locked = down_trylock(&bp->b_sema) == 0;
890 XB_TRACE(bp, "cond_lock", (long)locked);
891 return locked ? 0 : -EBUSY;
894 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
899 return atomic_read(&bp->b_sema.count);
904 * Locks a buffer object.
905 * Note that this in no way locks the underlying pages, so it is only
906 * useful for synchronizing concurrent use of buffer objects, not for
907 * synchronizing independent access to the underlying pages.
913 XB_TRACE(bp, "lock", 0);
914 if (atomic_read(&bp->b_io_remaining))
915 blk_run_address_space(bp->b_target->bt_mapping);
918 XB_TRACE(bp, "locked", 0);
922 * Releases the lock on the buffer object.
923 * If the buffer is marked delwri but is not queued, do so before we
924 * unlock the buffer as we need to set flags correctly. We also need to
925 * take a reference for the delwri queue because the unlocker is going to
926 * drop their's and they don't know we just queued it.
932 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
933 atomic_inc(&bp->b_hold);
934 bp->b_flags |= XBF_ASYNC;
935 xfs_buf_delwri_queue(bp, 0);
940 XB_TRACE(bp, "unlock", 0);
945 * Pinning Buffer Storage in Memory
946 * Ensure that no attempt to force a buffer to disk will succeed.
952 atomic_inc(&bp->b_pin_count);
953 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
960 if (atomic_dec_and_test(&bp->b_pin_count))
961 wake_up_all(&bp->b_waiters);
962 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
969 return atomic_read(&bp->b_pin_count);
976 DECLARE_WAITQUEUE (wait, current);
978 if (atomic_read(&bp->b_pin_count) == 0)
981 add_wait_queue(&bp->b_waiters, &wait);
983 set_current_state(TASK_UNINTERRUPTIBLE);
984 if (atomic_read(&bp->b_pin_count) == 0)
986 if (atomic_read(&bp->b_io_remaining))
987 blk_run_address_space(bp->b_target->bt_mapping);
990 remove_wait_queue(&bp->b_waiters, &wait);
991 set_current_state(TASK_RUNNING);
995 * Buffer Utility Routines
1000 struct work_struct *work)
1003 container_of(work, xfs_buf_t, b_iodone_work);
1006 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1007 * ordered flag and reissue them. Because we can't tell the higher
1008 * layers directly that they should not issue ordered I/O anymore, they
1009 * need to check if the ordered flag was cleared during I/O completion.
1011 if ((bp->b_error == EOPNOTSUPP) &&
1012 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1013 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1014 bp->b_flags &= ~XBF_ORDERED;
1015 xfs_buf_iorequest(bp);
1016 } else if (bp->b_iodone)
1017 (*(bp->b_iodone))(bp);
1018 else if (bp->b_flags & XBF_ASYNC)
1027 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1028 if (bp->b_error == 0)
1029 bp->b_flags |= XBF_DONE;
1031 XB_TRACE(bp, "iodone", bp->b_iodone);
1033 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1035 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1036 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1038 xfs_buf_iodone_work(&bp->b_iodone_work);
1041 up(&bp->b_iodonesema);
1050 ASSERT(error >= 0 && error <= 0xffff);
1051 bp->b_error = (unsigned short)error;
1052 XB_TRACE(bp, "ioerror", (unsigned long)error);
1056 * Initiate I/O on a buffer, based on the flags supplied.
1057 * The b_iodone routine in the buffer supplied will only be called
1058 * when all of the subsidiary I/O requests, if any, have been completed.
1063 xfs_buf_flags_t flags)
1067 XB_TRACE(bp, "iostart", (unsigned long)flags);
1069 if (flags & XBF_DELWRI) {
1070 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1071 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1072 xfs_buf_delwri_queue(bp, 1);
1076 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1077 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1078 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1079 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1081 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1083 /* For writes allow an alternate strategy routine to precede
1084 * the actual I/O request (which may not be issued at all in
1085 * a shutdown situation, for example).
1087 status = (flags & XBF_WRITE) ?
1088 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1090 /* Wait for I/O if we are not an async request.
1091 * Note: async I/O request completion will release the buffer,
1092 * and that can already be done by this point. So using the
1093 * buffer pointer from here on, after async I/O, is invalid.
1095 if (!status && !(flags & XBF_ASYNC))
1096 status = xfs_buf_iowait(bp);
1105 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1106 if (bp->b_flags & XBF_READ)
1107 return bp->b_locked;
1116 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1118 xfs_buf_ioend(bp, schedule);
1127 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1128 unsigned int blocksize = bp->b_target->bt_bsize;
1129 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1131 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1135 struct page *page = bvec->bv_page;
1137 ASSERT(!PagePrivate(page));
1138 if (unlikely(bp->b_error)) {
1139 if (bp->b_flags & XBF_READ)
1140 ClearPageUptodate(page);
1141 } else if (blocksize >= PAGE_CACHE_SIZE) {
1142 SetPageUptodate(page);
1143 } else if (!PagePrivate(page) &&
1144 (bp->b_flags & _XBF_PAGE_CACHE)) {
1145 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1148 if (--bvec >= bio->bi_io_vec)
1149 prefetchw(&bvec->bv_page->flags);
1151 if (_xfs_buf_iolocked(bp)) {
1154 } while (bvec >= bio->bi_io_vec);
1156 _xfs_buf_ioend(bp, 1);
1164 int i, rw, map_i, total_nr_pages, nr_pages;
1166 int offset = bp->b_offset;
1167 int size = bp->b_count_desired;
1168 sector_t sector = bp->b_bn;
1169 unsigned int blocksize = bp->b_target->bt_bsize;
1170 int locking = _xfs_buf_iolocked(bp);
1172 total_nr_pages = bp->b_page_count;
1175 if (bp->b_flags & XBF_ORDERED) {
1176 ASSERT(!(bp->b_flags & XBF_READ));
1178 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1179 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1180 bp->b_flags &= ~_XBF_RUN_QUEUES;
1181 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1183 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1184 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1187 /* Special code path for reading a sub page size buffer in --
1188 * we populate up the whole page, and hence the other metadata
1189 * in the same page. This optimization is only valid when the
1190 * filesystem block size is not smaller than the page size.
1192 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1193 (bp->b_flags & XBF_READ) && locking &&
1194 (blocksize >= PAGE_CACHE_SIZE)) {
1195 bio = bio_alloc(GFP_NOIO, 1);
1197 bio->bi_bdev = bp->b_target->bt_bdev;
1198 bio->bi_sector = sector - (offset >> BBSHIFT);
1199 bio->bi_end_io = xfs_buf_bio_end_io;
1200 bio->bi_private = bp;
1202 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1205 atomic_inc(&bp->b_io_remaining);
1210 /* Lock down the pages which we need to for the request */
1211 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1212 for (i = 0; size; i++) {
1213 int nbytes = PAGE_CACHE_SIZE - offset;
1214 struct page *page = bp->b_pages[i];
1224 offset = bp->b_offset;
1225 size = bp->b_count_desired;
1229 atomic_inc(&bp->b_io_remaining);
1230 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1231 if (nr_pages > total_nr_pages)
1232 nr_pages = total_nr_pages;
1234 bio = bio_alloc(GFP_NOIO, nr_pages);
1235 bio->bi_bdev = bp->b_target->bt_bdev;
1236 bio->bi_sector = sector;
1237 bio->bi_end_io = xfs_buf_bio_end_io;
1238 bio->bi_private = bp;
1240 for (; size && nr_pages; nr_pages--, map_i++) {
1241 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1246 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1247 if (rbytes < nbytes)
1251 sector += nbytes >> BBSHIFT;
1257 if (likely(bio->bi_size)) {
1258 submit_bio(rw, bio);
1263 xfs_buf_ioerror(bp, EIO);
1271 XB_TRACE(bp, "iorequest", 0);
1273 if (bp->b_flags & XBF_DELWRI) {
1274 xfs_buf_delwri_queue(bp, 1);
1278 if (bp->b_flags & XBF_WRITE) {
1279 xfs_buf_wait_unpin(bp);
1284 /* Set the count to 1 initially, this will stop an I/O
1285 * completion callout which happens before we have started
1286 * all the I/O from calling xfs_buf_ioend too early.
1288 atomic_set(&bp->b_io_remaining, 1);
1289 _xfs_buf_ioapply(bp);
1290 _xfs_buf_ioend(bp, 0);
1297 * Waits for I/O to complete on the buffer supplied.
1298 * It returns immediately if no I/O is pending.
1299 * It returns the I/O error code, if any, or 0 if there was no error.
1305 XB_TRACE(bp, "iowait", 0);
1306 if (atomic_read(&bp->b_io_remaining))
1307 blk_run_address_space(bp->b_target->bt_mapping);
1308 down(&bp->b_iodonesema);
1309 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1320 if (bp->b_flags & XBF_MAPPED)
1321 return XFS_BUF_PTR(bp) + offset;
1323 offset += bp->b_offset;
1324 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1325 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1329 * Move data into or out of a buffer.
1333 xfs_buf_t *bp, /* buffer to process */
1334 size_t boff, /* starting buffer offset */
1335 size_t bsize, /* length to copy */
1336 caddr_t data, /* data address */
1337 xfs_buf_rw_t mode) /* read/write/zero flag */
1339 size_t bend, cpoff, csize;
1342 bend = boff + bsize;
1343 while (boff < bend) {
1344 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1345 cpoff = xfs_buf_poff(boff + bp->b_offset);
1346 csize = min_t(size_t,
1347 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1349 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1353 memset(page_address(page) + cpoff, 0, csize);
1356 memcpy(data, page_address(page) + cpoff, csize);
1359 memcpy(page_address(page) + cpoff, data, csize);
1368 * Handling of buffer targets (buftargs).
1372 * Wait for any bufs with callbacks that have been submitted but
1373 * have not yet returned... walk the hash list for the target.
1380 xfs_bufhash_t *hash;
1383 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1384 hash = &btp->bt_hash[i];
1386 spin_lock(&hash->bh_lock);
1387 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1388 ASSERT(btp == bp->b_target);
1389 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1390 spin_unlock(&hash->bh_lock);
1392 * Catch superblock reference count leaks
1395 BUG_ON(bp->b_bn == 0);
1400 spin_unlock(&hash->bh_lock);
1405 * Allocate buffer hash table for a given target.
1406 * For devices containing metadata (i.e. not the log/realtime devices)
1407 * we need to allocate a much larger hash table.
1416 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1417 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1418 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1419 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1420 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1421 spin_lock_init(&btp->bt_hash[i].bh_lock);
1422 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1430 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1431 btp->bt_hash = NULL;
1435 * buftarg list for delwrite queue processing
1437 static LIST_HEAD(xfs_buftarg_list);
1438 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1441 xfs_register_buftarg(
1444 spin_lock(&xfs_buftarg_lock);
1445 list_add(&btp->bt_list, &xfs_buftarg_list);
1446 spin_unlock(&xfs_buftarg_lock);
1450 xfs_unregister_buftarg(
1453 spin_lock(&xfs_buftarg_lock);
1454 list_del(&btp->bt_list);
1455 spin_unlock(&xfs_buftarg_lock);
1463 xfs_flush_buftarg(btp, 1);
1464 xfs_blkdev_issue_flush(btp);
1466 xfs_blkdev_put(btp->bt_bdev);
1467 xfs_free_bufhash(btp);
1468 iput(btp->bt_mapping->host);
1470 /* Unregister the buftarg first so that we don't get a
1471 * wakeup finding a non-existent task
1473 xfs_unregister_buftarg(btp);
1474 kthread_stop(btp->bt_task);
1476 kmem_free(btp, sizeof(*btp));
1480 xfs_setsize_buftarg_flags(
1482 unsigned int blocksize,
1483 unsigned int sectorsize,
1486 btp->bt_bsize = blocksize;
1487 btp->bt_sshift = ffs(sectorsize) - 1;
1488 btp->bt_smask = sectorsize - 1;
1490 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1492 "XFS: Cannot set_blocksize to %u on device %s\n",
1493 sectorsize, XFS_BUFTARG_NAME(btp));
1498 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1500 "XFS: %u byte sectors in use on device %s. "
1501 "This is suboptimal; %u or greater is ideal.\n",
1502 sectorsize, XFS_BUFTARG_NAME(btp),
1503 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1510 * When allocating the initial buffer target we have not yet
1511 * read in the superblock, so don't know what sized sectors
1512 * are being used is at this early stage. Play safe.
1515 xfs_setsize_buftarg_early(
1517 struct block_device *bdev)
1519 return xfs_setsize_buftarg_flags(btp,
1520 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1524 xfs_setsize_buftarg(
1526 unsigned int blocksize,
1527 unsigned int sectorsize)
1529 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1533 xfs_mapping_buftarg(
1535 struct block_device *bdev)
1537 struct backing_dev_info *bdi;
1538 struct inode *inode;
1539 struct address_space *mapping;
1540 static const struct address_space_operations mapping_aops = {
1541 .sync_page = block_sync_page,
1542 .migratepage = fail_migrate_page,
1545 inode = new_inode(bdev->bd_inode->i_sb);
1548 "XFS: Cannot allocate mapping inode for device %s\n",
1549 XFS_BUFTARG_NAME(btp));
1552 inode->i_mode = S_IFBLK;
1553 inode->i_bdev = bdev;
1554 inode->i_rdev = bdev->bd_dev;
1555 bdi = blk_get_backing_dev_info(bdev);
1557 bdi = &default_backing_dev_info;
1558 mapping = &inode->i_data;
1559 mapping->a_ops = &mapping_aops;
1560 mapping->backing_dev_info = bdi;
1561 mapping_set_gfp_mask(mapping, GFP_NOFS);
1562 btp->bt_mapping = mapping;
1567 xfs_alloc_delwrite_queue(
1572 INIT_LIST_HEAD(&btp->bt_list);
1573 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1574 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1576 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1577 if (IS_ERR(btp->bt_task)) {
1578 error = PTR_ERR(btp->bt_task);
1581 xfs_register_buftarg(btp);
1588 struct block_device *bdev,
1593 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1595 btp->bt_dev = bdev->bd_dev;
1596 btp->bt_bdev = bdev;
1597 if (xfs_setsize_buftarg_early(btp, bdev))
1599 if (xfs_mapping_buftarg(btp, bdev))
1601 if (xfs_alloc_delwrite_queue(btp))
1603 xfs_alloc_bufhash(btp, external);
1607 kmem_free(btp, sizeof(*btp));
1613 * Delayed write buffer handling
1616 xfs_buf_delwri_queue(
1620 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1621 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1623 XB_TRACE(bp, "delwri_q", (long)unlock);
1624 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1627 /* If already in the queue, dequeue and place at tail */
1628 if (!list_empty(&bp->b_list)) {
1629 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1631 atomic_dec(&bp->b_hold);
1632 list_del(&bp->b_list);
1635 bp->b_flags |= _XBF_DELWRI_Q;
1636 list_add_tail(&bp->b_list, dwq);
1637 bp->b_queuetime = jiffies;
1645 xfs_buf_delwri_dequeue(
1648 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1652 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1653 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1654 list_del_init(&bp->b_list);
1657 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1663 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1667 xfs_buf_runall_queues(
1668 struct workqueue_struct *queue)
1670 flush_workqueue(queue);
1680 spin_lock(&xfs_buftarg_lock);
1681 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1682 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1684 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1685 wake_up_process(btp->bt_task);
1687 spin_unlock(&xfs_buftarg_lock);
1692 * Move as many buffers as specified to the supplied list
1693 * idicating if we skipped any buffers to prevent deadlocks.
1696 xfs_buf_delwri_split(
1697 xfs_buftarg_t *target,
1698 struct list_head *list,
1702 struct list_head *dwq = &target->bt_delwrite_queue;
1703 spinlock_t *dwlk = &target->bt_delwrite_lock;
1707 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1708 INIT_LIST_HEAD(list);
1710 list_for_each_entry_safe(bp, n, dwq, b_list) {
1711 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1712 ASSERT(bp->b_flags & XBF_DELWRI);
1714 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1716 time_before(jiffies, bp->b_queuetime + age)) {
1721 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1723 bp->b_flags |= XBF_WRITE;
1724 list_move_tail(&bp->b_list, list);
1738 struct list_head tmp;
1739 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1743 current->flags |= PF_MEMALLOC;
1748 if (unlikely(freezing(current))) {
1749 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1752 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1755 schedule_timeout_interruptible(
1756 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1758 xfs_buf_delwri_split(target, &tmp,
1759 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1762 while (!list_empty(&tmp)) {
1763 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1764 ASSERT(target == bp->b_target);
1766 list_del_init(&bp->b_list);
1767 xfs_buf_iostrategy(bp);
1771 if (as_list_len > 0)
1774 blk_run_address_space(target->bt_mapping);
1776 } while (!kthread_should_stop());
1782 * Go through all incore buffers, and release buffers if they belong to
1783 * the given device. This is used in filesystem error handling to
1784 * preserve the consistency of its metadata.
1788 xfs_buftarg_t *target,
1791 struct list_head tmp;
1795 xfs_buf_runall_queues(xfsdatad_workqueue);
1796 xfs_buf_runall_queues(xfslogd_workqueue);
1798 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1799 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1802 * Dropped the delayed write list lock, now walk the temporary list
1804 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1805 ASSERT(target == bp->b_target);
1807 bp->b_flags &= ~XBF_ASYNC;
1809 list_del_init(&bp->b_list);
1811 xfs_buf_iostrategy(bp);
1815 blk_run_address_space(target->bt_mapping);
1818 * Remaining list items must be flushed before returning
1820 while (!list_empty(&tmp)) {
1821 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1823 list_del_init(&bp->b_list);
1834 #ifdef XFS_BUF_TRACE
1835 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1838 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1839 KM_ZONE_HWALIGN, NULL);
1841 goto out_free_trace_buf;
1843 xfslogd_workqueue = create_workqueue("xfslogd");
1844 if (!xfslogd_workqueue)
1845 goto out_free_buf_zone;
1847 xfsdatad_workqueue = create_workqueue("xfsdatad");
1848 if (!xfsdatad_workqueue)
1849 goto out_destroy_xfslogd_workqueue;
1851 register_shrinker(&xfs_buf_shake);
1854 out_destroy_xfslogd_workqueue:
1855 destroy_workqueue(xfslogd_workqueue);
1857 kmem_zone_destroy(xfs_buf_zone);
1859 #ifdef XFS_BUF_TRACE
1860 ktrace_free(xfs_buf_trace_buf);
1866 xfs_buf_terminate(void)
1868 unregister_shrinker(&xfs_buf_shake);
1869 destroy_workqueue(xfsdatad_workqueue);
1870 destroy_workqueue(xfslogd_workqueue);
1871 kmem_zone_destroy(xfs_buf_zone);
1872 #ifdef XFS_BUF_TRACE
1873 ktrace_free(xfs_buf_trace_buf);
1877 #ifdef CONFIG_KDB_MODULES
1879 xfs_get_buftarg_list(void)
1881 return &xfs_buftarg_list;