2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
81 memset(dent->padding2, 0, 4);
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
90 memset(data->padding, 0, 2);
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
96 * @trun: the truncation node to zero out
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
100 memset(trun->padding, 0, 12);
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
117 int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
125 squeeze = (jhead == BASEHD);
127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
134 avail = c->leb_size - wbuf->offs - wbuf->used;
135 if (wbuf->lnum != -1 && avail >= len)
139 * Write buffer wasn't seek'ed or there is no enough space - look for an
140 * LEB with some empty space.
142 lnum = ubifs_find_free_space(c, len, &free, squeeze);
144 /* Found an LEB, add it to the journal head */
145 offs = c->leb_size - free;
146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
149 /* A new bud was successfully allocated and added to the log */
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
162 dbg_jnl("no free space jhead %d, run GC", jhead);
163 mutex_unlock(&wbuf->io_mutex);
165 lnum = ubifs_garbage_collect(c, 0);
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
177 dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead);
179 dbg_jnl("retry (%d)", retries);
183 dbg_jnl("return -ENOSPC");
187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
188 dbg_jnl("got LEB %d for jhead %d", lnum, jhead);
189 avail = c->leb_size - wbuf->offs - wbuf->used;
191 if (wbuf->lnum != -1 && avail >= len) {
193 * Someone else has switched the journal head and we have
194 * enough space now. This happens when more then one process is
195 * trying to write to the same journal head at the same time.
197 dbg_jnl("return LEB %d back, already have LEB %d:%d",
198 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
199 err = ubifs_return_leb(c, lnum);
205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, UBI_SHORTTERM);
218 mutex_unlock(&wbuf->io_mutex);
222 /* An error occurred and the LEB has to be returned to lprops */
223 ubifs_assert(err < 0);
224 err1 = ubifs_return_leb(c, lnum);
225 if (err1 && err == -EAGAIN)
227 * Return original error code only if it is not %-EAGAIN,
228 * which is not really an error. Otherwise, return the error
229 * code of 'ubifs_return_leb()'.
232 mutex_unlock(&wbuf->io_mutex);
237 * write_node - write node to a journal head.
238 * @c: UBIFS file-system description object
239 * @jhead: journal head
240 * @node: node to write
242 * @lnum: LEB number written is returned here
243 * @offs: offset written is returned here
245 * This function writes a node to reserved space of journal head @jhead.
246 * Returns zero in case of success and a negative error code in case of
249 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
250 int *lnum, int *offs)
252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
254 ubifs_assert(jhead != GCHD);
256 *lnum = c->jheads[jhead].wbuf.lnum;
257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
259 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
260 ubifs_prepare_node(c, node, len, 0);
262 return ubifs_wbuf_write_nolock(wbuf, node, len);
266 * write_head - write data to a journal head.
267 * @c: UBIFS file-system description object
268 * @jhead: journal head
269 * @buf: buffer to write
270 * @len: length to write
271 * @lnum: LEB number written is returned here
272 * @offs: offset written is returned here
273 * @sync: non-zero if the write-buffer has to by synchronized
275 * This function is the same as 'write_node()' but it does not assume the
276 * buffer it is writing is a node, so it does not prepare it (which means
277 * initializing common header and calculating CRC).
279 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
280 int *lnum, int *offs, int sync)
283 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
285 ubifs_assert(jhead != GCHD);
287 *lnum = c->jheads[jhead].wbuf.lnum;
288 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
289 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
291 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
295 err = ubifs_wbuf_sync_nolock(wbuf);
300 * make_reservation - reserve journal space.
301 * @c: UBIFS file-system description object
302 * @jhead: journal head
303 * @len: how many bytes to reserve
305 * This function makes space reservation in journal head @jhead. The function
306 * takes the commit lock and locks the journal head, and the caller has to
307 * unlock the head and finish the reservation with 'finish_reservation()'.
308 * Returns zero in case of success and a negative error code in case of
311 * Note, the journal head may be unlocked as soon as the data is written, while
312 * the commit lock has to be released after the data has been added to the
315 static int make_reservation(struct ubifs_info *c, int jhead, int len)
317 int err, cmt_retries = 0, nospc_retries = 0;
320 down_read(&c->commit_sem);
321 err = reserve_space(c, jhead, len);
324 up_read(&c->commit_sem);
326 if (err == -ENOSPC) {
328 * GC could not make any progress. We should try to commit
329 * once because it could make some dirty space and GC would
330 * make progress, so make the error -EAGAIN so that the below
331 * will commit and re-try.
333 if (nospc_retries++ < 2) {
334 dbg_jnl("no space, retry");
339 * This means that the budgeting is incorrect. We always have
340 * to be able to write to the media, because all operations are
341 * budgeted. Deletions are not budgeted, though, but we reserve
342 * an extra LEB for them.
350 * -EAGAIN means that the journal is full or too large, or the above
351 * code wants to do one commit. Do this and re-try.
353 if (cmt_retries > 128) {
355 * This should not happen unless the journal size limitations
358 ubifs_err("stuck in space allocation");
361 } else if (cmt_retries > 32)
362 ubifs_warn("too many space allocation re-tries (%d)",
365 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
369 err = ubifs_run_commit(c);
375 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
377 if (err == -ENOSPC) {
378 /* This are some budgeting problems, print useful information */
379 down_write(&c->commit_sem);
380 spin_lock(&c->space_lock);
383 spin_unlock(&c->space_lock);
385 cmt_retries = dbg_check_lprops(c);
386 up_write(&c->commit_sem);
392 * release_head - release a journal head.
393 * @c: UBIFS file-system description object
394 * @jhead: journal head
396 * This function releases journal head @jhead which was locked by
397 * the 'make_reservation()' function. It has to be called after each successful
398 * 'make_reservation()' invocation.
400 static inline void release_head(struct ubifs_info *c, int jhead)
402 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
406 * finish_reservation - finish a reservation.
407 * @c: UBIFS file-system description object
409 * This function finishes journal space reservation. It must be called after
410 * 'make_reservation()'.
412 static void finish_reservation(struct ubifs_info *c)
414 up_read(&c->commit_sem);
418 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
421 static int get_dent_type(int mode)
423 switch (mode & S_IFMT) {
425 return UBIFS_ITYPE_REG;
427 return UBIFS_ITYPE_DIR;
429 return UBIFS_ITYPE_LNK;
431 return UBIFS_ITYPE_BLK;
433 return UBIFS_ITYPE_CHR;
435 return UBIFS_ITYPE_FIFO;
437 return UBIFS_ITYPE_SOCK;
445 * pack_inode - pack an inode node.
446 * @c: UBIFS file-system description object
447 * @ino: buffer in which to pack inode node
448 * @inode: inode to pack
449 * @last: indicates the last node of the group
451 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
452 const struct inode *inode, int last)
454 int data_len = 0, last_reference = !inode->i_nlink;
455 struct ubifs_inode *ui = ubifs_inode(inode);
457 ino->ch.node_type = UBIFS_INO_NODE;
458 ino_key_init_flash(c, &ino->key, inode->i_ino);
459 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
460 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
461 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
462 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
463 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
464 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
465 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
466 ino->uid = cpu_to_le32(inode->i_uid);
467 ino->gid = cpu_to_le32(inode->i_gid);
468 ino->mode = cpu_to_le32(inode->i_mode);
469 ino->flags = cpu_to_le32(ui->flags);
470 ino->size = cpu_to_le64(ui->ui_size);
471 ino->nlink = cpu_to_le32(inode->i_nlink);
472 ino->compr_type = cpu_to_le16(ui->compr_type);
473 ino->data_len = cpu_to_le32(ui->data_len);
474 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
475 ino->xattr_size = cpu_to_le32(ui->xattr_size);
476 ino->xattr_names = cpu_to_le32(ui->xattr_names);
477 zero_ino_node_unused(ino);
480 * Drop the attached data if this is a deletion inode, the data is not
483 if (!last_reference) {
484 memcpy(ino->data, ui->data, ui->data_len);
485 data_len = ui->data_len;
488 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
492 * mark_inode_clean - mark UBIFS inode as clean.
493 * @c: UBIFS file-system description object
494 * @ui: UBIFS inode to mark as clean
496 * This helper function marks UBIFS inode @ui as clean by cleaning the
497 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
498 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
501 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
504 ubifs_release_dirty_inode_budget(c, ui);
509 * ubifs_jnl_update - update inode.
510 * @c: UBIFS file-system description object
511 * @dir: parent inode or host inode in case of extended attributes
512 * @nm: directory entry name
513 * @inode: inode to update
514 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
515 * @xent: non-zero if the directory entry is an extended attribute entry
517 * This function updates an inode by writing a directory entry (or extended
518 * attribute entry), the inode itself, and the parent directory inode (or the
519 * host inode) to the journal.
521 * The function writes the host inode @dir last, which is important in case of
522 * extended attributes. Indeed, then we guarantee that if the host inode gets
523 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
524 * the extended attribute inode gets flushed too. And this is exactly what the
525 * user expects - synchronizing the host inode synchronizes its extended
526 * attributes. Similarly, this guarantees that if @dir is synchronized, its
527 * directory entry corresponding to @nm gets synchronized too.
529 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
530 * function synchronizes the write-buffer.
532 * This function marks the @dir and @inode inodes as clean and returns zero on
533 * success. In case of failure, a negative error code is returned.
535 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
536 const struct qstr *nm, const struct inode *inode,
537 int deletion, int xent)
539 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
540 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
541 int last_reference = !!(deletion && inode->i_nlink == 0);
542 struct ubifs_inode *ui = ubifs_inode(inode);
543 struct ubifs_inode *dir_ui = ubifs_inode(dir);
544 struct ubifs_dent_node *dent;
545 struct ubifs_ino_node *ino;
546 union ubifs_key dent_key, ino_key;
548 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
549 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
550 ubifs_assert(dir_ui->data_len == 0);
551 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
553 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
554 ilen = UBIFS_INO_NODE_SZ;
557 * If the last reference to the inode is being deleted, then there is
558 * no need to attach and write inode data, it is being deleted anyway.
559 * And if the inode is being deleted, no need to synchronize
560 * write-buffer even if the inode is synchronous.
562 if (!last_reference) {
563 ilen += ui->data_len;
564 sync |= IS_SYNC(inode);
567 aligned_dlen = ALIGN(dlen, 8);
568 aligned_ilen = ALIGN(ilen, 8);
569 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
570 dent = kmalloc(len, GFP_NOFS);
574 /* Make reservation before allocating sequence numbers */
575 err = make_reservation(c, BASEHD, len);
580 dent->ch.node_type = UBIFS_DENT_NODE;
581 dent_key_init(c, &dent_key, dir->i_ino, nm);
583 dent->ch.node_type = UBIFS_XENT_NODE;
584 xent_key_init(c, &dent_key, dir->i_ino, nm);
587 key_write(c, &dent_key, dent->key);
588 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
589 dent->type = get_dent_type(inode->i_mode);
590 dent->nlen = cpu_to_le16(nm->len);
591 memcpy(dent->name, nm->name, nm->len);
592 dent->name[nm->len] = '\0';
593 zero_dent_node_unused(dent);
594 ubifs_prep_grp_node(c, dent, dlen, 0);
596 ino = (void *)dent + aligned_dlen;
597 pack_inode(c, ino, inode, 0);
598 ino = (void *)ino + aligned_ilen;
599 pack_inode(c, ino, dir, 1);
601 if (last_reference) {
602 err = ubifs_add_orphan(c, inode->i_ino);
604 release_head(c, BASEHD);
607 ui->del_cmtno = c->cmt_no;
610 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
614 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
616 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
617 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
619 release_head(c, BASEHD);
623 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
626 err = ubifs_add_dirt(c, lnum, dlen);
628 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
633 * Note, we do not remove the inode from TNC even if the last reference
634 * to it has just been deleted, because the inode may still be opened.
635 * Instead, the inode has been added to orphan lists and the orphan
636 * subsystem will take further care about it.
638 ino_key_init(c, &ino_key, inode->i_ino);
639 ino_offs = dent_offs + aligned_dlen;
640 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
644 ino_key_init(c, &ino_key, dir->i_ino);
645 ino_offs += aligned_ilen;
646 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
650 finish_reservation(c);
651 spin_lock(&ui->ui_lock);
652 ui->synced_i_size = ui->ui_size;
653 spin_unlock(&ui->ui_lock);
654 mark_inode_clean(c, ui);
655 mark_inode_clean(c, dir_ui);
659 finish_reservation(c);
665 release_head(c, BASEHD);
667 ubifs_ro_mode(c, err);
669 ubifs_delete_orphan(c, inode->i_ino);
670 finish_reservation(c);
675 * ubifs_jnl_write_data - write a data node to the journal.
676 * @c: UBIFS file-system description object
677 * @inode: inode the data node belongs to
679 * @buf: buffer to write
680 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
682 * This function writes a data node to the journal. Returns %0 if the data node
683 * was successfully written, and a negative error code in case of failure.
685 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
686 const union ubifs_key *key, const void *buf, int len)
688 struct ubifs_data_node *data;
689 int err, lnum, offs, compr_type, out_len;
690 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
691 struct ubifs_inode *ui = ubifs_inode(inode);
693 dbg_jnl("ino %lu, blk %u, len %d, key %s", key_inum(c, key),
694 key_block(c, key), len, DBGKEY(key));
695 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
697 data = kmalloc(dlen, GFP_NOFS);
701 data->ch.node_type = UBIFS_DATA_NODE;
702 key_write(c, key, &data->key);
703 data->size = cpu_to_le32(len);
704 zero_data_node_unused(data);
706 if (!(ui->flags && UBIFS_COMPR_FL))
707 /* Compression is disabled for this inode */
708 compr_type = UBIFS_COMPR_NONE;
710 compr_type = ui->compr_type;
712 out_len = dlen - UBIFS_DATA_NODE_SZ;
713 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
714 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
716 dlen = UBIFS_DATA_NODE_SZ + out_len;
717 data->compr_type = cpu_to_le16(compr_type);
719 /* Make reservation before allocating sequence numbers */
720 err = make_reservation(c, DATAHD, dlen);
724 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
727 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
728 release_head(c, DATAHD);
730 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
734 finish_reservation(c);
739 release_head(c, DATAHD);
741 ubifs_ro_mode(c, err);
742 finish_reservation(c);
749 * ubifs_jnl_write_inode - flush inode to the journal.
750 * @c: UBIFS file-system description object
751 * @inode: inode to flush
753 * This function writes inode @inode to the journal. If the inode is
754 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
755 * success and a negative error code in case of failure.
757 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
760 struct ubifs_ino_node *ino;
761 struct ubifs_inode *ui = ubifs_inode(inode);
762 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
764 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
767 * If the inode is being deleted, do not write the attached data. No
768 * need to synchronize the write-buffer either.
770 if (!last_reference) {
772 sync = IS_SYNC(inode);
774 ino = kmalloc(len, GFP_NOFS);
778 /* Make reservation before allocating sequence numbers */
779 err = make_reservation(c, BASEHD, len);
783 pack_inode(c, ino, inode, 1);
784 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
788 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
790 release_head(c, BASEHD);
792 if (last_reference) {
793 err = ubifs_tnc_remove_ino(c, inode->i_ino);
796 ubifs_delete_orphan(c, inode->i_ino);
797 err = ubifs_add_dirt(c, lnum, len);
801 ino_key_init(c, &key, inode->i_ino);
802 err = ubifs_tnc_add(c, &key, lnum, offs, len);
807 finish_reservation(c);
808 spin_lock(&ui->ui_lock);
809 ui->synced_i_size = ui->ui_size;
810 spin_unlock(&ui->ui_lock);
815 release_head(c, BASEHD);
817 ubifs_ro_mode(c, err);
818 finish_reservation(c);
825 * ubifs_jnl_delete_inode - delete an inode.
826 * @c: UBIFS file-system description object
827 * @inode: inode to delete
829 * This function deletes inode @inode which includes removing it from orphans,
830 * deleting it from TNC and, in some cases, writing a deletion inode to the
833 * When regular file inodes are unlinked or a directory inode is removed, the
834 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
835 * direntry to the media, and adds the inode to orphans. After this, when the
836 * last reference to this inode has been dropped, this function is called. In
837 * general, it has to write one more deletion inode to the media, because if
838 * a commit happened between 'ubifs_jnl_update()' and
839 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
840 * anymore, and in fact it might not be on the flash anymore, because it might
841 * have been garbage-collected already. And for optimization reasons UBIFS does
842 * not read the orphan area if it has been unmounted cleanly, so it would have
843 * no indication in the journal that there is a deleted inode which has to be
846 * However, if there was no commit between 'ubifs_jnl_update()' and
847 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
848 * inode to the media for the second time. And this is quite a typical case.
850 * This function returns zero in case of success and a negative error code in
853 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
856 struct ubifs_inode *ui = ubifs_inode(inode);
858 ubifs_assert(inode->i_nlink == 0);
860 if (ui->del_cmtno != c->cmt_no)
861 /* A commit happened for sure */
862 return ubifs_jnl_write_inode(c, inode);
864 down_read(&c->commit_sem);
866 * Check commit number again, because the first test has been done
867 * without @c->commit_sem, so a commit might have happened.
869 if (ui->del_cmtno != c->cmt_no) {
870 up_read(&c->commit_sem);
871 return ubifs_jnl_write_inode(c, inode);
874 err = ubifs_tnc_remove_ino(c, inode->i_ino);
876 ubifs_ro_mode(c, err);
878 ubifs_delete_orphan(c, inode->i_ino);
879 up_read(&c->commit_sem);
884 * ubifs_jnl_rename - rename a directory entry.
885 * @c: UBIFS file-system description object
886 * @old_dir: parent inode of directory entry to rename
887 * @old_dentry: directory entry to rename
888 * @new_dir: parent inode of directory entry to rename
889 * @new_dentry: new directory entry (or directory entry to replace)
890 * @sync: non-zero if the write-buffer has to be synchronized
892 * This function implements the re-name operation which may involve writing up
893 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
894 * and returns zero on success. In case of failure, a negative error code is
897 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
898 const struct dentry *old_dentry,
899 const struct inode *new_dir,
900 const struct dentry *new_dentry, int sync)
904 struct ubifs_dent_node *dent, *dent2;
905 int err, dlen1, dlen2, ilen, lnum, offs, len;
906 const struct inode *old_inode = old_dentry->d_inode;
907 const struct inode *new_inode = new_dentry->d_inode;
908 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
909 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
910 int move = (old_dir != new_dir);
911 struct ubifs_inode *uninitialized_var(new_ui);
913 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
914 old_dentry->d_name.len, old_dentry->d_name.name,
915 old_dir->i_ino, new_dentry->d_name.len,
916 new_dentry->d_name.name, new_dir->i_ino);
917 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
918 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
919 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
920 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
922 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
923 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
925 new_ui = ubifs_inode(new_inode);
926 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
927 ilen = UBIFS_INO_NODE_SZ;
929 ilen += new_ui->data_len;
933 aligned_dlen1 = ALIGN(dlen1, 8);
934 aligned_dlen2 = ALIGN(dlen2, 8);
935 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
936 if (old_dir != new_dir)
938 dent = kmalloc(len, GFP_NOFS);
942 /* Make reservation before allocating sequence numbers */
943 err = make_reservation(c, BASEHD, len);
948 dent->ch.node_type = UBIFS_DENT_NODE;
949 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
950 dent->inum = cpu_to_le64(old_inode->i_ino);
951 dent->type = get_dent_type(old_inode->i_mode);
952 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
953 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
954 dent->name[new_dentry->d_name.len] = '\0';
955 zero_dent_node_unused(dent);
956 ubifs_prep_grp_node(c, dent, dlen1, 0);
958 /* Make deletion dent */
959 dent2 = (void *)dent + aligned_dlen1;
960 dent2->ch.node_type = UBIFS_DENT_NODE;
961 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
962 &old_dentry->d_name);
964 dent2->type = DT_UNKNOWN;
965 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
966 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
967 dent2->name[old_dentry->d_name.len] = '\0';
968 zero_dent_node_unused(dent2);
969 ubifs_prep_grp_node(c, dent2, dlen2, 0);
971 p = (void *)dent2 + aligned_dlen2;
973 pack_inode(c, p, new_inode, 0);
978 pack_inode(c, p, old_dir, 1);
980 pack_inode(c, p, old_dir, 0);
982 pack_inode(c, p, new_dir, 1);
985 if (last_reference) {
986 err = ubifs_add_orphan(c, new_inode->i_ino);
988 release_head(c, BASEHD);
991 new_ui->del_cmtno = c->cmt_no;
994 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
998 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1000 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1001 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1003 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1006 release_head(c, BASEHD);
1008 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1009 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1013 err = ubifs_add_dirt(c, lnum, dlen2);
1017 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1018 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1022 offs += aligned_dlen1 + aligned_dlen2;
1024 ino_key_init(c, &key, new_inode->i_ino);
1025 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1028 offs += ALIGN(ilen, 8);
1031 ino_key_init(c, &key, old_dir->i_ino);
1032 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1036 if (old_dir != new_dir) {
1037 offs += ALIGN(plen, 8);
1038 ino_key_init(c, &key, new_dir->i_ino);
1039 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1044 finish_reservation(c);
1046 mark_inode_clean(c, new_ui);
1047 spin_lock(&new_ui->ui_lock);
1048 new_ui->synced_i_size = new_ui->ui_size;
1049 spin_unlock(&new_ui->ui_lock);
1051 mark_inode_clean(c, ubifs_inode(old_dir));
1053 mark_inode_clean(c, ubifs_inode(new_dir));
1058 release_head(c, BASEHD);
1060 ubifs_ro_mode(c, err);
1062 ubifs_delete_orphan(c, new_inode->i_ino);
1064 finish_reservation(c);
1071 * recomp_data_node - re-compress a truncated data node.
1072 * @dn: data node to re-compress
1073 * @new_len: new length
1075 * This function is used when an inode is truncated and the last data node of
1076 * the inode has to be re-compressed and re-written.
1078 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1081 int err, len, compr_type, out_len;
1083 out_len = le32_to_cpu(dn->size);
1084 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1088 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1089 compr_type = le16_to_cpu(dn->compr_type);
1090 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1094 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1095 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1096 dn->compr_type = cpu_to_le16(compr_type);
1097 dn->size = cpu_to_le32(*new_len);
1098 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1105 * ubifs_jnl_truncate - update the journal for a truncation.
1106 * @c: UBIFS file-system description object
1107 * @inode: inode to truncate
1108 * @old_size: old size
1109 * @new_size: new size
1111 * When the size of a file decreases due to truncation, a truncation node is
1112 * written, the journal tree is updated, and the last data block is re-written
1113 * if it has been affected. The inode is also updated in order to synchronize
1114 * the new inode size.
1116 * This function marks the inode as clean and returns zero on success. In case
1117 * of failure, a negative error code is returned.
1119 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1120 loff_t old_size, loff_t new_size)
1122 union ubifs_key key, to_key;
1123 struct ubifs_ino_node *ino;
1124 struct ubifs_trun_node *trun;
1125 struct ubifs_data_node *uninitialized_var(dn);
1126 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1127 struct ubifs_inode *ui = ubifs_inode(inode);
1128 ino_t inum = inode->i_ino;
1131 dbg_jnl("ino %lu, size %lld -> %lld", inum, old_size, new_size);
1132 ubifs_assert(!ui->data_len);
1133 ubifs_assert(S_ISREG(inode->i_mode));
1134 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1136 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1137 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1138 ino = kmalloc(sz, GFP_NOFS);
1142 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1143 trun->ch.node_type = UBIFS_TRUN_NODE;
1144 trun->inum = cpu_to_le32(inum);
1145 trun->old_size = cpu_to_le64(old_size);
1146 trun->new_size = cpu_to_le64(new_size);
1147 zero_trun_node_unused(trun);
1149 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1151 /* Get last data block so it can be truncated */
1152 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1153 blk = new_size >> UBIFS_BLOCK_SHIFT;
1154 data_key_init(c, &key, inum, blk);
1155 dbg_jnl("last block key %s", DBGKEY(&key));
1156 err = ubifs_tnc_lookup(c, &key, dn);
1158 dlen = 0; /* Not found (so it is a hole) */
1162 if (le32_to_cpu(dn->size) <= dlen)
1163 dlen = 0; /* Nothing to do */
1165 int compr_type = le16_to_cpu(dn->compr_type);
1167 if (compr_type != UBIFS_COMPR_NONE) {
1168 err = recomp_data_node(dn, &dlen);
1172 dn->size = cpu_to_le32(dlen);
1173 dlen += UBIFS_DATA_NODE_SZ;
1175 zero_data_node_unused(dn);
1180 /* Must make reservation before allocating sequence numbers */
1181 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1184 err = make_reservation(c, BASEHD, len);
1188 pack_inode(c, ino, inode, 0);
1189 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1191 ubifs_prep_grp_node(c, dn, dlen, 1);
1193 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1197 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1198 release_head(c, BASEHD);
1201 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1202 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1207 ino_key_init(c, &key, inum);
1208 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1212 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1216 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1217 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1218 data_key_init(c, &key, inum, blk);
1220 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1221 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0: 1);
1222 data_key_init(c, &to_key, inum, blk);
1224 err = ubifs_tnc_remove_range(c, &key, &to_key);
1228 finish_reservation(c);
1229 spin_lock(&ui->ui_lock);
1230 ui->synced_i_size = ui->ui_size;
1231 spin_unlock(&ui->ui_lock);
1232 mark_inode_clean(c, ui);
1237 release_head(c, BASEHD);
1239 ubifs_ro_mode(c, err);
1240 finish_reservation(c);
1246 #ifdef CONFIG_UBIFS_FS_XATTR
1249 * ubifs_jnl_delete_xattr - delete an extended attribute.
1250 * @c: UBIFS file-system description object
1252 * @inode: extended attribute inode
1253 * @nm: extended attribute entry name
1255 * This function delete an extended attribute which is very similar to
1256 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1257 * updates the target inode. Returns zero in case of success and a negative
1258 * error code in case of failure.
1260 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1261 const struct inode *inode, const struct qstr *nm)
1263 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1264 struct ubifs_dent_node *xent;
1265 struct ubifs_ino_node *ino;
1266 union ubifs_key xent_key, key1, key2;
1267 int sync = IS_DIRSYNC(host);
1268 struct ubifs_inode *host_ui = ubifs_inode(host);
1270 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1271 host->i_ino, inode->i_ino, nm->name,
1272 ubifs_inode(inode)->data_len);
1273 ubifs_assert(inode->i_nlink == 0);
1274 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1277 * Since we are deleting the inode, we do not bother to attach any data
1278 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1280 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1281 aligned_xlen = ALIGN(xlen, 8);
1282 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1283 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1285 xent = kmalloc(len, GFP_NOFS);
1289 /* Make reservation before allocating sequence numbers */
1290 err = make_reservation(c, BASEHD, len);
1296 xent->ch.node_type = UBIFS_XENT_NODE;
1297 xent_key_init(c, &xent_key, host->i_ino, nm);
1298 key_write(c, &xent_key, xent->key);
1300 xent->type = get_dent_type(inode->i_mode);
1301 xent->nlen = cpu_to_le16(nm->len);
1302 memcpy(xent->name, nm->name, nm->len);
1303 xent->name[nm->len] = '\0';
1304 zero_dent_node_unused(xent);
1305 ubifs_prep_grp_node(c, xent, xlen, 0);
1307 ino = (void *)xent + aligned_xlen;
1308 pack_inode(c, ino, inode, 0);
1309 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1310 pack_inode(c, ino, host, 1);
1312 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1314 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1315 release_head(c, BASEHD);
1320 /* Remove the extended attribute entry from TNC */
1321 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1324 err = ubifs_add_dirt(c, lnum, xlen);
1329 * Remove all nodes belonging to the extended attribute inode from TNC.
1330 * Well, there actually must be only one node - the inode itself.
1332 lowest_ino_key(c, &key1, inode->i_ino);
1333 highest_ino_key(c, &key2, inode->i_ino);
1334 err = ubifs_tnc_remove_range(c, &key1, &key2);
1337 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1341 /* And update TNC with the new host inode position */
1342 ino_key_init(c, &key1, host->i_ino);
1343 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1347 finish_reservation(c);
1348 spin_lock(&host_ui->ui_lock);
1349 host_ui->synced_i_size = host_ui->ui_size;
1350 spin_unlock(&host_ui->ui_lock);
1351 mark_inode_clean(c, host_ui);
1355 ubifs_ro_mode(c, err);
1356 finish_reservation(c);
1361 * ubifs_jnl_change_xattr - change an extended attribute.
1362 * @c: UBIFS file-system description object
1363 * @inode: extended attribute inode
1366 * This function writes the updated version of an extended attribute inode and
1367 * the host inode tho the journal (to the base head). The host inode is written
1368 * after the extended attribute inode in order to guarantee that the extended
1369 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1370 * consequently, the write-buffer is synchronized. This function returns zero
1371 * in case of success and a negative error code in case of failure.
1373 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1374 const struct inode *host)
1376 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1377 struct ubifs_inode *host_ui = ubifs_inode(host);
1378 struct ubifs_ino_node *ino;
1379 union ubifs_key key;
1380 int sync = IS_DIRSYNC(host);
1382 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1383 ubifs_assert(host->i_nlink > 0);
1384 ubifs_assert(inode->i_nlink > 0);
1385 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1387 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1388 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1389 aligned_len1 = ALIGN(len1, 8);
1390 aligned_len = aligned_len1 + ALIGN(len2, 8);
1392 ino = kmalloc(aligned_len, GFP_NOFS);
1396 /* Make reservation before allocating sequence numbers */
1397 err = make_reservation(c, BASEHD, aligned_len);
1401 pack_inode(c, ino, host, 0);
1402 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1404 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1405 if (!sync && !err) {
1406 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1408 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1409 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1411 release_head(c, BASEHD);
1415 ino_key_init(c, &key, host->i_ino);
1416 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1420 ino_key_init(c, &key, inode->i_ino);
1421 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1425 finish_reservation(c);
1426 spin_lock(&host_ui->ui_lock);
1427 host_ui->synced_i_size = host_ui->ui_size;
1428 spin_unlock(&host_ui->ui_lock);
1429 mark_inode_clean(c, host_ui);
1434 ubifs_ro_mode(c, err);
1435 finish_reservation(c);
1441 #endif /* CONFIG_UBIFS_FS_XATTR */