]> err.no Git - linux-2.6/blob - fs/relayfs/inode.c
[PATCH] relayfs: decouple buffer creation from inode creation
[linux-2.6] / fs / relayfs / inode.c
1 /*
2  * VFS-related code for RelayFS, a high-speed data relay filesystem.
3  *
4  * Copyright (C) 2003-2005 - Tom Zanussi <zanussi@us.ibm.com>, IBM Corp
5  * Copyright (C) 2003-2005 - Karim Yaghmour <karim@opersys.com>
6  *
7  * Based on ramfs, Copyright (C) 2002 - Linus Torvalds
8  *
9  * This file is released under the GPL.
10  */
11
12 #include <linux/module.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/string.h>
18 #include <linux/backing-dev.h>
19 #include <linux/namei.h>
20 #include <linux/poll.h>
21 #include <linux/relayfs_fs.h>
22 #include "relay.h"
23 #include "buffers.h"
24
25 #define RELAYFS_MAGIC                   0xF0B4A981
26
27 static struct vfsmount *                relayfs_mount;
28 static int                              relayfs_mount_count;
29 static kmem_cache_t *                   relayfs_inode_cachep;
30
31 static struct backing_dev_info          relayfs_backing_dev_info = {
32         .ra_pages       = 0,    /* No readahead */
33         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
34 };
35
36 static struct inode *relayfs_get_inode(struct super_block *sb, int mode,
37                                        void *data)
38 {
39         struct inode *inode;
40
41         inode = new_inode(sb);
42         if (!inode)
43                 return NULL;
44
45         inode->i_mode = mode;
46         inode->i_uid = 0;
47         inode->i_gid = 0;
48         inode->i_blksize = PAGE_CACHE_SIZE;
49         inode->i_blocks = 0;
50         inode->i_mapping->backing_dev_info = &relayfs_backing_dev_info;
51         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
52         switch (mode & S_IFMT) {
53         case S_IFREG:
54                 inode->i_fop = &relayfs_file_operations;
55                 RELAYFS_I(inode)->buf = data;
56                 break;
57         case S_IFDIR:
58                 inode->i_op = &simple_dir_inode_operations;
59                 inode->i_fop = &simple_dir_operations;
60
61                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
62                 inode->i_nlink++;
63                 break;
64         default:
65                 break;
66         }
67
68         return inode;
69 }
70
71 /**
72  *      relayfs_create_entry - create a relayfs directory or file
73  *      @name: the name of the file to create
74  *      @parent: parent directory
75  *      @mode: mode
76  *      @data: user-associated data for this file
77  *
78  *      Returns the new dentry, NULL on failure
79  *
80  *      Creates a file or directory with the specifed permissions.
81  */
82 static struct dentry *relayfs_create_entry(const char *name,
83                                            struct dentry *parent,
84                                            int mode,
85                                            void *data)
86 {
87         struct dentry *d;
88         struct inode *inode;
89         int error = 0;
90
91         BUG_ON(!name || !(S_ISREG(mode) || S_ISDIR(mode)));
92
93         error = simple_pin_fs("relayfs", &relayfs_mount, &relayfs_mount_count);
94         if (error) {
95                 printk(KERN_ERR "Couldn't mount relayfs: errcode %d\n", error);
96                 return NULL;
97         }
98
99         if (!parent && relayfs_mount && relayfs_mount->mnt_sb)
100                 parent = relayfs_mount->mnt_sb->s_root;
101
102         if (!parent) {
103                 simple_release_fs(&relayfs_mount, &relayfs_mount_count);
104                 return NULL;
105         }
106
107         parent = dget(parent);
108         down(&parent->d_inode->i_sem);
109         d = lookup_one_len(name, parent, strlen(name));
110         if (IS_ERR(d)) {
111                 d = NULL;
112                 goto release_mount;
113         }
114
115         if (d->d_inode) {
116                 d = NULL;
117                 goto release_mount;
118         }
119
120         inode = relayfs_get_inode(parent->d_inode->i_sb, mode, data);
121         if (!inode) {
122                 d = NULL;
123                 goto release_mount;
124         }
125
126         d_instantiate(d, inode);
127         dget(d);        /* Extra count - pin the dentry in core */
128
129         if (S_ISDIR(mode))
130                 parent->d_inode->i_nlink++;
131
132         goto exit;
133
134 release_mount:
135         simple_release_fs(&relayfs_mount, &relayfs_mount_count);
136
137 exit:
138         up(&parent->d_inode->i_sem);
139         dput(parent);
140         return d;
141 }
142
143 /**
144  *      relayfs_create_file - create a file in the relay filesystem
145  *      @name: the name of the file to create
146  *      @parent: parent directory
147  *      @mode: mode, if not specied the default perms are used
148  *      @data: user-associated data for this file
149  *
150  *      Returns file dentry if successful, NULL otherwise.
151  *
152  *      The file will be created user r on behalf of current user.
153  */
154 struct dentry *relayfs_create_file(const char *name, struct dentry *parent,
155                                    int mode, void *data)
156 {
157         if (!mode)
158                 mode = S_IRUSR;
159         mode = (mode & S_IALLUGO) | S_IFREG;
160
161         return relayfs_create_entry(name, parent, mode, data);
162 }
163
164 /**
165  *      relayfs_create_dir - create a directory in the relay filesystem
166  *      @name: the name of the directory to create
167  *      @parent: parent directory, NULL if parent should be fs root
168  *
169  *      Returns directory dentry if successful, NULL otherwise.
170  *
171  *      The directory will be created world rwx on behalf of current user.
172  */
173 struct dentry *relayfs_create_dir(const char *name, struct dentry *parent)
174 {
175         int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
176         return relayfs_create_entry(name, parent, mode, NULL);
177 }
178
179 /**
180  *      relayfs_remove - remove a file or directory in the relay filesystem
181  *      @dentry: file or directory dentry
182  *
183  *      Returns 0 if successful, negative otherwise.
184  */
185 int relayfs_remove(struct dentry *dentry)
186 {
187         struct dentry *parent;
188         int error = 0;
189
190         if (!dentry)
191                 return -EINVAL;
192         parent = dentry->d_parent;
193         if (!parent)
194                 return -EINVAL;
195
196         parent = dget(parent);
197         down(&parent->d_inode->i_sem);
198         if (dentry->d_inode) {
199                 if (S_ISDIR(dentry->d_inode->i_mode))
200                         error = simple_rmdir(parent->d_inode, dentry);
201                 else
202                         error = simple_unlink(parent->d_inode, dentry);
203                 if (!error)
204                         d_delete(dentry);
205         }
206         if (!error)
207                 dput(dentry);
208         up(&parent->d_inode->i_sem);
209         dput(parent);
210
211         if (!error)
212                 simple_release_fs(&relayfs_mount, &relayfs_mount_count);
213
214         return error;
215 }
216
217 /**
218  *      relayfs_remove_dir - remove a directory in the relay filesystem
219  *      @dentry: directory dentry
220  *
221  *      Returns 0 if successful, negative otherwise.
222  */
223 int relayfs_remove_dir(struct dentry *dentry)
224 {
225         return relayfs_remove(dentry);
226 }
227
228 /**
229  *      relayfs_open - open file op for relayfs files
230  *      @inode: the inode
231  *      @filp: the file
232  *
233  *      Increments the channel buffer refcount.
234  */
235 static int relayfs_open(struct inode *inode, struct file *filp)
236 {
237         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
238         kref_get(&buf->kref);
239
240         return 0;
241 }
242
243 /**
244  *      relayfs_mmap - mmap file op for relayfs files
245  *      @filp: the file
246  *      @vma: the vma describing what to map
247  *
248  *      Calls upon relay_mmap_buf to map the file into user space.
249  */
250 static int relayfs_mmap(struct file *filp, struct vm_area_struct *vma)
251 {
252         struct inode *inode = filp->f_dentry->d_inode;
253         return relay_mmap_buf(RELAYFS_I(inode)->buf, vma);
254 }
255
256 /**
257  *      relayfs_poll - poll file op for relayfs files
258  *      @filp: the file
259  *      @wait: poll table
260  *
261  *      Poll implemention.
262  */
263 static unsigned int relayfs_poll(struct file *filp, poll_table *wait)
264 {
265         unsigned int mask = 0;
266         struct inode *inode = filp->f_dentry->d_inode;
267         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
268
269         if (buf->finalized)
270                 return POLLERR;
271
272         if (filp->f_mode & FMODE_READ) {
273                 poll_wait(filp, &buf->read_wait, wait);
274                 if (!relay_buf_empty(buf))
275                         mask |= POLLIN | POLLRDNORM;
276         }
277
278         return mask;
279 }
280
281 /**
282  *      relayfs_release - release file op for relayfs files
283  *      @inode: the inode
284  *      @filp: the file
285  *
286  *      Decrements the channel refcount, as the filesystem is
287  *      no longer using it.
288  */
289 static int relayfs_release(struct inode *inode, struct file *filp)
290 {
291         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
292         kref_put(&buf->kref, relay_remove_buf);
293
294         return 0;
295 }
296
297 /**
298  *      relayfs_read_consume - update the consumed count for the buffer
299  */
300 static void relayfs_read_consume(struct rchan_buf *buf,
301                                  size_t read_pos,
302                                  size_t bytes_consumed)
303 {
304         size_t subbuf_size = buf->chan->subbuf_size;
305         size_t n_subbufs = buf->chan->n_subbufs;
306         size_t read_subbuf;
307
308         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
309                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
310                 buf->bytes_consumed = 0;
311         }
312
313         buf->bytes_consumed += bytes_consumed;
314         read_subbuf = read_pos / buf->chan->subbuf_size;
315         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
316                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
317                     (buf->offset == subbuf_size))
318                         return;
319                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
320                 buf->bytes_consumed = 0;
321         }
322 }
323
324 /**
325  *      relayfs_read_avail - boolean, are there unconsumed bytes available?
326  */
327 static int relayfs_read_avail(struct rchan_buf *buf, size_t read_pos)
328 {
329         size_t bytes_produced, bytes_consumed, write_offset;
330         size_t subbuf_size = buf->chan->subbuf_size;
331         size_t n_subbufs = buf->chan->n_subbufs;
332         size_t produced = buf->subbufs_produced % n_subbufs;
333         size_t consumed = buf->subbufs_consumed % n_subbufs;
334
335         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
336
337         if (consumed > produced) {
338                 if ((produced > n_subbufs) &&
339                     (produced + n_subbufs - consumed <= n_subbufs))
340                         produced += n_subbufs;
341         } else if (consumed == produced) {
342                 if (buf->offset > subbuf_size) {
343                         produced += n_subbufs;
344                         if (buf->subbufs_produced == buf->subbufs_consumed)
345                                 consumed += n_subbufs;
346                 }
347         }
348
349         if (buf->offset > subbuf_size)
350                 bytes_produced = (produced - 1) * subbuf_size + write_offset;
351         else
352                 bytes_produced = produced * subbuf_size + write_offset;
353         bytes_consumed = consumed * subbuf_size + buf->bytes_consumed;
354
355         if (bytes_produced == bytes_consumed)
356                 return 0;
357
358         relayfs_read_consume(buf, read_pos, 0);
359
360         return 1;
361 }
362
363 /**
364  *      relayfs_read_subbuf_avail - return bytes available in sub-buffer
365  */
366 static size_t relayfs_read_subbuf_avail(size_t read_pos,
367                                         struct rchan_buf *buf)
368 {
369         size_t padding, avail = 0;
370         size_t read_subbuf, read_offset, write_subbuf, write_offset;
371         size_t subbuf_size = buf->chan->subbuf_size;
372
373         write_subbuf = (buf->data - buf->start) / subbuf_size;
374         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
375         read_subbuf = read_pos / subbuf_size;
376         read_offset = read_pos % subbuf_size;
377         padding = buf->padding[read_subbuf];
378
379         if (read_subbuf == write_subbuf) {
380                 if (read_offset + padding < write_offset)
381                         avail = write_offset - (read_offset + padding);
382         } else
383                 avail = (subbuf_size - padding) - read_offset;
384
385         return avail;
386 }
387
388 /**
389  *      relayfs_read_start_pos - find the first available byte to read
390  *
391  *      If the read_pos is in the middle of padding, return the
392  *      position of the first actually available byte, otherwise
393  *      return the original value.
394  */
395 static size_t relayfs_read_start_pos(size_t read_pos,
396                                      struct rchan_buf *buf)
397 {
398         size_t read_subbuf, padding, padding_start, padding_end;
399         size_t subbuf_size = buf->chan->subbuf_size;
400         size_t n_subbufs = buf->chan->n_subbufs;
401
402         read_subbuf = read_pos / subbuf_size;
403         padding = buf->padding[read_subbuf];
404         padding_start = (read_subbuf + 1) * subbuf_size - padding;
405         padding_end = (read_subbuf + 1) * subbuf_size;
406         if (read_pos >= padding_start && read_pos < padding_end) {
407                 read_subbuf = (read_subbuf + 1) % n_subbufs;
408                 read_pos = read_subbuf * subbuf_size;
409         }
410
411         return read_pos;
412 }
413
414 /**
415  *      relayfs_read_end_pos - return the new read position
416  */
417 static size_t relayfs_read_end_pos(struct rchan_buf *buf,
418                                    size_t read_pos,
419                                    size_t count)
420 {
421         size_t read_subbuf, padding, end_pos;
422         size_t subbuf_size = buf->chan->subbuf_size;
423         size_t n_subbufs = buf->chan->n_subbufs;
424
425         read_subbuf = read_pos / subbuf_size;
426         padding = buf->padding[read_subbuf];
427         if (read_pos % subbuf_size + count + padding == subbuf_size)
428                 end_pos = (read_subbuf + 1) * subbuf_size;
429         else
430                 end_pos = read_pos + count;
431         if (end_pos >= subbuf_size * n_subbufs)
432                 end_pos = 0;
433
434         return end_pos;
435 }
436
437 /**
438  *      relayfs_read - read file op for relayfs files
439  *      @filp: the file
440  *      @buffer: the userspace buffer
441  *      @count: number of bytes to read
442  *      @ppos: position to read from
443  *
444  *      Reads count bytes or the number of bytes available in the
445  *      current sub-buffer being read, whichever is smaller.
446  */
447 static ssize_t relayfs_read(struct file *filp,
448                             char __user *buffer,
449                             size_t count,
450                             loff_t *ppos)
451 {
452         struct inode *inode = filp->f_dentry->d_inode;
453         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
454         size_t read_start, avail;
455         ssize_t ret = 0;
456         void *from;
457
458         down(&inode->i_sem);
459         if(!relayfs_read_avail(buf, *ppos))
460                 goto out;
461
462         read_start = relayfs_read_start_pos(*ppos, buf);
463         avail = relayfs_read_subbuf_avail(read_start, buf);
464         if (!avail)
465                 goto out;
466
467         from = buf->start + read_start;
468         ret = count = min(count, avail);
469         if (copy_to_user(buffer, from, count)) {
470                 ret = -EFAULT;
471                 goto out;
472         }
473         relayfs_read_consume(buf, read_start, count);
474         *ppos = relayfs_read_end_pos(buf, read_start, count);
475 out:
476         up(&inode->i_sem);
477         return ret;
478 }
479
480 /**
481  *      relayfs alloc_inode() implementation
482  */
483 static struct inode *relayfs_alloc_inode(struct super_block *sb)
484 {
485         struct relayfs_inode_info *p = kmem_cache_alloc(relayfs_inode_cachep, SLAB_KERNEL);
486         if (!p)
487                 return NULL;
488         p->buf = NULL;
489
490         return &p->vfs_inode;
491 }
492
493 /**
494  *      relayfs destroy_inode() implementation
495  */
496 static void relayfs_destroy_inode(struct inode *inode)
497 {
498         kmem_cache_free(relayfs_inode_cachep, RELAYFS_I(inode));
499 }
500
501 static void init_once(void *p, kmem_cache_t *cachep, unsigned long flags)
502 {
503         struct relayfs_inode_info *i = p;
504         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR)
505                 inode_init_once(&i->vfs_inode);
506 }
507
508 struct file_operations relayfs_file_operations = {
509         .open           = relayfs_open,
510         .poll           = relayfs_poll,
511         .mmap           = relayfs_mmap,
512         .read           = relayfs_read,
513         .llseek         = no_llseek,
514         .release        = relayfs_release,
515 };
516
517 static struct super_operations relayfs_ops = {
518         .statfs         = simple_statfs,
519         .drop_inode     = generic_delete_inode,
520         .alloc_inode    = relayfs_alloc_inode,
521         .destroy_inode  = relayfs_destroy_inode,
522 };
523
524 static int relayfs_fill_super(struct super_block * sb, void * data, int silent)
525 {
526         struct inode *inode;
527         struct dentry *root;
528         int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
529
530         sb->s_blocksize = PAGE_CACHE_SIZE;
531         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
532         sb->s_magic = RELAYFS_MAGIC;
533         sb->s_op = &relayfs_ops;
534         inode = relayfs_get_inode(sb, mode, NULL);
535
536         if (!inode)
537                 return -ENOMEM;
538
539         root = d_alloc_root(inode);
540         if (!root) {
541                 iput(inode);
542                 return -ENOMEM;
543         }
544         sb->s_root = root;
545
546         return 0;
547 }
548
549 static struct super_block * relayfs_get_sb(struct file_system_type *fs_type,
550                                            int flags, const char *dev_name,
551                                            void *data)
552 {
553         return get_sb_single(fs_type, flags, data, relayfs_fill_super);
554 }
555
556 static struct file_system_type relayfs_fs_type = {
557         .owner          = THIS_MODULE,
558         .name           = "relayfs",
559         .get_sb         = relayfs_get_sb,
560         .kill_sb        = kill_litter_super,
561 };
562
563 static int __init init_relayfs_fs(void)
564 {
565         int err;
566
567         relayfs_inode_cachep = kmem_cache_create("relayfs_inode_cache",
568                                 sizeof(struct relayfs_inode_info), 0,
569                                 0, init_once, NULL);
570         if (!relayfs_inode_cachep)
571                 return -ENOMEM;
572
573         err = register_filesystem(&relayfs_fs_type);
574         if (err)
575                 kmem_cache_destroy(relayfs_inode_cachep);
576
577         return err;
578 }
579
580 static void __exit exit_relayfs_fs(void)
581 {
582         unregister_filesystem(&relayfs_fs_type);
583         kmem_cache_destroy(relayfs_inode_cachep);
584 }
585
586 module_init(init_relayfs_fs)
587 module_exit(exit_relayfs_fs)
588
589 EXPORT_SYMBOL_GPL(relayfs_file_operations);
590 EXPORT_SYMBOL_GPL(relayfs_create_dir);
591 EXPORT_SYMBOL_GPL(relayfs_remove_dir);
592
593 MODULE_AUTHOR("Tom Zanussi <zanussi@us.ibm.com> and Karim Yaghmour <karim@opersys.com>");
594 MODULE_DESCRIPTION("Relay Filesystem");
595 MODULE_LICENSE("GPL");
596