4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
52 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 tmp = tmp + (tmp >> HASH_SHIFT);
55 return tmp & (HASH_SIZE - 1);
58 struct vfsmount *alloc_vfsmnt(const char *name)
60 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
62 atomic_set(&mnt->mnt_count, 1);
63 INIT_LIST_HEAD(&mnt->mnt_hash);
64 INIT_LIST_HEAD(&mnt->mnt_child);
65 INIT_LIST_HEAD(&mnt->mnt_mounts);
66 INIT_LIST_HEAD(&mnt->mnt_list);
67 INIT_LIST_HEAD(&mnt->mnt_expire);
68 INIT_LIST_HEAD(&mnt->mnt_share);
69 INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 INIT_LIST_HEAD(&mnt->mnt_slave);
72 int size = strlen(name) + 1;
73 char *newname = kmalloc(size, GFP_KERNEL);
75 memcpy(newname, name, size);
76 mnt->mnt_devname = newname;
84 * Most r/o checks on a fs are for operations that take
85 * discrete amounts of time, like a write() or unlink().
86 * We must keep track of when those operations start
87 * (for permission checks) and when they end, so that
88 * we can determine when writes are able to occur to
92 * mnt_want_write - get write access to a mount
93 * @mnt: the mount on which to take a write
95 * This tells the low-level filesystem that a write is
96 * about to be performed to it, and makes sure that
97 * writes are allowed before returning success. When
98 * the write operation is finished, mnt_drop_write()
99 * must be called. This is effectively a refcount.
101 int mnt_want_write(struct vfsmount *mnt)
103 if (__mnt_is_readonly(mnt))
107 EXPORT_SYMBOL_GPL(mnt_want_write);
110 * mnt_drop_write - give up write access to a mount
111 * @mnt: the mount on which to give up write access
113 * Tells the low-level filesystem that we are done
114 * performing writes to it. Must be matched with
115 * mnt_want_write() call above.
117 void mnt_drop_write(struct vfsmount *mnt)
120 EXPORT_SYMBOL_GPL(mnt_drop_write);
123 * __mnt_is_readonly: check whether a mount is read-only
124 * @mnt: the mount to check for its write status
126 * This shouldn't be used directly ouside of the VFS.
127 * It does not guarantee that the filesystem will stay
128 * r/w, just that it is right *now*. This can not and
129 * should not be used in place of IS_RDONLY(inode).
131 int __mnt_is_readonly(struct vfsmount *mnt)
133 return (mnt->mnt_sb->s_flags & MS_RDONLY);
135 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
137 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
140 mnt->mnt_root = dget(sb->s_root);
144 EXPORT_SYMBOL(simple_set_mnt);
146 void free_vfsmnt(struct vfsmount *mnt)
148 kfree(mnt->mnt_devname);
149 kmem_cache_free(mnt_cache, mnt);
153 * find the first or last mount at @dentry on vfsmount @mnt depending on
154 * @dir. If @dir is set return the first mount else return the last mount.
156 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
159 struct list_head *head = mount_hashtable + hash(mnt, dentry);
160 struct list_head *tmp = head;
161 struct vfsmount *p, *found = NULL;
164 tmp = dir ? tmp->next : tmp->prev;
168 p = list_entry(tmp, struct vfsmount, mnt_hash);
169 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
178 * lookup_mnt increments the ref count before returning
179 * the vfsmount struct.
181 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
183 struct vfsmount *child_mnt;
184 spin_lock(&vfsmount_lock);
185 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
187 spin_unlock(&vfsmount_lock);
191 static inline int check_mnt(struct vfsmount *mnt)
193 return mnt->mnt_ns == current->nsproxy->mnt_ns;
196 static void touch_mnt_namespace(struct mnt_namespace *ns)
200 wake_up_interruptible(&ns->poll);
204 static void __touch_mnt_namespace(struct mnt_namespace *ns)
206 if (ns && ns->event != event) {
208 wake_up_interruptible(&ns->poll);
212 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
214 old_path->dentry = mnt->mnt_mountpoint;
215 old_path->mnt = mnt->mnt_parent;
216 mnt->mnt_parent = mnt;
217 mnt->mnt_mountpoint = mnt->mnt_root;
218 list_del_init(&mnt->mnt_child);
219 list_del_init(&mnt->mnt_hash);
220 old_path->dentry->d_mounted--;
223 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
224 struct vfsmount *child_mnt)
226 child_mnt->mnt_parent = mntget(mnt);
227 child_mnt->mnt_mountpoint = dget(dentry);
231 static void attach_mnt(struct vfsmount *mnt, struct path *path)
233 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
234 list_add_tail(&mnt->mnt_hash, mount_hashtable +
235 hash(path->mnt, path->dentry));
236 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
240 * the caller must hold vfsmount_lock
242 static void commit_tree(struct vfsmount *mnt)
244 struct vfsmount *parent = mnt->mnt_parent;
247 struct mnt_namespace *n = parent->mnt_ns;
249 BUG_ON(parent == mnt);
251 list_add_tail(&head, &mnt->mnt_list);
252 list_for_each_entry(m, &head, mnt_list)
254 list_splice(&head, n->list.prev);
256 list_add_tail(&mnt->mnt_hash, mount_hashtable +
257 hash(parent, mnt->mnt_mountpoint));
258 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
259 touch_mnt_namespace(n);
262 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
264 struct list_head *next = p->mnt_mounts.next;
265 if (next == &p->mnt_mounts) {
269 next = p->mnt_child.next;
270 if (next != &p->mnt_parent->mnt_mounts)
275 return list_entry(next, struct vfsmount, mnt_child);
278 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
280 struct list_head *prev = p->mnt_mounts.prev;
281 while (prev != &p->mnt_mounts) {
282 p = list_entry(prev, struct vfsmount, mnt_child);
283 prev = p->mnt_mounts.prev;
288 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
291 struct super_block *sb = old->mnt_sb;
292 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
295 mnt->mnt_flags = old->mnt_flags;
296 atomic_inc(&sb->s_active);
298 mnt->mnt_root = dget(root);
299 mnt->mnt_mountpoint = mnt->mnt_root;
300 mnt->mnt_parent = mnt;
302 if (flag & CL_SLAVE) {
303 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
304 mnt->mnt_master = old;
305 CLEAR_MNT_SHARED(mnt);
306 } else if (!(flag & CL_PRIVATE)) {
307 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
308 list_add(&mnt->mnt_share, &old->mnt_share);
309 if (IS_MNT_SLAVE(old))
310 list_add(&mnt->mnt_slave, &old->mnt_slave);
311 mnt->mnt_master = old->mnt_master;
313 if (flag & CL_MAKE_SHARED)
316 /* stick the duplicate mount on the same expiry list
317 * as the original if that was on one */
318 if (flag & CL_EXPIRE) {
319 if (!list_empty(&old->mnt_expire))
320 list_add(&mnt->mnt_expire, &old->mnt_expire);
326 static inline void __mntput(struct vfsmount *mnt)
328 struct super_block *sb = mnt->mnt_sb;
331 deactivate_super(sb);
334 void mntput_no_expire(struct vfsmount *mnt)
337 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
338 if (likely(!mnt->mnt_pinned)) {
339 spin_unlock(&vfsmount_lock);
343 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
345 spin_unlock(&vfsmount_lock);
346 acct_auto_close_mnt(mnt);
347 security_sb_umount_close(mnt);
352 EXPORT_SYMBOL(mntput_no_expire);
354 void mnt_pin(struct vfsmount *mnt)
356 spin_lock(&vfsmount_lock);
358 spin_unlock(&vfsmount_lock);
361 EXPORT_SYMBOL(mnt_pin);
363 void mnt_unpin(struct vfsmount *mnt)
365 spin_lock(&vfsmount_lock);
366 if (mnt->mnt_pinned) {
367 atomic_inc(&mnt->mnt_count);
370 spin_unlock(&vfsmount_lock);
373 EXPORT_SYMBOL(mnt_unpin);
375 static inline void mangle(struct seq_file *m, const char *s)
377 seq_escape(m, s, " \t\n\\");
381 * Simple .show_options callback for filesystems which don't want to
382 * implement more complex mount option showing.
384 * See also save_mount_options().
386 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
388 const char *options = mnt->mnt_sb->s_options;
390 if (options != NULL && options[0]) {
397 EXPORT_SYMBOL(generic_show_options);
400 * If filesystem uses generic_show_options(), this function should be
401 * called from the fill_super() callback.
403 * The .remount_fs callback usually needs to be handled in a special
404 * way, to make sure, that previous options are not overwritten if the
407 * Also note, that if the filesystem's .remount_fs function doesn't
408 * reset all options to their default value, but changes only newly
409 * given options, then the displayed options will not reflect reality
412 void save_mount_options(struct super_block *sb, char *options)
414 kfree(sb->s_options);
415 sb->s_options = kstrdup(options, GFP_KERNEL);
417 EXPORT_SYMBOL(save_mount_options);
420 static void *m_start(struct seq_file *m, loff_t *pos)
422 struct mnt_namespace *n = m->private;
424 down_read(&namespace_sem);
425 return seq_list_start(&n->list, *pos);
428 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
430 struct mnt_namespace *n = m->private;
432 return seq_list_next(v, &n->list, pos);
435 static void m_stop(struct seq_file *m, void *v)
437 up_read(&namespace_sem);
440 static int show_vfsmnt(struct seq_file *m, void *v)
442 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
444 static struct proc_fs_info {
448 { MS_SYNCHRONOUS, ",sync" },
449 { MS_DIRSYNC, ",dirsync" },
450 { MS_MANDLOCK, ",mand" },
453 static struct proc_fs_info mnt_info[] = {
454 { MNT_NOSUID, ",nosuid" },
455 { MNT_NODEV, ",nodev" },
456 { MNT_NOEXEC, ",noexec" },
457 { MNT_NOATIME, ",noatime" },
458 { MNT_NODIRATIME, ",nodiratime" },
459 { MNT_RELATIME, ",relatime" },
462 struct proc_fs_info *fs_infop;
463 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
465 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
467 seq_path(m, &mnt_path, " \t\n\\");
469 mangle(m, mnt->mnt_sb->s_type->name);
470 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
472 mangle(m, mnt->mnt_sb->s_subtype);
474 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
475 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
476 if (mnt->mnt_sb->s_flags & fs_infop->flag)
477 seq_puts(m, fs_infop->str);
479 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
480 if (mnt->mnt_flags & fs_infop->flag)
481 seq_puts(m, fs_infop->str);
483 if (mnt->mnt_sb->s_op->show_options)
484 err = mnt->mnt_sb->s_op->show_options(m, mnt);
485 seq_puts(m, " 0 0\n");
489 struct seq_operations mounts_op = {
496 static int show_vfsstat(struct seq_file *m, void *v)
498 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
499 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
503 if (mnt->mnt_devname) {
504 seq_puts(m, "device ");
505 mangle(m, mnt->mnt_devname);
507 seq_puts(m, "no device");
510 seq_puts(m, " mounted on ");
511 seq_path(m, &mnt_path, " \t\n\\");
514 /* file system type */
515 seq_puts(m, "with fstype ");
516 mangle(m, mnt->mnt_sb->s_type->name);
518 /* optional statistics */
519 if (mnt->mnt_sb->s_op->show_stats) {
521 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
528 struct seq_operations mountstats_op = {
532 .show = show_vfsstat,
536 * may_umount_tree - check if a mount tree is busy
537 * @mnt: root of mount tree
539 * This is called to check if a tree of mounts has any
540 * open files, pwds, chroots or sub mounts that are
543 int may_umount_tree(struct vfsmount *mnt)
546 int minimum_refs = 0;
549 spin_lock(&vfsmount_lock);
550 for (p = mnt; p; p = next_mnt(p, mnt)) {
551 actual_refs += atomic_read(&p->mnt_count);
554 spin_unlock(&vfsmount_lock);
556 if (actual_refs > minimum_refs)
562 EXPORT_SYMBOL(may_umount_tree);
565 * may_umount - check if a mount point is busy
566 * @mnt: root of mount
568 * This is called to check if a mount point has any
569 * open files, pwds, chroots or sub mounts. If the
570 * mount has sub mounts this will return busy
571 * regardless of whether the sub mounts are busy.
573 * Doesn't take quota and stuff into account. IOW, in some cases it will
574 * give false negatives. The main reason why it's here is that we need
575 * a non-destructive way to look for easily umountable filesystems.
577 int may_umount(struct vfsmount *mnt)
580 spin_lock(&vfsmount_lock);
581 if (propagate_mount_busy(mnt, 2))
583 spin_unlock(&vfsmount_lock);
587 EXPORT_SYMBOL(may_umount);
589 void release_mounts(struct list_head *head)
591 struct vfsmount *mnt;
592 while (!list_empty(head)) {
593 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
594 list_del_init(&mnt->mnt_hash);
595 if (mnt->mnt_parent != mnt) {
596 struct dentry *dentry;
598 spin_lock(&vfsmount_lock);
599 dentry = mnt->mnt_mountpoint;
601 mnt->mnt_mountpoint = mnt->mnt_root;
602 mnt->mnt_parent = mnt;
604 spin_unlock(&vfsmount_lock);
612 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
616 for (p = mnt; p; p = next_mnt(p, mnt))
617 list_move(&p->mnt_hash, kill);
620 propagate_umount(kill);
622 list_for_each_entry(p, kill, mnt_hash) {
623 list_del_init(&p->mnt_expire);
624 list_del_init(&p->mnt_list);
625 __touch_mnt_namespace(p->mnt_ns);
627 list_del_init(&p->mnt_child);
628 if (p->mnt_parent != p) {
629 p->mnt_parent->mnt_ghosts++;
630 p->mnt_mountpoint->d_mounted--;
632 change_mnt_propagation(p, MS_PRIVATE);
636 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
638 static int do_umount(struct vfsmount *mnt, int flags)
640 struct super_block *sb = mnt->mnt_sb;
642 LIST_HEAD(umount_list);
644 retval = security_sb_umount(mnt, flags);
649 * Allow userspace to request a mountpoint be expired rather than
650 * unmounting unconditionally. Unmount only happens if:
651 * (1) the mark is already set (the mark is cleared by mntput())
652 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
654 if (flags & MNT_EXPIRE) {
655 if (mnt == current->fs->root.mnt ||
656 flags & (MNT_FORCE | MNT_DETACH))
659 if (atomic_read(&mnt->mnt_count) != 2)
662 if (!xchg(&mnt->mnt_expiry_mark, 1))
667 * If we may have to abort operations to get out of this
668 * mount, and they will themselves hold resources we must
669 * allow the fs to do things. In the Unix tradition of
670 * 'Gee thats tricky lets do it in userspace' the umount_begin
671 * might fail to complete on the first run through as other tasks
672 * must return, and the like. Thats for the mount program to worry
673 * about for the moment.
677 if (sb->s_op->umount_begin)
678 sb->s_op->umount_begin(mnt, flags);
682 * No sense to grab the lock for this test, but test itself looks
683 * somewhat bogus. Suggestions for better replacement?
684 * Ho-hum... In principle, we might treat that as umount + switch
685 * to rootfs. GC would eventually take care of the old vfsmount.
686 * Actually it makes sense, especially if rootfs would contain a
687 * /reboot - static binary that would close all descriptors and
688 * call reboot(9). Then init(8) could umount root and exec /reboot.
690 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
692 * Special case for "unmounting" root ...
693 * we just try to remount it readonly.
695 down_write(&sb->s_umount);
696 if (!(sb->s_flags & MS_RDONLY)) {
699 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
702 up_write(&sb->s_umount);
706 down_write(&namespace_sem);
707 spin_lock(&vfsmount_lock);
710 if (!(flags & MNT_DETACH))
711 shrink_submounts(mnt, &umount_list);
714 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
715 if (!list_empty(&mnt->mnt_list))
716 umount_tree(mnt, 1, &umount_list);
719 spin_unlock(&vfsmount_lock);
721 security_sb_umount_busy(mnt);
722 up_write(&namespace_sem);
723 release_mounts(&umount_list);
728 * Now umount can handle mount points as well as block devices.
729 * This is important for filesystems which use unnamed block devices.
731 * We now support a flag for forced unmount like the other 'big iron'
732 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
735 asmlinkage long sys_umount(char __user * name, int flags)
740 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
744 if (nd.path.dentry != nd.path.mnt->mnt_root)
746 if (!check_mnt(nd.path.mnt))
750 if (!capable(CAP_SYS_ADMIN))
753 retval = do_umount(nd.path.mnt, flags);
755 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
756 dput(nd.path.dentry);
757 mntput_no_expire(nd.path.mnt);
762 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
765 * The 2.0 compatible umount. No flags.
767 asmlinkage long sys_oldumount(char __user * name)
769 return sys_umount(name, 0);
774 static int mount_is_safe(struct nameidata *nd)
776 if (capable(CAP_SYS_ADMIN))
780 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
782 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
783 if (current->uid != nd->path.dentry->d_inode->i_uid)
786 if (vfs_permission(nd, MAY_WRITE))
792 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
797 if (d == NULL || d == d->d_parent)
803 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
806 struct vfsmount *res, *p, *q, *r, *s;
809 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
812 res = q = clone_mnt(mnt, dentry, flag);
815 q->mnt_mountpoint = mnt->mnt_mountpoint;
818 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
819 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
822 for (s = r; s; s = next_mnt(s, r)) {
823 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
824 s = skip_mnt_tree(s);
827 while (p != s->mnt_parent) {
833 path.dentry = p->mnt_mountpoint;
834 q = clone_mnt(p, p->mnt_root, flag);
837 spin_lock(&vfsmount_lock);
838 list_add_tail(&q->mnt_list, &res->mnt_list);
839 attach_mnt(q, &path);
840 spin_unlock(&vfsmount_lock);
846 LIST_HEAD(umount_list);
847 spin_lock(&vfsmount_lock);
848 umount_tree(res, 0, &umount_list);
849 spin_unlock(&vfsmount_lock);
850 release_mounts(&umount_list);
855 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
857 struct vfsmount *tree;
858 down_read(&namespace_sem);
859 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
860 up_read(&namespace_sem);
864 void drop_collected_mounts(struct vfsmount *mnt)
866 LIST_HEAD(umount_list);
867 down_read(&namespace_sem);
868 spin_lock(&vfsmount_lock);
869 umount_tree(mnt, 0, &umount_list);
870 spin_unlock(&vfsmount_lock);
871 up_read(&namespace_sem);
872 release_mounts(&umount_list);
876 * @source_mnt : mount tree to be attached
877 * @nd : place the mount tree @source_mnt is attached
878 * @parent_nd : if non-null, detach the source_mnt from its parent and
879 * store the parent mount and mountpoint dentry.
880 * (done when source_mnt is moved)
882 * NOTE: in the table below explains the semantics when a source mount
883 * of a given type is attached to a destination mount of a given type.
884 * ---------------------------------------------------------------------------
885 * | BIND MOUNT OPERATION |
886 * |**************************************************************************
887 * | source-->| shared | private | slave | unbindable |
891 * |**************************************************************************
892 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
894 * |non-shared| shared (+) | private | slave (*) | invalid |
895 * ***************************************************************************
896 * A bind operation clones the source mount and mounts the clone on the
899 * (++) the cloned mount is propagated to all the mounts in the propagation
900 * tree of the destination mount and the cloned mount is added to
901 * the peer group of the source mount.
902 * (+) the cloned mount is created under the destination mount and is marked
903 * as shared. The cloned mount is added to the peer group of the source
905 * (+++) the mount is propagated to all the mounts in the propagation tree
906 * of the destination mount and the cloned mount is made slave
907 * of the same master as that of the source mount. The cloned mount
908 * is marked as 'shared and slave'.
909 * (*) the cloned mount is made a slave of the same master as that of the
912 * ---------------------------------------------------------------------------
913 * | MOVE MOUNT OPERATION |
914 * |**************************************************************************
915 * | source-->| shared | private | slave | unbindable |
919 * |**************************************************************************
920 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
922 * |non-shared| shared (+*) | private | slave (*) | unbindable |
923 * ***************************************************************************
925 * (+) the mount is moved to the destination. And is then propagated to
926 * all the mounts in the propagation tree of the destination mount.
927 * (+*) the mount is moved to the destination.
928 * (+++) the mount is moved to the destination and is then propagated to
929 * all the mounts belonging to the destination mount's propagation tree.
930 * the mount is marked as 'shared and slave'.
931 * (*) the mount continues to be a slave at the new location.
933 * if the source mount is a tree, the operations explained above is
934 * applied to each mount in the tree.
935 * Must be called without spinlocks held, since this function can sleep
938 static int attach_recursive_mnt(struct vfsmount *source_mnt,
939 struct path *path, struct path *parent_path)
941 LIST_HEAD(tree_list);
942 struct vfsmount *dest_mnt = path->mnt;
943 struct dentry *dest_dentry = path->dentry;
944 struct vfsmount *child, *p;
946 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
949 if (IS_MNT_SHARED(dest_mnt)) {
950 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
954 spin_lock(&vfsmount_lock);
956 detach_mnt(source_mnt, parent_path);
957 attach_mnt(source_mnt, path);
958 touch_mnt_namespace(current->nsproxy->mnt_ns);
960 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
961 commit_tree(source_mnt);
964 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
965 list_del_init(&child->mnt_hash);
968 spin_unlock(&vfsmount_lock);
972 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
975 if (mnt->mnt_sb->s_flags & MS_NOUSER)
978 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
979 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
983 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
984 if (IS_DEADDIR(nd->path.dentry->d_inode))
987 err = security_sb_check_sb(mnt, nd);
992 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
993 err = attach_recursive_mnt(mnt, &nd->path, NULL);
995 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
997 security_sb_post_addmount(mnt, nd);
1002 * recursively change the type of the mountpoint.
1003 * noinline this do_mount helper to save do_mount stack space.
1005 static noinline int do_change_type(struct nameidata *nd, int flag)
1007 struct vfsmount *m, *mnt = nd->path.mnt;
1008 int recurse = flag & MS_REC;
1009 int type = flag & ~MS_REC;
1011 if (!capable(CAP_SYS_ADMIN))
1014 if (nd->path.dentry != nd->path.mnt->mnt_root)
1017 down_write(&namespace_sem);
1018 spin_lock(&vfsmount_lock);
1019 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1020 change_mnt_propagation(m, type);
1021 spin_unlock(&vfsmount_lock);
1022 up_write(&namespace_sem);
1027 * do loopback mount.
1028 * noinline this do_mount helper to save do_mount stack space.
1030 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1033 struct nameidata old_nd;
1034 struct vfsmount *mnt = NULL;
1035 int err = mount_is_safe(nd);
1038 if (!old_name || !*old_name)
1040 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1044 down_write(&namespace_sem);
1046 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1049 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1054 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1056 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1061 err = graft_tree(mnt, nd);
1063 LIST_HEAD(umount_list);
1064 spin_lock(&vfsmount_lock);
1065 umount_tree(mnt, 0, &umount_list);
1066 spin_unlock(&vfsmount_lock);
1067 release_mounts(&umount_list);
1071 up_write(&namespace_sem);
1072 path_put(&old_nd.path);
1077 * change filesystem flags. dir should be a physical root of filesystem.
1078 * If you've mounted a non-root directory somewhere and want to do remount
1079 * on it - tough luck.
1080 * noinline this do_mount helper to save do_mount stack space.
1082 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1086 struct super_block *sb = nd->path.mnt->mnt_sb;
1088 if (!capable(CAP_SYS_ADMIN))
1091 if (!check_mnt(nd->path.mnt))
1094 if (nd->path.dentry != nd->path.mnt->mnt_root)
1097 down_write(&sb->s_umount);
1098 err = do_remount_sb(sb, flags, data, 0);
1100 nd->path.mnt->mnt_flags = mnt_flags;
1101 up_write(&sb->s_umount);
1103 security_sb_post_remount(nd->path.mnt, flags, data);
1107 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1110 for (p = mnt; p; p = next_mnt(p, mnt)) {
1111 if (IS_MNT_UNBINDABLE(p))
1118 * noinline this do_mount helper to save do_mount stack space.
1120 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1122 struct nameidata old_nd;
1123 struct path parent_path;
1126 if (!capable(CAP_SYS_ADMIN))
1128 if (!old_name || !*old_name)
1130 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1134 down_write(&namespace_sem);
1135 while (d_mountpoint(nd->path.dentry) &&
1136 follow_down(&nd->path.mnt, &nd->path.dentry))
1139 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1143 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1144 if (IS_DEADDIR(nd->path.dentry->d_inode))
1147 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1151 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1154 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1157 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1158 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1161 * Don't move a mount residing in a shared parent.
1163 if (old_nd.path.mnt->mnt_parent &&
1164 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1167 * Don't move a mount tree containing unbindable mounts to a destination
1168 * mount which is shared.
1170 if (IS_MNT_SHARED(nd->path.mnt) &&
1171 tree_contains_unbindable(old_nd.path.mnt))
1174 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1175 if (p == old_nd.path.mnt)
1178 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1182 /* if the mount is moved, it should no longer be expire
1184 list_del_init(&old_nd.path.mnt->mnt_expire);
1186 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1188 up_write(&namespace_sem);
1190 path_put(&parent_path);
1191 path_put(&old_nd.path);
1196 * create a new mount for userspace and request it to be added into the
1198 * noinline this do_mount helper to save do_mount stack space.
1200 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1201 int mnt_flags, char *name, void *data)
1203 struct vfsmount *mnt;
1205 if (!type || !memchr(type, 0, PAGE_SIZE))
1208 /* we need capabilities... */
1209 if (!capable(CAP_SYS_ADMIN))
1212 mnt = do_kern_mount(type, flags, name, data);
1214 return PTR_ERR(mnt);
1216 return do_add_mount(mnt, nd, mnt_flags, NULL);
1220 * add a mount into a namespace's mount tree
1221 * - provide the option of adding the new mount to an expiration list
1223 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1224 int mnt_flags, struct list_head *fslist)
1228 down_write(&namespace_sem);
1229 /* Something was mounted here while we slept */
1230 while (d_mountpoint(nd->path.dentry) &&
1231 follow_down(&nd->path.mnt, &nd->path.dentry))
1234 if (!check_mnt(nd->path.mnt))
1237 /* Refuse the same filesystem on the same mount point */
1239 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1240 nd->path.mnt->mnt_root == nd->path.dentry)
1244 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1247 newmnt->mnt_flags = mnt_flags;
1248 if ((err = graft_tree(newmnt, nd)))
1251 if (fslist) /* add to the specified expiration list */
1252 list_add_tail(&newmnt->mnt_expire, fslist);
1254 up_write(&namespace_sem);
1258 up_write(&namespace_sem);
1263 EXPORT_SYMBOL_GPL(do_add_mount);
1266 * process a list of expirable mountpoints with the intent of discarding any
1267 * mountpoints that aren't in use and haven't been touched since last we came
1270 void mark_mounts_for_expiry(struct list_head *mounts)
1272 struct vfsmount *mnt, *next;
1273 LIST_HEAD(graveyard);
1276 if (list_empty(mounts))
1279 down_write(&namespace_sem);
1280 spin_lock(&vfsmount_lock);
1282 /* extract from the expiration list every vfsmount that matches the
1283 * following criteria:
1284 * - only referenced by its parent vfsmount
1285 * - still marked for expiry (marked on the last call here; marks are
1286 * cleared by mntput())
1288 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1289 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1290 propagate_mount_busy(mnt, 1))
1292 list_move(&mnt->mnt_expire, &graveyard);
1294 while (!list_empty(&graveyard)) {
1295 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1296 touch_mnt_namespace(mnt->mnt_ns);
1297 umount_tree(mnt, 1, &umounts);
1299 spin_unlock(&vfsmount_lock);
1300 up_write(&namespace_sem);
1302 release_mounts(&umounts);
1305 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1308 * Ripoff of 'select_parent()'
1310 * search the list of submounts for a given mountpoint, and move any
1311 * shrinkable submounts to the 'graveyard' list.
1313 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1315 struct vfsmount *this_parent = parent;
1316 struct list_head *next;
1320 next = this_parent->mnt_mounts.next;
1322 while (next != &this_parent->mnt_mounts) {
1323 struct list_head *tmp = next;
1324 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1327 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1330 * Descend a level if the d_mounts list is non-empty.
1332 if (!list_empty(&mnt->mnt_mounts)) {
1337 if (!propagate_mount_busy(mnt, 1)) {
1338 list_move_tail(&mnt->mnt_expire, graveyard);
1343 * All done at this level ... ascend and resume the search
1345 if (this_parent != parent) {
1346 next = this_parent->mnt_child.next;
1347 this_parent = this_parent->mnt_parent;
1354 * process a list of expirable mountpoints with the intent of discarding any
1355 * submounts of a specific parent mountpoint
1357 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1359 LIST_HEAD(graveyard);
1362 /* extract submounts of 'mountpoint' from the expiration list */
1363 while (select_submounts(mnt, &graveyard)) {
1364 while (!list_empty(&graveyard)) {
1365 m = list_first_entry(&graveyard, struct vfsmount,
1367 touch_mnt_namespace(mnt->mnt_ns);
1368 umount_tree(mnt, 1, umounts);
1374 * Some copy_from_user() implementations do not return the exact number of
1375 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1376 * Note that this function differs from copy_from_user() in that it will oops
1377 * on bad values of `to', rather than returning a short copy.
1379 static long exact_copy_from_user(void *to, const void __user * from,
1383 const char __user *f = from;
1386 if (!access_ok(VERIFY_READ, from, n))
1390 if (__get_user(c, f)) {
1401 int copy_mount_options(const void __user * data, unsigned long *where)
1411 if (!(page = __get_free_page(GFP_KERNEL)))
1414 /* We only care that *some* data at the address the user
1415 * gave us is valid. Just in case, we'll zero
1416 * the remainder of the page.
1418 /* copy_from_user cannot cross TASK_SIZE ! */
1419 size = TASK_SIZE - (unsigned long)data;
1420 if (size > PAGE_SIZE)
1423 i = size - exact_copy_from_user((void *)page, data, size);
1429 memset((char *)page + i, 0, PAGE_SIZE - i);
1435 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1436 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1438 * data is a (void *) that can point to any structure up to
1439 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1440 * information (or be NULL).
1442 * Pre-0.97 versions of mount() didn't have a flags word.
1443 * When the flags word was introduced its top half was required
1444 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1445 * Therefore, if this magic number is present, it carries no information
1446 * and must be discarded.
1448 long do_mount(char *dev_name, char *dir_name, char *type_page,
1449 unsigned long flags, void *data_page)
1451 struct nameidata nd;
1456 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1457 flags &= ~MS_MGC_MSK;
1459 /* Basic sanity checks */
1461 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1463 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1467 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1469 /* Separate the per-mountpoint flags */
1470 if (flags & MS_NOSUID)
1471 mnt_flags |= MNT_NOSUID;
1472 if (flags & MS_NODEV)
1473 mnt_flags |= MNT_NODEV;
1474 if (flags & MS_NOEXEC)
1475 mnt_flags |= MNT_NOEXEC;
1476 if (flags & MS_NOATIME)
1477 mnt_flags |= MNT_NOATIME;
1478 if (flags & MS_NODIRATIME)
1479 mnt_flags |= MNT_NODIRATIME;
1480 if (flags & MS_RELATIME)
1481 mnt_flags |= MNT_RELATIME;
1483 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1484 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1486 /* ... and get the mountpoint */
1487 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1491 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1495 if (flags & MS_REMOUNT)
1496 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1498 else if (flags & MS_BIND)
1499 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1500 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1501 retval = do_change_type(&nd, flags);
1502 else if (flags & MS_MOVE)
1503 retval = do_move_mount(&nd, dev_name);
1505 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1506 dev_name, data_page);
1513 * Allocate a new namespace structure and populate it with contents
1514 * copied from the namespace of the passed in task structure.
1516 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1517 struct fs_struct *fs)
1519 struct mnt_namespace *new_ns;
1520 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1521 struct vfsmount *p, *q;
1523 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1525 return ERR_PTR(-ENOMEM);
1527 atomic_set(&new_ns->count, 1);
1528 INIT_LIST_HEAD(&new_ns->list);
1529 init_waitqueue_head(&new_ns->poll);
1532 down_write(&namespace_sem);
1533 /* First pass: copy the tree topology */
1534 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1535 CL_COPY_ALL | CL_EXPIRE);
1536 if (!new_ns->root) {
1537 up_write(&namespace_sem);
1539 return ERR_PTR(-ENOMEM);;
1541 spin_lock(&vfsmount_lock);
1542 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1543 spin_unlock(&vfsmount_lock);
1546 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1547 * as belonging to new namespace. We have already acquired a private
1548 * fs_struct, so tsk->fs->lock is not needed.
1555 if (p == fs->root.mnt) {
1557 fs->root.mnt = mntget(q);
1559 if (p == fs->pwd.mnt) {
1561 fs->pwd.mnt = mntget(q);
1563 if (p == fs->altroot.mnt) {
1565 fs->altroot.mnt = mntget(q);
1568 p = next_mnt(p, mnt_ns->root);
1569 q = next_mnt(q, new_ns->root);
1571 up_write(&namespace_sem);
1583 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1584 struct fs_struct *new_fs)
1586 struct mnt_namespace *new_ns;
1591 if (!(flags & CLONE_NEWNS))
1594 new_ns = dup_mnt_ns(ns, new_fs);
1600 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1601 char __user * type, unsigned long flags,
1605 unsigned long data_page;
1606 unsigned long type_page;
1607 unsigned long dev_page;
1610 retval = copy_mount_options(type, &type_page);
1614 dir_page = getname(dir_name);
1615 retval = PTR_ERR(dir_page);
1616 if (IS_ERR(dir_page))
1619 retval = copy_mount_options(dev_name, &dev_page);
1623 retval = copy_mount_options(data, &data_page);
1628 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1629 flags, (void *)data_page);
1631 free_page(data_page);
1634 free_page(dev_page);
1638 free_page(type_page);
1643 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1644 * It can block. Requires the big lock held.
1646 void set_fs_root(struct fs_struct *fs, struct path *path)
1648 struct path old_root;
1650 write_lock(&fs->lock);
1651 old_root = fs->root;
1654 write_unlock(&fs->lock);
1655 if (old_root.dentry)
1656 path_put(&old_root);
1660 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1661 * It can block. Requires the big lock held.
1663 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1665 struct path old_pwd;
1667 write_lock(&fs->lock);
1671 write_unlock(&fs->lock);
1677 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1679 struct task_struct *g, *p;
1680 struct fs_struct *fs;
1682 read_lock(&tasklist_lock);
1683 do_each_thread(g, p) {
1687 atomic_inc(&fs->count);
1689 if (fs->root.dentry == old_root->dentry
1690 && fs->root.mnt == old_root->mnt)
1691 set_fs_root(fs, new_root);
1692 if (fs->pwd.dentry == old_root->dentry
1693 && fs->pwd.mnt == old_root->mnt)
1694 set_fs_pwd(fs, new_root);
1698 } while_each_thread(g, p);
1699 read_unlock(&tasklist_lock);
1703 * pivot_root Semantics:
1704 * Moves the root file system of the current process to the directory put_old,
1705 * makes new_root as the new root file system of the current process, and sets
1706 * root/cwd of all processes which had them on the current root to new_root.
1709 * The new_root and put_old must be directories, and must not be on the
1710 * same file system as the current process root. The put_old must be
1711 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1712 * pointed to by put_old must yield the same directory as new_root. No other
1713 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1715 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1716 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1717 * in this situation.
1720 * - we don't move root/cwd if they are not at the root (reason: if something
1721 * cared enough to change them, it's probably wrong to force them elsewhere)
1722 * - it's okay to pick a root that isn't the root of a file system, e.g.
1723 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1724 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1727 asmlinkage long sys_pivot_root(const char __user * new_root,
1728 const char __user * put_old)
1730 struct vfsmount *tmp;
1731 struct nameidata new_nd, old_nd, user_nd;
1732 struct path parent_path, root_parent;
1735 if (!capable(CAP_SYS_ADMIN))
1740 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1745 if (!check_mnt(new_nd.path.mnt))
1748 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1752 error = security_sb_pivotroot(&old_nd, &new_nd);
1754 path_put(&old_nd.path);
1758 read_lock(¤t->fs->lock);
1759 user_nd.path = current->fs->root;
1760 path_get(¤t->fs->root);
1761 read_unlock(¤t->fs->lock);
1762 down_write(&namespace_sem);
1763 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1765 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1766 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1767 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1769 if (!check_mnt(user_nd.path.mnt))
1772 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1774 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1776 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1779 if (new_nd.path.mnt == user_nd.path.mnt ||
1780 old_nd.path.mnt == user_nd.path.mnt)
1781 goto out2; /* loop, on the same file system */
1783 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1784 goto out2; /* not a mountpoint */
1785 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
1786 goto out2; /* not attached */
1787 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1788 goto out2; /* not a mountpoint */
1789 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
1790 goto out2; /* not attached */
1791 /* make sure we can reach put_old from new_root */
1792 tmp = old_nd.path.mnt;
1793 spin_lock(&vfsmount_lock);
1794 if (tmp != new_nd.path.mnt) {
1796 if (tmp->mnt_parent == tmp)
1797 goto out3; /* already mounted on put_old */
1798 if (tmp->mnt_parent == new_nd.path.mnt)
1800 tmp = tmp->mnt_parent;
1802 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1804 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1806 detach_mnt(new_nd.path.mnt, &parent_path);
1807 detach_mnt(user_nd.path.mnt, &root_parent);
1808 /* mount old root on put_old */
1809 attach_mnt(user_nd.path.mnt, &old_nd.path);
1810 /* mount new_root on / */
1811 attach_mnt(new_nd.path.mnt, &root_parent);
1812 touch_mnt_namespace(current->nsproxy->mnt_ns);
1813 spin_unlock(&vfsmount_lock);
1814 chroot_fs_refs(&user_nd.path, &new_nd.path);
1815 security_sb_post_pivotroot(&user_nd, &new_nd);
1817 path_put(&root_parent);
1818 path_put(&parent_path);
1820 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1821 up_write(&namespace_sem);
1822 path_put(&user_nd.path);
1823 path_put(&old_nd.path);
1825 path_put(&new_nd.path);
1830 spin_unlock(&vfsmount_lock);
1834 static void __init init_mount_tree(void)
1836 struct vfsmount *mnt;
1837 struct mnt_namespace *ns;
1840 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1842 panic("Can't create rootfs");
1843 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1845 panic("Can't allocate initial namespace");
1846 atomic_set(&ns->count, 1);
1847 INIT_LIST_HEAD(&ns->list);
1848 init_waitqueue_head(&ns->poll);
1850 list_add(&mnt->mnt_list, &ns->list);
1854 init_task.nsproxy->mnt_ns = ns;
1857 root.mnt = ns->root;
1858 root.dentry = ns->root->mnt_root;
1860 set_fs_pwd(current->fs, &root);
1861 set_fs_root(current->fs, &root);
1864 void __init mnt_init(void)
1869 init_rwsem(&namespace_sem);
1871 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1872 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1874 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1876 if (!mount_hashtable)
1877 panic("Failed to allocate mount hash table\n");
1879 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1881 for (u = 0; u < HASH_SIZE; u++)
1882 INIT_LIST_HEAD(&mount_hashtable[u]);
1886 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1888 fs_kobj = kobject_create_and_add("fs", NULL);
1890 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1895 void __put_mnt_ns(struct mnt_namespace *ns)
1897 struct vfsmount *root = ns->root;
1898 LIST_HEAD(umount_list);
1900 spin_unlock(&vfsmount_lock);
1901 down_write(&namespace_sem);
1902 spin_lock(&vfsmount_lock);
1903 umount_tree(root, 0, &umount_list);
1904 spin_unlock(&vfsmount_lock);
1905 up_write(&namespace_sem);
1906 release_mounts(&umount_list);