4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43 static struct list_head *mount_hashtable __read_mostly;
44 static struct kmem_cache *mnt_cache __read_mostly;
45 static struct rw_semaphore namespace_sem;
48 struct kobject *fs_kobj;
49 EXPORT_SYMBOL_GPL(fs_kobj);
51 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
53 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
54 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
55 tmp = tmp + (tmp >> HASH_SHIFT);
56 return tmp & (HASH_SIZE - 1);
59 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
61 struct vfsmount *alloc_vfsmnt(const char *name)
63 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
65 atomic_set(&mnt->mnt_count, 1);
66 INIT_LIST_HEAD(&mnt->mnt_hash);
67 INIT_LIST_HEAD(&mnt->mnt_child);
68 INIT_LIST_HEAD(&mnt->mnt_mounts);
69 INIT_LIST_HEAD(&mnt->mnt_list);
70 INIT_LIST_HEAD(&mnt->mnt_expire);
71 INIT_LIST_HEAD(&mnt->mnt_share);
72 INIT_LIST_HEAD(&mnt->mnt_slave_list);
73 INIT_LIST_HEAD(&mnt->mnt_slave);
74 atomic_set(&mnt->__mnt_writers, 0);
76 int size = strlen(name) + 1;
77 char *newname = kmalloc(size, GFP_KERNEL);
79 memcpy(newname, name, size);
80 mnt->mnt_devname = newname;
88 * Most r/o checks on a fs are for operations that take
89 * discrete amounts of time, like a write() or unlink().
90 * We must keep track of when those operations start
91 * (for permission checks) and when they end, so that
92 * we can determine when writes are able to occur to
96 * __mnt_is_readonly: check whether a mount is read-only
97 * @mnt: the mount to check for its write status
99 * This shouldn't be used directly ouside of the VFS.
100 * It does not guarantee that the filesystem will stay
101 * r/w, just that it is right *now*. This can not and
102 * should not be used in place of IS_RDONLY(inode).
103 * mnt_want/drop_write() will _keep_ the filesystem
106 int __mnt_is_readonly(struct vfsmount *mnt)
108 return (mnt->mnt_sb->s_flags & MS_RDONLY);
110 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
114 * If holding multiple instances of this lock, they
115 * must be ordered by cpu number.
118 struct lock_class_key lock_class; /* compiles out with !lockdep */
120 struct vfsmount *mnt;
121 } ____cacheline_aligned_in_smp;
122 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
124 static int __init init_mnt_writers(void)
127 for_each_possible_cpu(cpu) {
128 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
129 spin_lock_init(&writer->lock);
130 lockdep_set_class(&writer->lock, &writer->lock_class);
135 fs_initcall(init_mnt_writers);
137 static void unlock_mnt_writers(void)
140 struct mnt_writer *cpu_writer;
142 for_each_possible_cpu(cpu) {
143 cpu_writer = &per_cpu(mnt_writers, cpu);
144 spin_unlock(&cpu_writer->lock);
148 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
150 if (!cpu_writer->mnt)
153 * This is in case anyone ever leaves an invalid,
154 * old ->mnt and a count of 0.
156 if (!cpu_writer->count)
158 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
159 cpu_writer->count = 0;
162 * must hold cpu_writer->lock
164 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
165 struct vfsmount *mnt)
167 if (cpu_writer->mnt == mnt)
169 __clear_mnt_count(cpu_writer);
170 cpu_writer->mnt = mnt;
174 * Most r/o checks on a fs are for operations that take
175 * discrete amounts of time, like a write() or unlink().
176 * We must keep track of when those operations start
177 * (for permission checks) and when they end, so that
178 * we can determine when writes are able to occur to
182 * mnt_want_write - get write access to a mount
183 * @mnt: the mount on which to take a write
185 * This tells the low-level filesystem that a write is
186 * about to be performed to it, and makes sure that
187 * writes are allowed before returning success. When
188 * the write operation is finished, mnt_drop_write()
189 * must be called. This is effectively a refcount.
191 int mnt_want_write(struct vfsmount *mnt)
194 struct mnt_writer *cpu_writer;
196 cpu_writer = &get_cpu_var(mnt_writers);
197 spin_lock(&cpu_writer->lock);
198 if (__mnt_is_readonly(mnt)) {
202 use_cpu_writer_for_mount(cpu_writer, mnt);
205 spin_unlock(&cpu_writer->lock);
206 put_cpu_var(mnt_writers);
209 EXPORT_SYMBOL_GPL(mnt_want_write);
211 static void lock_mnt_writers(void)
214 struct mnt_writer *cpu_writer;
216 for_each_possible_cpu(cpu) {
217 cpu_writer = &per_cpu(mnt_writers, cpu);
218 spin_lock(&cpu_writer->lock);
219 __clear_mnt_count(cpu_writer);
220 cpu_writer->mnt = NULL;
225 * These per-cpu write counts are not guaranteed to have
226 * matched increments and decrements on any given cpu.
227 * A file open()ed for write on one cpu and close()d on
228 * another cpu will imbalance this count. Make sure it
229 * does not get too far out of whack.
231 static void handle_write_count_underflow(struct vfsmount *mnt)
233 if (atomic_read(&mnt->__mnt_writers) >=
234 MNT_WRITER_UNDERFLOW_LIMIT)
237 * It isn't necessary to hold all of the locks
238 * at the same time, but doing it this way makes
239 * us share a lot more code.
243 * vfsmount_lock is for mnt_flags.
245 spin_lock(&vfsmount_lock);
247 * If coalescing the per-cpu writer counts did not
248 * get us back to a positive writer count, we have
251 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
252 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
253 printk(KERN_DEBUG "leak detected on mount(%p) writers "
255 mnt, atomic_read(&mnt->__mnt_writers));
257 /* use the flag to keep the dmesg spam down */
258 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
260 spin_unlock(&vfsmount_lock);
261 unlock_mnt_writers();
265 * mnt_drop_write - give up write access to a mount
266 * @mnt: the mount on which to give up write access
268 * Tells the low-level filesystem that we are done
269 * performing writes to it. Must be matched with
270 * mnt_want_write() call above.
272 void mnt_drop_write(struct vfsmount *mnt)
274 int must_check_underflow = 0;
275 struct mnt_writer *cpu_writer;
277 cpu_writer = &get_cpu_var(mnt_writers);
278 spin_lock(&cpu_writer->lock);
280 use_cpu_writer_for_mount(cpu_writer, mnt);
281 if (cpu_writer->count > 0) {
284 must_check_underflow = 1;
285 atomic_dec(&mnt->__mnt_writers);
288 spin_unlock(&cpu_writer->lock);
290 * Logically, we could call this each time,
291 * but the __mnt_writers cacheline tends to
292 * be cold, and makes this expensive.
294 if (must_check_underflow)
295 handle_write_count_underflow(mnt);
297 * This could be done right after the spinlock
298 * is taken because the spinlock keeps us on
299 * the cpu, and disables preemption. However,
300 * putting it here bounds the amount that
301 * __mnt_writers can underflow. Without it,
302 * we could theoretically wrap __mnt_writers.
304 put_cpu_var(mnt_writers);
306 EXPORT_SYMBOL_GPL(mnt_drop_write);
308 int mnt_make_readonly(struct vfsmount *mnt)
314 * With all the locks held, this value is stable
316 if (atomic_read(&mnt->__mnt_writers) > 0) {
321 * actually set mount's r/o flag here to make
322 * __mnt_is_readonly() true, which keeps anyone
323 * from doing a successful mnt_want_write().
326 unlock_mnt_writers();
330 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
333 mnt->mnt_root = dget(sb->s_root);
337 EXPORT_SYMBOL(simple_set_mnt);
339 void free_vfsmnt(struct vfsmount *mnt)
341 kfree(mnt->mnt_devname);
342 kmem_cache_free(mnt_cache, mnt);
346 * find the first or last mount at @dentry on vfsmount @mnt depending on
347 * @dir. If @dir is set return the first mount else return the last mount.
349 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
352 struct list_head *head = mount_hashtable + hash(mnt, dentry);
353 struct list_head *tmp = head;
354 struct vfsmount *p, *found = NULL;
357 tmp = dir ? tmp->next : tmp->prev;
361 p = list_entry(tmp, struct vfsmount, mnt_hash);
362 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
371 * lookup_mnt increments the ref count before returning
372 * the vfsmount struct.
374 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
376 struct vfsmount *child_mnt;
377 spin_lock(&vfsmount_lock);
378 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
380 spin_unlock(&vfsmount_lock);
384 static inline int check_mnt(struct vfsmount *mnt)
386 return mnt->mnt_ns == current->nsproxy->mnt_ns;
389 static void touch_mnt_namespace(struct mnt_namespace *ns)
393 wake_up_interruptible(&ns->poll);
397 static void __touch_mnt_namespace(struct mnt_namespace *ns)
399 if (ns && ns->event != event) {
401 wake_up_interruptible(&ns->poll);
405 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
407 old_path->dentry = mnt->mnt_mountpoint;
408 old_path->mnt = mnt->mnt_parent;
409 mnt->mnt_parent = mnt;
410 mnt->mnt_mountpoint = mnt->mnt_root;
411 list_del_init(&mnt->mnt_child);
412 list_del_init(&mnt->mnt_hash);
413 old_path->dentry->d_mounted--;
416 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
417 struct vfsmount *child_mnt)
419 child_mnt->mnt_parent = mntget(mnt);
420 child_mnt->mnt_mountpoint = dget(dentry);
424 static void attach_mnt(struct vfsmount *mnt, struct path *path)
426 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
427 list_add_tail(&mnt->mnt_hash, mount_hashtable +
428 hash(path->mnt, path->dentry));
429 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
433 * the caller must hold vfsmount_lock
435 static void commit_tree(struct vfsmount *mnt)
437 struct vfsmount *parent = mnt->mnt_parent;
440 struct mnt_namespace *n = parent->mnt_ns;
442 BUG_ON(parent == mnt);
444 list_add_tail(&head, &mnt->mnt_list);
445 list_for_each_entry(m, &head, mnt_list)
447 list_splice(&head, n->list.prev);
449 list_add_tail(&mnt->mnt_hash, mount_hashtable +
450 hash(parent, mnt->mnt_mountpoint));
451 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
452 touch_mnt_namespace(n);
455 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
457 struct list_head *next = p->mnt_mounts.next;
458 if (next == &p->mnt_mounts) {
462 next = p->mnt_child.next;
463 if (next != &p->mnt_parent->mnt_mounts)
468 return list_entry(next, struct vfsmount, mnt_child);
471 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
473 struct list_head *prev = p->mnt_mounts.prev;
474 while (prev != &p->mnt_mounts) {
475 p = list_entry(prev, struct vfsmount, mnt_child);
476 prev = p->mnt_mounts.prev;
481 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
484 struct super_block *sb = old->mnt_sb;
485 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
488 mnt->mnt_flags = old->mnt_flags;
489 atomic_inc(&sb->s_active);
491 mnt->mnt_root = dget(root);
492 mnt->mnt_mountpoint = mnt->mnt_root;
493 mnt->mnt_parent = mnt;
495 if (flag & CL_SLAVE) {
496 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
497 mnt->mnt_master = old;
498 CLEAR_MNT_SHARED(mnt);
499 } else if (!(flag & CL_PRIVATE)) {
500 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
501 list_add(&mnt->mnt_share, &old->mnt_share);
502 if (IS_MNT_SLAVE(old))
503 list_add(&mnt->mnt_slave, &old->mnt_slave);
504 mnt->mnt_master = old->mnt_master;
506 if (flag & CL_MAKE_SHARED)
509 /* stick the duplicate mount on the same expiry list
510 * as the original if that was on one */
511 if (flag & CL_EXPIRE) {
512 if (!list_empty(&old->mnt_expire))
513 list_add(&mnt->mnt_expire, &old->mnt_expire);
519 static inline void __mntput(struct vfsmount *mnt)
522 struct super_block *sb = mnt->mnt_sb;
524 * We don't have to hold all of the locks at the
525 * same time here because we know that we're the
526 * last reference to mnt and that no new writers
529 for_each_possible_cpu(cpu) {
530 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
531 if (cpu_writer->mnt != mnt)
533 spin_lock(&cpu_writer->lock);
534 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
535 cpu_writer->count = 0;
537 * Might as well do this so that no one
538 * ever sees the pointer and expects
541 cpu_writer->mnt = NULL;
542 spin_unlock(&cpu_writer->lock);
545 * This probably indicates that somebody messed
546 * up a mnt_want/drop_write() pair. If this
547 * happens, the filesystem was probably unable
548 * to make r/w->r/o transitions.
550 WARN_ON(atomic_read(&mnt->__mnt_writers));
553 deactivate_super(sb);
556 void mntput_no_expire(struct vfsmount *mnt)
559 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
560 if (likely(!mnt->mnt_pinned)) {
561 spin_unlock(&vfsmount_lock);
565 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
567 spin_unlock(&vfsmount_lock);
568 acct_auto_close_mnt(mnt);
569 security_sb_umount_close(mnt);
574 EXPORT_SYMBOL(mntput_no_expire);
576 void mnt_pin(struct vfsmount *mnt)
578 spin_lock(&vfsmount_lock);
580 spin_unlock(&vfsmount_lock);
583 EXPORT_SYMBOL(mnt_pin);
585 void mnt_unpin(struct vfsmount *mnt)
587 spin_lock(&vfsmount_lock);
588 if (mnt->mnt_pinned) {
589 atomic_inc(&mnt->mnt_count);
592 spin_unlock(&vfsmount_lock);
595 EXPORT_SYMBOL(mnt_unpin);
597 static inline void mangle(struct seq_file *m, const char *s)
599 seq_escape(m, s, " \t\n\\");
603 * Simple .show_options callback for filesystems which don't want to
604 * implement more complex mount option showing.
606 * See also save_mount_options().
608 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
610 const char *options = mnt->mnt_sb->s_options;
612 if (options != NULL && options[0]) {
619 EXPORT_SYMBOL(generic_show_options);
622 * If filesystem uses generic_show_options(), this function should be
623 * called from the fill_super() callback.
625 * The .remount_fs callback usually needs to be handled in a special
626 * way, to make sure, that previous options are not overwritten if the
629 * Also note, that if the filesystem's .remount_fs function doesn't
630 * reset all options to their default value, but changes only newly
631 * given options, then the displayed options will not reflect reality
634 void save_mount_options(struct super_block *sb, char *options)
636 kfree(sb->s_options);
637 sb->s_options = kstrdup(options, GFP_KERNEL);
639 EXPORT_SYMBOL(save_mount_options);
642 static void *m_start(struct seq_file *m, loff_t *pos)
644 struct mnt_namespace *n = m->private;
646 down_read(&namespace_sem);
647 return seq_list_start(&n->list, *pos);
650 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
652 struct mnt_namespace *n = m->private;
654 return seq_list_next(v, &n->list, pos);
657 static void m_stop(struct seq_file *m, void *v)
659 up_read(&namespace_sem);
662 static int show_vfsmnt(struct seq_file *m, void *v)
664 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
666 static struct proc_fs_info {
670 { MS_SYNCHRONOUS, ",sync" },
671 { MS_DIRSYNC, ",dirsync" },
672 { MS_MANDLOCK, ",mand" },
675 static struct proc_fs_info mnt_info[] = {
676 { MNT_NOSUID, ",nosuid" },
677 { MNT_NODEV, ",nodev" },
678 { MNT_NOEXEC, ",noexec" },
679 { MNT_NOATIME, ",noatime" },
680 { MNT_NODIRATIME, ",nodiratime" },
681 { MNT_RELATIME, ",relatime" },
684 struct proc_fs_info *fs_infop;
685 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
687 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
689 seq_path(m, &mnt_path, " \t\n\\");
691 mangle(m, mnt->mnt_sb->s_type->name);
692 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
694 mangle(m, mnt->mnt_sb->s_subtype);
696 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
697 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
698 if (mnt->mnt_sb->s_flags & fs_infop->flag)
699 seq_puts(m, fs_infop->str);
701 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
702 if (mnt->mnt_flags & fs_infop->flag)
703 seq_puts(m, fs_infop->str);
705 if (mnt->mnt_sb->s_op->show_options)
706 err = mnt->mnt_sb->s_op->show_options(m, mnt);
707 seq_puts(m, " 0 0\n");
711 struct seq_operations mounts_op = {
718 static int show_vfsstat(struct seq_file *m, void *v)
720 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
721 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
725 if (mnt->mnt_devname) {
726 seq_puts(m, "device ");
727 mangle(m, mnt->mnt_devname);
729 seq_puts(m, "no device");
732 seq_puts(m, " mounted on ");
733 seq_path(m, &mnt_path, " \t\n\\");
736 /* file system type */
737 seq_puts(m, "with fstype ");
738 mangle(m, mnt->mnt_sb->s_type->name);
740 /* optional statistics */
741 if (mnt->mnt_sb->s_op->show_stats) {
743 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
750 struct seq_operations mountstats_op = {
754 .show = show_vfsstat,
758 * may_umount_tree - check if a mount tree is busy
759 * @mnt: root of mount tree
761 * This is called to check if a tree of mounts has any
762 * open files, pwds, chroots or sub mounts that are
765 int may_umount_tree(struct vfsmount *mnt)
768 int minimum_refs = 0;
771 spin_lock(&vfsmount_lock);
772 for (p = mnt; p; p = next_mnt(p, mnt)) {
773 actual_refs += atomic_read(&p->mnt_count);
776 spin_unlock(&vfsmount_lock);
778 if (actual_refs > minimum_refs)
784 EXPORT_SYMBOL(may_umount_tree);
787 * may_umount - check if a mount point is busy
788 * @mnt: root of mount
790 * This is called to check if a mount point has any
791 * open files, pwds, chroots or sub mounts. If the
792 * mount has sub mounts this will return busy
793 * regardless of whether the sub mounts are busy.
795 * Doesn't take quota and stuff into account. IOW, in some cases it will
796 * give false negatives. The main reason why it's here is that we need
797 * a non-destructive way to look for easily umountable filesystems.
799 int may_umount(struct vfsmount *mnt)
802 spin_lock(&vfsmount_lock);
803 if (propagate_mount_busy(mnt, 2))
805 spin_unlock(&vfsmount_lock);
809 EXPORT_SYMBOL(may_umount);
811 void release_mounts(struct list_head *head)
813 struct vfsmount *mnt;
814 while (!list_empty(head)) {
815 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
816 list_del_init(&mnt->mnt_hash);
817 if (mnt->mnt_parent != mnt) {
818 struct dentry *dentry;
820 spin_lock(&vfsmount_lock);
821 dentry = mnt->mnt_mountpoint;
823 mnt->mnt_mountpoint = mnt->mnt_root;
824 mnt->mnt_parent = mnt;
826 spin_unlock(&vfsmount_lock);
834 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
838 for (p = mnt; p; p = next_mnt(p, mnt))
839 list_move(&p->mnt_hash, kill);
842 propagate_umount(kill);
844 list_for_each_entry(p, kill, mnt_hash) {
845 list_del_init(&p->mnt_expire);
846 list_del_init(&p->mnt_list);
847 __touch_mnt_namespace(p->mnt_ns);
849 list_del_init(&p->mnt_child);
850 if (p->mnt_parent != p) {
851 p->mnt_parent->mnt_ghosts++;
852 p->mnt_mountpoint->d_mounted--;
854 change_mnt_propagation(p, MS_PRIVATE);
858 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
860 static int do_umount(struct vfsmount *mnt, int flags)
862 struct super_block *sb = mnt->mnt_sb;
864 LIST_HEAD(umount_list);
866 retval = security_sb_umount(mnt, flags);
871 * Allow userspace to request a mountpoint be expired rather than
872 * unmounting unconditionally. Unmount only happens if:
873 * (1) the mark is already set (the mark is cleared by mntput())
874 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
876 if (flags & MNT_EXPIRE) {
877 if (mnt == current->fs->root.mnt ||
878 flags & (MNT_FORCE | MNT_DETACH))
881 if (atomic_read(&mnt->mnt_count) != 2)
884 if (!xchg(&mnt->mnt_expiry_mark, 1))
889 * If we may have to abort operations to get out of this
890 * mount, and they will themselves hold resources we must
891 * allow the fs to do things. In the Unix tradition of
892 * 'Gee thats tricky lets do it in userspace' the umount_begin
893 * might fail to complete on the first run through as other tasks
894 * must return, and the like. Thats for the mount program to worry
895 * about for the moment.
899 if (sb->s_op->umount_begin)
900 sb->s_op->umount_begin(mnt, flags);
904 * No sense to grab the lock for this test, but test itself looks
905 * somewhat bogus. Suggestions for better replacement?
906 * Ho-hum... In principle, we might treat that as umount + switch
907 * to rootfs. GC would eventually take care of the old vfsmount.
908 * Actually it makes sense, especially if rootfs would contain a
909 * /reboot - static binary that would close all descriptors and
910 * call reboot(9). Then init(8) could umount root and exec /reboot.
912 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
914 * Special case for "unmounting" root ...
915 * we just try to remount it readonly.
917 down_write(&sb->s_umount);
918 if (!(sb->s_flags & MS_RDONLY)) {
921 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
924 up_write(&sb->s_umount);
928 down_write(&namespace_sem);
929 spin_lock(&vfsmount_lock);
932 if (!(flags & MNT_DETACH))
933 shrink_submounts(mnt, &umount_list);
936 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
937 if (!list_empty(&mnt->mnt_list))
938 umount_tree(mnt, 1, &umount_list);
941 spin_unlock(&vfsmount_lock);
943 security_sb_umount_busy(mnt);
944 up_write(&namespace_sem);
945 release_mounts(&umount_list);
950 * Now umount can handle mount points as well as block devices.
951 * This is important for filesystems which use unnamed block devices.
953 * We now support a flag for forced unmount like the other 'big iron'
954 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
957 asmlinkage long sys_umount(char __user * name, int flags)
962 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
966 if (nd.path.dentry != nd.path.mnt->mnt_root)
968 if (!check_mnt(nd.path.mnt))
972 if (!capable(CAP_SYS_ADMIN))
975 retval = do_umount(nd.path.mnt, flags);
977 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
978 dput(nd.path.dentry);
979 mntput_no_expire(nd.path.mnt);
984 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
987 * The 2.0 compatible umount. No flags.
989 asmlinkage long sys_oldumount(char __user * name)
991 return sys_umount(name, 0);
996 static int mount_is_safe(struct nameidata *nd)
998 if (capable(CAP_SYS_ADMIN))
1002 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1004 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1005 if (current->uid != nd->path.dentry->d_inode->i_uid)
1008 if (vfs_permission(nd, MAY_WRITE))
1014 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1019 if (d == NULL || d == d->d_parent)
1025 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1028 struct vfsmount *res, *p, *q, *r, *s;
1031 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1034 res = q = clone_mnt(mnt, dentry, flag);
1037 q->mnt_mountpoint = mnt->mnt_mountpoint;
1040 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1041 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
1044 for (s = r; s; s = next_mnt(s, r)) {
1045 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1046 s = skip_mnt_tree(s);
1049 while (p != s->mnt_parent) {
1055 path.dentry = p->mnt_mountpoint;
1056 q = clone_mnt(p, p->mnt_root, flag);
1059 spin_lock(&vfsmount_lock);
1060 list_add_tail(&q->mnt_list, &res->mnt_list);
1061 attach_mnt(q, &path);
1062 spin_unlock(&vfsmount_lock);
1068 LIST_HEAD(umount_list);
1069 spin_lock(&vfsmount_lock);
1070 umount_tree(res, 0, &umount_list);
1071 spin_unlock(&vfsmount_lock);
1072 release_mounts(&umount_list);
1077 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1079 struct vfsmount *tree;
1080 down_read(&namespace_sem);
1081 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1082 up_read(&namespace_sem);
1086 void drop_collected_mounts(struct vfsmount *mnt)
1088 LIST_HEAD(umount_list);
1089 down_read(&namespace_sem);
1090 spin_lock(&vfsmount_lock);
1091 umount_tree(mnt, 0, &umount_list);
1092 spin_unlock(&vfsmount_lock);
1093 up_read(&namespace_sem);
1094 release_mounts(&umount_list);
1098 * @source_mnt : mount tree to be attached
1099 * @nd : place the mount tree @source_mnt is attached
1100 * @parent_nd : if non-null, detach the source_mnt from its parent and
1101 * store the parent mount and mountpoint dentry.
1102 * (done when source_mnt is moved)
1104 * NOTE: in the table below explains the semantics when a source mount
1105 * of a given type is attached to a destination mount of a given type.
1106 * ---------------------------------------------------------------------------
1107 * | BIND MOUNT OPERATION |
1108 * |**************************************************************************
1109 * | source-->| shared | private | slave | unbindable |
1113 * |**************************************************************************
1114 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1116 * |non-shared| shared (+) | private | slave (*) | invalid |
1117 * ***************************************************************************
1118 * A bind operation clones the source mount and mounts the clone on the
1119 * destination mount.
1121 * (++) the cloned mount is propagated to all the mounts in the propagation
1122 * tree of the destination mount and the cloned mount is added to
1123 * the peer group of the source mount.
1124 * (+) the cloned mount is created under the destination mount and is marked
1125 * as shared. The cloned mount is added to the peer group of the source
1127 * (+++) the mount is propagated to all the mounts in the propagation tree
1128 * of the destination mount and the cloned mount is made slave
1129 * of the same master as that of the source mount. The cloned mount
1130 * is marked as 'shared and slave'.
1131 * (*) the cloned mount is made a slave of the same master as that of the
1134 * ---------------------------------------------------------------------------
1135 * | MOVE MOUNT OPERATION |
1136 * |**************************************************************************
1137 * | source-->| shared | private | slave | unbindable |
1141 * |**************************************************************************
1142 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1144 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1145 * ***************************************************************************
1147 * (+) the mount is moved to the destination. And is then propagated to
1148 * all the mounts in the propagation tree of the destination mount.
1149 * (+*) the mount is moved to the destination.
1150 * (+++) the mount is moved to the destination and is then propagated to
1151 * all the mounts belonging to the destination mount's propagation tree.
1152 * the mount is marked as 'shared and slave'.
1153 * (*) the mount continues to be a slave at the new location.
1155 * if the source mount is a tree, the operations explained above is
1156 * applied to each mount in the tree.
1157 * Must be called without spinlocks held, since this function can sleep
1160 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1161 struct path *path, struct path *parent_path)
1163 LIST_HEAD(tree_list);
1164 struct vfsmount *dest_mnt = path->mnt;
1165 struct dentry *dest_dentry = path->dentry;
1166 struct vfsmount *child, *p;
1168 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
1171 if (IS_MNT_SHARED(dest_mnt)) {
1172 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1176 spin_lock(&vfsmount_lock);
1178 detach_mnt(source_mnt, parent_path);
1179 attach_mnt(source_mnt, path);
1180 touch_mnt_namespace(current->nsproxy->mnt_ns);
1182 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1183 commit_tree(source_mnt);
1186 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1187 list_del_init(&child->mnt_hash);
1190 spin_unlock(&vfsmount_lock);
1194 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
1197 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1200 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1201 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1205 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1206 if (IS_DEADDIR(nd->path.dentry->d_inode))
1209 err = security_sb_check_sb(mnt, nd);
1214 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
1215 err = attach_recursive_mnt(mnt, &nd->path, NULL);
1217 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1219 security_sb_post_addmount(mnt, nd);
1224 * recursively change the type of the mountpoint.
1225 * noinline this do_mount helper to save do_mount stack space.
1227 static noinline int do_change_type(struct nameidata *nd, int flag)
1229 struct vfsmount *m, *mnt = nd->path.mnt;
1230 int recurse = flag & MS_REC;
1231 int type = flag & ~MS_REC;
1233 if (!capable(CAP_SYS_ADMIN))
1236 if (nd->path.dentry != nd->path.mnt->mnt_root)
1239 down_write(&namespace_sem);
1240 spin_lock(&vfsmount_lock);
1241 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1242 change_mnt_propagation(m, type);
1243 spin_unlock(&vfsmount_lock);
1244 up_write(&namespace_sem);
1249 * do loopback mount.
1250 * noinline this do_mount helper to save do_mount stack space.
1252 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1255 struct nameidata old_nd;
1256 struct vfsmount *mnt = NULL;
1257 int err = mount_is_safe(nd);
1260 if (!old_name || !*old_name)
1262 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1266 down_write(&namespace_sem);
1268 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1271 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1276 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1278 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1283 err = graft_tree(mnt, nd);
1285 LIST_HEAD(umount_list);
1286 spin_lock(&vfsmount_lock);
1287 umount_tree(mnt, 0, &umount_list);
1288 spin_unlock(&vfsmount_lock);
1289 release_mounts(&umount_list);
1293 up_write(&namespace_sem);
1294 path_put(&old_nd.path);
1299 * change filesystem flags. dir should be a physical root of filesystem.
1300 * If you've mounted a non-root directory somewhere and want to do remount
1301 * on it - tough luck.
1302 * noinline this do_mount helper to save do_mount stack space.
1304 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1308 struct super_block *sb = nd->path.mnt->mnt_sb;
1310 if (!capable(CAP_SYS_ADMIN))
1313 if (!check_mnt(nd->path.mnt))
1316 if (nd->path.dentry != nd->path.mnt->mnt_root)
1319 down_write(&sb->s_umount);
1320 err = do_remount_sb(sb, flags, data, 0);
1322 nd->path.mnt->mnt_flags = mnt_flags;
1323 up_write(&sb->s_umount);
1325 security_sb_post_remount(nd->path.mnt, flags, data);
1329 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1332 for (p = mnt; p; p = next_mnt(p, mnt)) {
1333 if (IS_MNT_UNBINDABLE(p))
1340 * noinline this do_mount helper to save do_mount stack space.
1342 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1344 struct nameidata old_nd;
1345 struct path parent_path;
1348 if (!capable(CAP_SYS_ADMIN))
1350 if (!old_name || !*old_name)
1352 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1356 down_write(&namespace_sem);
1357 while (d_mountpoint(nd->path.dentry) &&
1358 follow_down(&nd->path.mnt, &nd->path.dentry))
1361 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1365 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1366 if (IS_DEADDIR(nd->path.dentry->d_inode))
1369 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1373 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1376 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1379 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1380 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1383 * Don't move a mount residing in a shared parent.
1385 if (old_nd.path.mnt->mnt_parent &&
1386 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1389 * Don't move a mount tree containing unbindable mounts to a destination
1390 * mount which is shared.
1392 if (IS_MNT_SHARED(nd->path.mnt) &&
1393 tree_contains_unbindable(old_nd.path.mnt))
1396 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1397 if (p == old_nd.path.mnt)
1400 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1404 /* if the mount is moved, it should no longer be expire
1406 list_del_init(&old_nd.path.mnt->mnt_expire);
1408 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1410 up_write(&namespace_sem);
1412 path_put(&parent_path);
1413 path_put(&old_nd.path);
1418 * create a new mount for userspace and request it to be added into the
1420 * noinline this do_mount helper to save do_mount stack space.
1422 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1423 int mnt_flags, char *name, void *data)
1425 struct vfsmount *mnt;
1427 if (!type || !memchr(type, 0, PAGE_SIZE))
1430 /* we need capabilities... */
1431 if (!capable(CAP_SYS_ADMIN))
1434 mnt = do_kern_mount(type, flags, name, data);
1436 return PTR_ERR(mnt);
1438 return do_add_mount(mnt, nd, mnt_flags, NULL);
1442 * add a mount into a namespace's mount tree
1443 * - provide the option of adding the new mount to an expiration list
1445 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1446 int mnt_flags, struct list_head *fslist)
1450 down_write(&namespace_sem);
1451 /* Something was mounted here while we slept */
1452 while (d_mountpoint(nd->path.dentry) &&
1453 follow_down(&nd->path.mnt, &nd->path.dentry))
1456 if (!check_mnt(nd->path.mnt))
1459 /* Refuse the same filesystem on the same mount point */
1461 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1462 nd->path.mnt->mnt_root == nd->path.dentry)
1466 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1469 newmnt->mnt_flags = mnt_flags;
1470 if ((err = graft_tree(newmnt, nd)))
1473 if (fslist) /* add to the specified expiration list */
1474 list_add_tail(&newmnt->mnt_expire, fslist);
1476 up_write(&namespace_sem);
1480 up_write(&namespace_sem);
1485 EXPORT_SYMBOL_GPL(do_add_mount);
1488 * process a list of expirable mountpoints with the intent of discarding any
1489 * mountpoints that aren't in use and haven't been touched since last we came
1492 void mark_mounts_for_expiry(struct list_head *mounts)
1494 struct vfsmount *mnt, *next;
1495 LIST_HEAD(graveyard);
1498 if (list_empty(mounts))
1501 down_write(&namespace_sem);
1502 spin_lock(&vfsmount_lock);
1504 /* extract from the expiration list every vfsmount that matches the
1505 * following criteria:
1506 * - only referenced by its parent vfsmount
1507 * - still marked for expiry (marked on the last call here; marks are
1508 * cleared by mntput())
1510 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1511 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1512 propagate_mount_busy(mnt, 1))
1514 list_move(&mnt->mnt_expire, &graveyard);
1516 while (!list_empty(&graveyard)) {
1517 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1518 touch_mnt_namespace(mnt->mnt_ns);
1519 umount_tree(mnt, 1, &umounts);
1521 spin_unlock(&vfsmount_lock);
1522 up_write(&namespace_sem);
1524 release_mounts(&umounts);
1527 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1530 * Ripoff of 'select_parent()'
1532 * search the list of submounts for a given mountpoint, and move any
1533 * shrinkable submounts to the 'graveyard' list.
1535 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1537 struct vfsmount *this_parent = parent;
1538 struct list_head *next;
1542 next = this_parent->mnt_mounts.next;
1544 while (next != &this_parent->mnt_mounts) {
1545 struct list_head *tmp = next;
1546 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1549 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1552 * Descend a level if the d_mounts list is non-empty.
1554 if (!list_empty(&mnt->mnt_mounts)) {
1559 if (!propagate_mount_busy(mnt, 1)) {
1560 list_move_tail(&mnt->mnt_expire, graveyard);
1565 * All done at this level ... ascend and resume the search
1567 if (this_parent != parent) {
1568 next = this_parent->mnt_child.next;
1569 this_parent = this_parent->mnt_parent;
1576 * process a list of expirable mountpoints with the intent of discarding any
1577 * submounts of a specific parent mountpoint
1579 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1581 LIST_HEAD(graveyard);
1584 /* extract submounts of 'mountpoint' from the expiration list */
1585 while (select_submounts(mnt, &graveyard)) {
1586 while (!list_empty(&graveyard)) {
1587 m = list_first_entry(&graveyard, struct vfsmount,
1589 touch_mnt_namespace(mnt->mnt_ns);
1590 umount_tree(mnt, 1, umounts);
1596 * Some copy_from_user() implementations do not return the exact number of
1597 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1598 * Note that this function differs from copy_from_user() in that it will oops
1599 * on bad values of `to', rather than returning a short copy.
1601 static long exact_copy_from_user(void *to, const void __user * from,
1605 const char __user *f = from;
1608 if (!access_ok(VERIFY_READ, from, n))
1612 if (__get_user(c, f)) {
1623 int copy_mount_options(const void __user * data, unsigned long *where)
1633 if (!(page = __get_free_page(GFP_KERNEL)))
1636 /* We only care that *some* data at the address the user
1637 * gave us is valid. Just in case, we'll zero
1638 * the remainder of the page.
1640 /* copy_from_user cannot cross TASK_SIZE ! */
1641 size = TASK_SIZE - (unsigned long)data;
1642 if (size > PAGE_SIZE)
1645 i = size - exact_copy_from_user((void *)page, data, size);
1651 memset((char *)page + i, 0, PAGE_SIZE - i);
1657 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1658 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1660 * data is a (void *) that can point to any structure up to
1661 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1662 * information (or be NULL).
1664 * Pre-0.97 versions of mount() didn't have a flags word.
1665 * When the flags word was introduced its top half was required
1666 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1667 * Therefore, if this magic number is present, it carries no information
1668 * and must be discarded.
1670 long do_mount(char *dev_name, char *dir_name, char *type_page,
1671 unsigned long flags, void *data_page)
1673 struct nameidata nd;
1678 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1679 flags &= ~MS_MGC_MSK;
1681 /* Basic sanity checks */
1683 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1685 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1689 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1691 /* Separate the per-mountpoint flags */
1692 if (flags & MS_NOSUID)
1693 mnt_flags |= MNT_NOSUID;
1694 if (flags & MS_NODEV)
1695 mnt_flags |= MNT_NODEV;
1696 if (flags & MS_NOEXEC)
1697 mnt_flags |= MNT_NOEXEC;
1698 if (flags & MS_NOATIME)
1699 mnt_flags |= MNT_NOATIME;
1700 if (flags & MS_NODIRATIME)
1701 mnt_flags |= MNT_NODIRATIME;
1702 if (flags & MS_RELATIME)
1703 mnt_flags |= MNT_RELATIME;
1705 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1706 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1708 /* ... and get the mountpoint */
1709 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1713 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1717 if (flags & MS_REMOUNT)
1718 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1720 else if (flags & MS_BIND)
1721 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1722 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1723 retval = do_change_type(&nd, flags);
1724 else if (flags & MS_MOVE)
1725 retval = do_move_mount(&nd, dev_name);
1727 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1728 dev_name, data_page);
1735 * Allocate a new namespace structure and populate it with contents
1736 * copied from the namespace of the passed in task structure.
1738 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1739 struct fs_struct *fs)
1741 struct mnt_namespace *new_ns;
1742 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1743 struct vfsmount *p, *q;
1745 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1747 return ERR_PTR(-ENOMEM);
1749 atomic_set(&new_ns->count, 1);
1750 INIT_LIST_HEAD(&new_ns->list);
1751 init_waitqueue_head(&new_ns->poll);
1754 down_write(&namespace_sem);
1755 /* First pass: copy the tree topology */
1756 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1757 CL_COPY_ALL | CL_EXPIRE);
1758 if (!new_ns->root) {
1759 up_write(&namespace_sem);
1761 return ERR_PTR(-ENOMEM);;
1763 spin_lock(&vfsmount_lock);
1764 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1765 spin_unlock(&vfsmount_lock);
1768 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1769 * as belonging to new namespace. We have already acquired a private
1770 * fs_struct, so tsk->fs->lock is not needed.
1777 if (p == fs->root.mnt) {
1779 fs->root.mnt = mntget(q);
1781 if (p == fs->pwd.mnt) {
1783 fs->pwd.mnt = mntget(q);
1785 if (p == fs->altroot.mnt) {
1787 fs->altroot.mnt = mntget(q);
1790 p = next_mnt(p, mnt_ns->root);
1791 q = next_mnt(q, new_ns->root);
1793 up_write(&namespace_sem);
1805 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1806 struct fs_struct *new_fs)
1808 struct mnt_namespace *new_ns;
1813 if (!(flags & CLONE_NEWNS))
1816 new_ns = dup_mnt_ns(ns, new_fs);
1822 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1823 char __user * type, unsigned long flags,
1827 unsigned long data_page;
1828 unsigned long type_page;
1829 unsigned long dev_page;
1832 retval = copy_mount_options(type, &type_page);
1836 dir_page = getname(dir_name);
1837 retval = PTR_ERR(dir_page);
1838 if (IS_ERR(dir_page))
1841 retval = copy_mount_options(dev_name, &dev_page);
1845 retval = copy_mount_options(data, &data_page);
1850 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1851 flags, (void *)data_page);
1853 free_page(data_page);
1856 free_page(dev_page);
1860 free_page(type_page);
1865 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1866 * It can block. Requires the big lock held.
1868 void set_fs_root(struct fs_struct *fs, struct path *path)
1870 struct path old_root;
1872 write_lock(&fs->lock);
1873 old_root = fs->root;
1876 write_unlock(&fs->lock);
1877 if (old_root.dentry)
1878 path_put(&old_root);
1882 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1883 * It can block. Requires the big lock held.
1885 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1887 struct path old_pwd;
1889 write_lock(&fs->lock);
1893 write_unlock(&fs->lock);
1899 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1901 struct task_struct *g, *p;
1902 struct fs_struct *fs;
1904 read_lock(&tasklist_lock);
1905 do_each_thread(g, p) {
1909 atomic_inc(&fs->count);
1911 if (fs->root.dentry == old_root->dentry
1912 && fs->root.mnt == old_root->mnt)
1913 set_fs_root(fs, new_root);
1914 if (fs->pwd.dentry == old_root->dentry
1915 && fs->pwd.mnt == old_root->mnt)
1916 set_fs_pwd(fs, new_root);
1920 } while_each_thread(g, p);
1921 read_unlock(&tasklist_lock);
1925 * pivot_root Semantics:
1926 * Moves the root file system of the current process to the directory put_old,
1927 * makes new_root as the new root file system of the current process, and sets
1928 * root/cwd of all processes which had them on the current root to new_root.
1931 * The new_root and put_old must be directories, and must not be on the
1932 * same file system as the current process root. The put_old must be
1933 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1934 * pointed to by put_old must yield the same directory as new_root. No other
1935 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1937 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1938 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1939 * in this situation.
1942 * - we don't move root/cwd if they are not at the root (reason: if something
1943 * cared enough to change them, it's probably wrong to force them elsewhere)
1944 * - it's okay to pick a root that isn't the root of a file system, e.g.
1945 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1946 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1949 asmlinkage long sys_pivot_root(const char __user * new_root,
1950 const char __user * put_old)
1952 struct vfsmount *tmp;
1953 struct nameidata new_nd, old_nd, user_nd;
1954 struct path parent_path, root_parent;
1957 if (!capable(CAP_SYS_ADMIN))
1962 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1967 if (!check_mnt(new_nd.path.mnt))
1970 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1974 error = security_sb_pivotroot(&old_nd, &new_nd);
1976 path_put(&old_nd.path);
1980 read_lock(¤t->fs->lock);
1981 user_nd.path = current->fs->root;
1982 path_get(¤t->fs->root);
1983 read_unlock(¤t->fs->lock);
1984 down_write(&namespace_sem);
1985 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1987 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1988 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1989 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1991 if (!check_mnt(user_nd.path.mnt))
1994 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1996 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1998 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2001 if (new_nd.path.mnt == user_nd.path.mnt ||
2002 old_nd.path.mnt == user_nd.path.mnt)
2003 goto out2; /* loop, on the same file system */
2005 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
2006 goto out2; /* not a mountpoint */
2007 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
2008 goto out2; /* not attached */
2009 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2010 goto out2; /* not a mountpoint */
2011 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2012 goto out2; /* not attached */
2013 /* make sure we can reach put_old from new_root */
2014 tmp = old_nd.path.mnt;
2015 spin_lock(&vfsmount_lock);
2016 if (tmp != new_nd.path.mnt) {
2018 if (tmp->mnt_parent == tmp)
2019 goto out3; /* already mounted on put_old */
2020 if (tmp->mnt_parent == new_nd.path.mnt)
2022 tmp = tmp->mnt_parent;
2024 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2026 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2028 detach_mnt(new_nd.path.mnt, &parent_path);
2029 detach_mnt(user_nd.path.mnt, &root_parent);
2030 /* mount old root on put_old */
2031 attach_mnt(user_nd.path.mnt, &old_nd.path);
2032 /* mount new_root on / */
2033 attach_mnt(new_nd.path.mnt, &root_parent);
2034 touch_mnt_namespace(current->nsproxy->mnt_ns);
2035 spin_unlock(&vfsmount_lock);
2036 chroot_fs_refs(&user_nd.path, &new_nd.path);
2037 security_sb_post_pivotroot(&user_nd, &new_nd);
2039 path_put(&root_parent);
2040 path_put(&parent_path);
2042 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2043 up_write(&namespace_sem);
2044 path_put(&user_nd.path);
2045 path_put(&old_nd.path);
2047 path_put(&new_nd.path);
2052 spin_unlock(&vfsmount_lock);
2056 static void __init init_mount_tree(void)
2058 struct vfsmount *mnt;
2059 struct mnt_namespace *ns;
2062 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2064 panic("Can't create rootfs");
2065 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2067 panic("Can't allocate initial namespace");
2068 atomic_set(&ns->count, 1);
2069 INIT_LIST_HEAD(&ns->list);
2070 init_waitqueue_head(&ns->poll);
2072 list_add(&mnt->mnt_list, &ns->list);
2076 init_task.nsproxy->mnt_ns = ns;
2079 root.mnt = ns->root;
2080 root.dentry = ns->root->mnt_root;
2082 set_fs_pwd(current->fs, &root);
2083 set_fs_root(current->fs, &root);
2086 void __init mnt_init(void)
2091 init_rwsem(&namespace_sem);
2093 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2094 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2096 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2098 if (!mount_hashtable)
2099 panic("Failed to allocate mount hash table\n");
2101 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2103 for (u = 0; u < HASH_SIZE; u++)
2104 INIT_LIST_HEAD(&mount_hashtable[u]);
2108 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2110 fs_kobj = kobject_create_and_add("fs", NULL);
2112 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
2117 void __put_mnt_ns(struct mnt_namespace *ns)
2119 struct vfsmount *root = ns->root;
2120 LIST_HEAD(umount_list);
2122 spin_unlock(&vfsmount_lock);
2123 down_write(&namespace_sem);
2124 spin_lock(&vfsmount_lock);
2125 umount_tree(root, 0, &umount_list);
2126 spin_unlock(&vfsmount_lock);
2127 up_write(&namespace_sem);
2128 release_mounts(&umount_list);