2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/crc32.h>
17 #include <linux/compiler.h>
18 #include <linux/stat.h>
22 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
23 struct jffs2_inode_cache *ic,
24 struct jffs2_raw_node_ref *raw);
25 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
26 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
27 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
29 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33 uint32_t start, uint32_t end);
34 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 uint32_t start, uint32_t end);
37 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
38 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
40 /* Called with erase_completion_lock held */
41 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
43 struct jffs2_eraseblock *ret;
44 struct list_head *nextlist = NULL;
45 int n = jiffies % 128;
47 /* Pick an eraseblock to garbage collect next. This is where we'll
48 put the clever wear-levelling algorithms. Eventually. */
49 /* We possibly want to favour the dirtier blocks more when the
50 number of free blocks is low. */
52 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54 nextlist = &c->bad_used_list;
55 } else if (n < 50 && !list_empty(&c->erasable_list)) {
56 /* Note that most of them will have gone directly to be erased.
57 So don't favour the erasable_list _too_ much. */
58 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59 nextlist = &c->erasable_list;
60 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61 /* Most of the time, pick one off the very_dirty list */
62 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63 nextlist = &c->very_dirty_list;
64 } else if (n < 126 && !list_empty(&c->dirty_list)) {
65 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66 nextlist = &c->dirty_list;
67 } else if (!list_empty(&c->clean_list)) {
68 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69 nextlist = &c->clean_list;
70 } else if (!list_empty(&c->dirty_list)) {
71 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
73 nextlist = &c->dirty_list;
74 } else if (!list_empty(&c->very_dirty_list)) {
75 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76 nextlist = &c->very_dirty_list;
77 } else if (!list_empty(&c->erasable_list)) {
78 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
80 nextlist = &c->erasable_list;
81 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82 /* There are blocks are wating for the wbuf sync */
83 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
84 spin_unlock(&c->erase_completion_lock);
85 jffs2_flush_wbuf_pad(c);
86 spin_lock(&c->erase_completion_lock);
89 /* Eep. All were empty */
90 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
94 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 ret->gc_node = ret->first_node;
99 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
103 /* Have we accidentally picked a clean block with wasted space ? */
104 if (ret->wasted_size) {
105 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 ret->dirty_size += ret->wasted_size;
107 c->wasted_size -= ret->wasted_size;
108 c->dirty_size += ret->wasted_size;
109 ret->wasted_size = 0;
115 /* jffs2_garbage_collect_pass
116 * Make a single attempt to progress GC. Move one node, and possibly
117 * start erasing one eraseblock.
119 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
121 struct jffs2_inode_info *f;
122 struct jffs2_inode_cache *ic;
123 struct jffs2_eraseblock *jeb;
124 struct jffs2_raw_node_ref *raw;
125 uint32_t gcblock_dirty;
126 int ret = 0, inum, nlink;
129 if (down_interruptible(&c->alloc_sem))
133 spin_lock(&c->erase_completion_lock);
134 if (!c->unchecked_size)
137 /* We can't start doing GC yet. We haven't finished checking
138 the node CRCs etc. Do it now. */
140 /* checked_ino is protected by the alloc_sem */
141 if (c->checked_ino > c->highest_ino && xattr) {
142 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
144 jffs2_dbg_dump_block_lists_nolock(c);
145 spin_unlock(&c->erase_completion_lock);
150 spin_unlock(&c->erase_completion_lock);
153 xattr = jffs2_verify_xattr(c);
155 spin_lock(&c->inocache_lock);
157 ic = jffs2_get_ino_cache(c, c->checked_ino++);
160 spin_unlock(&c->inocache_lock);
165 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
167 spin_unlock(&c->inocache_lock);
168 jffs2_xattr_delete_inode(c, ic);
172 case INO_STATE_CHECKEDABSENT:
173 case INO_STATE_PRESENT:
174 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
175 spin_unlock(&c->inocache_lock);
179 case INO_STATE_CHECKING:
180 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
181 spin_unlock(&c->inocache_lock);
184 case INO_STATE_READING:
185 /* We need to wait for it to finish, lest we move on
186 and trigger the BUG() above while we haven't yet
187 finished checking all its nodes */
188 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
189 /* We need to come back again for the _same_ inode. We've
190 made no progress in this case, but that should be OK */
194 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
200 case INO_STATE_UNCHECKED:
203 ic->state = INO_STATE_CHECKING;
204 spin_unlock(&c->inocache_lock);
206 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
208 ret = jffs2_do_crccheck_inode(c, ic);
210 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
212 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
217 /* First, work out which block we're garbage-collecting */
221 jeb = jffs2_find_gc_block(c);
224 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
225 spin_unlock(&c->erase_completion_lock);
230 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
232 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
234 if (!jeb->used_size) {
240 gcblock_dirty = jeb->dirty_size;
242 while(ref_obsolete(raw)) {
243 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
245 if (unlikely(!raw)) {
246 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
247 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
248 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
250 spin_unlock(&c->erase_completion_lock);
257 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
259 if (!raw->next_in_ino) {
260 /* Inode-less node. Clean marker, snapshot or something like that */
261 spin_unlock(&c->erase_completion_lock);
262 if (ref_flags(raw) == REF_PRISTINE) {
263 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
264 jffs2_garbage_collect_pristine(c, NULL, raw);
266 /* Just mark it obsolete */
267 jffs2_mark_node_obsolete(c, raw);
273 ic = jffs2_raw_ref_to_ic(raw);
275 #ifdef CONFIG_JFFS2_FS_XATTR
276 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
277 * We can decide whether this node is inode or xattr by ic->class. */
278 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
279 || ic->class == RAWNODE_CLASS_XATTR_REF) {
280 spin_unlock(&c->erase_completion_lock);
282 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
283 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
285 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
291 /* We need to hold the inocache. Either the erase_completion_lock or
292 the inocache_lock are sufficient; we trade down since the inocache_lock
293 causes less contention. */
294 spin_lock(&c->inocache_lock);
296 spin_unlock(&c->erase_completion_lock);
298 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
300 /* Three possibilities:
301 1. Inode is already in-core. We must iget it and do proper
302 updating to its fragtree, etc.
303 2. Inode is not in-core, node is REF_PRISTINE. We lock the
304 inocache to prevent a read_inode(), copy the node intact.
305 3. Inode is not in-core, node is not pristine. We must iget()
306 and take the slow path.
310 case INO_STATE_CHECKEDABSENT:
311 /* It's been checked, but it's not currently in-core.
312 We can just copy any pristine nodes, but have
313 to prevent anyone else from doing read_inode() while
314 we're at it, so we set the state accordingly */
315 if (ref_flags(raw) == REF_PRISTINE)
316 ic->state = INO_STATE_GC;
318 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
323 case INO_STATE_PRESENT:
324 /* It's in-core. GC must iget() it. */
327 case INO_STATE_UNCHECKED:
328 case INO_STATE_CHECKING:
330 /* Should never happen. We should have finished checking
331 by the time we actually start doing any GC, and since
332 we're holding the alloc_sem, no other garbage collection
335 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
338 spin_unlock(&c->inocache_lock);
341 case INO_STATE_READING:
342 /* Someone's currently trying to read it. We must wait for
343 them to finish and then go through the full iget() route
344 to do the GC. However, sometimes read_inode() needs to get
345 the alloc_sem() (for marking nodes invalid) so we must
346 drop the alloc_sem before sleeping. */
349 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
350 ic->ino, ic->state));
351 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
352 /* And because we dropped the alloc_sem we must start again from the
353 beginning. Ponder chance of livelock here -- we're returning success
354 without actually making any progress.
356 Q: What are the chances that the inode is back in INO_STATE_READING
357 again by the time we next enter this function? And that this happens
358 enough times to cause a real delay?
360 A: Small enough that I don't care :)
365 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
366 node intact, and we don't have to muck about with the fragtree etc.
367 because we know it's not in-core. If it _was_ in-core, we go through
368 all the iget() crap anyway */
370 if (ic->state == INO_STATE_GC) {
371 spin_unlock(&c->inocache_lock);
373 ret = jffs2_garbage_collect_pristine(c, ic, raw);
375 spin_lock(&c->inocache_lock);
376 ic->state = INO_STATE_CHECKEDABSENT;
377 wake_up(&c->inocache_wq);
379 if (ret != -EBADFD) {
380 spin_unlock(&c->inocache_lock);
384 /* Fall through if it wanted us to, with inocache_lock held */
387 /* Prevent the fairly unlikely race where the gcblock is
388 entirely obsoleted by the final close of a file which had
389 the only valid nodes in the block, followed by erasure,
390 followed by freeing of the ic because the erased block(s)
391 held _all_ the nodes of that inode.... never been seen but
392 it's vaguely possible. */
396 spin_unlock(&c->inocache_lock);
398 f = jffs2_gc_fetch_inode(c, inum, nlink);
408 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
410 jffs2_gc_release_inode(c, f);
413 if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
414 /* Eep. This really should never happen. GC is broken */
415 printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
417 } else if (ref_offset(jeb->gc_node) == 0x1c616bdc)
418 printk(KERN_ERR "Wheee. Correctly GC'd node at %08x\n", ref_offset(jeb->gc_node));
424 /* If we've finished this block, start it erasing */
425 spin_lock(&c->erase_completion_lock);
428 if (c->gcblock && !c->gcblock->used_size) {
429 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
430 /* We're GC'ing an empty block? */
431 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
433 c->nr_erasing_blocks++;
434 jffs2_erase_pending_trigger(c);
436 spin_unlock(&c->erase_completion_lock);
441 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
442 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
444 struct jffs2_node_frag *frag;
445 struct jffs2_full_dnode *fn = NULL;
446 struct jffs2_full_dirent *fd;
447 uint32_t start = 0, end = 0, nrfrags = 0;
452 /* Now we have the lock for this inode. Check that it's still the one at the head
455 spin_lock(&c->erase_completion_lock);
457 if (c->gcblock != jeb) {
458 spin_unlock(&c->erase_completion_lock);
459 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
462 if (ref_obsolete(raw)) {
463 spin_unlock(&c->erase_completion_lock);
464 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
465 /* They'll call again */
468 spin_unlock(&c->erase_completion_lock);
470 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
471 if (f->metadata && f->metadata->raw == raw) {
473 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
477 /* FIXME. Read node and do lookup? */
478 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
479 if (frag->node && frag->node->raw == raw) {
481 end = frag->ofs + frag->size;
484 if (nrfrags == frag->node->frags)
485 break; /* We've found them all */
489 if (ref_flags(raw) == REF_PRISTINE) {
490 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
492 /* Urgh. Return it sensibly. */
493 frag->node->raw = f->inocache->nodes;
498 /* We found a datanode. Do the GC */
499 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
500 /* It crosses a page boundary. Therefore, it must be a hole. */
501 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
503 /* It could still be a hole. But we GC the page this way anyway */
504 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
509 /* Wasn't a dnode. Try dirent */
510 for (fd = f->dents; fd; fd=fd->next) {
516 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
518 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
520 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
521 ref_offset(raw), f->inocache->ino);
522 if (ref_obsolete(raw)) {
523 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
525 jffs2_dbg_dump_node(c, ref_offset(raw));
535 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
536 struct jffs2_inode_cache *ic,
537 struct jffs2_raw_node_ref *raw)
539 union jffs2_node_union *node;
542 uint32_t phys_ofs, alloclen;
543 uint32_t crc, rawlen;
546 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
548 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
550 /* Ask for a small amount of space (or the totlen if smaller) because we
551 don't want to force wastage of the end of a block if splitting would
553 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
554 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
556 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
557 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
562 if (alloclen < rawlen) {
563 /* Doesn't fit untouched. We'll go the old route and split it */
567 node = kmalloc(rawlen, GFP_KERNEL);
571 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
572 if (!ret && retlen != rawlen)
577 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
578 if (je32_to_cpu(node->u.hdr_crc) != crc) {
579 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
580 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
584 switch(je16_to_cpu(node->u.nodetype)) {
585 case JFFS2_NODETYPE_INODE:
586 crc = crc32(0, node, sizeof(node->i)-8);
587 if (je32_to_cpu(node->i.node_crc) != crc) {
588 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
589 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
593 if (je32_to_cpu(node->i.dsize)) {
594 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
595 if (je32_to_cpu(node->i.data_crc) != crc) {
596 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
597 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
603 case JFFS2_NODETYPE_DIRENT:
604 crc = crc32(0, node, sizeof(node->d)-8);
605 if (je32_to_cpu(node->d.node_crc) != crc) {
606 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
607 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
612 crc = crc32(0, node->d.name, node->d.nsize);
613 if (je32_to_cpu(node->d.name_crc) != crc) {
614 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
615 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
621 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
623 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
624 ref_offset(raw), je16_to_cpu(node->u.nodetype));
629 /* OK, all the CRCs are good; this node can just be copied as-is. */
631 phys_ofs = write_ofs(c);
633 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
635 if (ret || (retlen != rawlen)) {
636 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
637 rawlen, phys_ofs, ret, retlen);
639 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
641 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
644 /* Try to reallocate space and retry */
646 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
650 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
652 jffs2_dbg_acct_sanity_check(c,jeb);
653 jffs2_dbg_acct_paranoia_check(c, jeb);
655 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
656 /* this is not the exact summary size of it,
657 it is only an upper estimation */
660 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
662 jffs2_dbg_acct_sanity_check(c,jeb);
663 jffs2_dbg_acct_paranoia_check(c, jeb);
667 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
674 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
676 jffs2_mark_node_obsolete(c, raw);
677 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
687 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
688 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
690 struct jffs2_full_dnode *new_fn;
691 struct jffs2_raw_inode ri;
692 struct jffs2_node_frag *last_frag;
693 union jffs2_device_node dev;
694 char *mdata = NULL, mdatalen = 0;
695 uint32_t alloclen, ilen;
698 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
699 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
700 /* For these, we don't actually need to read the old node */
701 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
702 mdata = (char *)&dev;
703 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
704 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
706 mdata = kmalloc(fn->size, GFP_KERNEL);
708 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
711 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
713 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
717 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
721 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
722 JFFS2_SUMMARY_INODE_SIZE);
724 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
725 sizeof(ri)+ mdatalen, ret);
729 last_frag = frag_last(&f->fragtree);
731 /* Fetch the inode length from the fragtree rather then
732 * from i_size since i_size may have not been updated yet */
733 ilen = last_frag->ofs + last_frag->size;
735 ilen = JFFS2_F_I_SIZE(f);
737 memset(&ri, 0, sizeof(ri));
738 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
739 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
740 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
741 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
743 ri.ino = cpu_to_je32(f->inocache->ino);
744 ri.version = cpu_to_je32(++f->highest_version);
745 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
746 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
747 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
748 ri.isize = cpu_to_je32(ilen);
749 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
750 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
751 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
752 ri.offset = cpu_to_je32(0);
753 ri.csize = cpu_to_je32(mdatalen);
754 ri.dsize = cpu_to_je32(mdatalen);
755 ri.compr = JFFS2_COMPR_NONE;
756 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
757 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
759 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
761 if (IS_ERR(new_fn)) {
762 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
763 ret = PTR_ERR(new_fn);
766 jffs2_mark_node_obsolete(c, fn->raw);
767 jffs2_free_full_dnode(fn);
768 f->metadata = new_fn;
770 if (S_ISLNK(JFFS2_F_I_MODE(f)))
775 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
776 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
778 struct jffs2_full_dirent *new_fd;
779 struct jffs2_raw_dirent rd;
783 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
784 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
785 rd.nsize = strlen(fd->name);
786 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
787 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
789 rd.pino = cpu_to_je32(f->inocache->ino);
790 rd.version = cpu_to_je32(++f->highest_version);
791 rd.ino = cpu_to_je32(fd->ino);
792 /* If the times on this inode were set by explicit utime() they can be different,
793 so refrain from splatting them. */
794 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
795 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
797 rd.mctime = cpu_to_je32(0);
799 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
800 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
802 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
803 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
805 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
806 sizeof(rd)+rd.nsize, ret);
809 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
811 if (IS_ERR(new_fd)) {
812 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
813 return PTR_ERR(new_fd);
815 jffs2_add_fd_to_list(c, new_fd, &f->dents);
819 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
820 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
822 struct jffs2_full_dirent **fdp = &f->dents;
825 /* On a medium where we can't actually mark nodes obsolete
826 pernamently, such as NAND flash, we need to work out
827 whether this deletion dirent is still needed to actively
828 delete a 'real' dirent with the same name that's still
829 somewhere else on the flash. */
830 if (!jffs2_can_mark_obsolete(c)) {
831 struct jffs2_raw_dirent *rd;
832 struct jffs2_raw_node_ref *raw;
835 int name_len = strlen(fd->name);
836 uint32_t name_crc = crc32(0, fd->name, name_len);
837 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
839 rd = kmalloc(rawlen, GFP_KERNEL);
843 /* Prevent the erase code from nicking the obsolete node refs while
844 we're looking at them. I really don't like this extra lock but
845 can't see any alternative. Suggestions on a postcard to... */
846 down(&c->erase_free_sem);
848 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
852 /* We only care about obsolete ones */
853 if (!(ref_obsolete(raw)))
856 /* Any dirent with the same name is going to have the same length... */
857 if (ref_totlen(c, NULL, raw) != rawlen)
860 /* Doesn't matter if there's one in the same erase block. We're going to
861 delete it too at the same time. */
862 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
865 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
867 /* This is an obsolete node belonging to the same directory, and it's of the right
868 length. We need to take a closer look...*/
869 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
871 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
872 /* If we can't read it, we don't need to continue to obsolete it. Continue */
875 if (retlen != rawlen) {
876 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
877 retlen, rawlen, ref_offset(raw));
881 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
884 /* If the name CRC doesn't match, skip */
885 if (je32_to_cpu(rd->name_crc) != name_crc)
888 /* If the name length doesn't match, or it's another deletion dirent, skip */
889 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
892 /* OK, check the actual name now */
893 if (memcmp(rd->name, fd->name, name_len))
896 /* OK. The name really does match. There really is still an older node on
897 the flash which our deletion dirent obsoletes. So we have to write out
898 a new deletion dirent to replace it */
899 up(&c->erase_free_sem);
901 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
902 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
905 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
908 up(&c->erase_free_sem);
912 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
913 we should update the metadata node with those times accordingly */
915 /* No need for it any more. Just mark it obsolete and remove it from the list */
925 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
927 jffs2_mark_node_obsolete(c, fd->raw);
928 jffs2_free_full_dirent(fd);
932 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
933 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
934 uint32_t start, uint32_t end)
936 struct jffs2_raw_inode ri;
937 struct jffs2_node_frag *frag;
938 struct jffs2_full_dnode *new_fn;
939 uint32_t alloclen, ilen;
942 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
943 f->inocache->ino, start, end));
945 memset(&ri, 0, sizeof(ri));
950 /* It's partially obsoleted by a later write. So we have to
951 write it out again with the _same_ version as before */
952 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
953 if (readlen != sizeof(ri) || ret) {
954 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
957 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
958 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
960 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
963 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
964 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
966 je32_to_cpu(ri.totlen), sizeof(ri));
969 crc = crc32(0, &ri, sizeof(ri)-8);
970 if (crc != je32_to_cpu(ri.node_crc)) {
971 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
973 je32_to_cpu(ri.node_crc), crc);
974 /* FIXME: We could possibly deal with this by writing new holes for each frag */
975 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
976 start, end, f->inocache->ino);
979 if (ri.compr != JFFS2_COMPR_ZERO) {
980 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
981 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
982 start, end, f->inocache->ino);
987 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
988 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
989 ri.totlen = cpu_to_je32(sizeof(ri));
990 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
992 ri.ino = cpu_to_je32(f->inocache->ino);
993 ri.version = cpu_to_je32(++f->highest_version);
994 ri.offset = cpu_to_je32(start);
995 ri.dsize = cpu_to_je32(end - start);
996 ri.csize = cpu_to_je32(0);
997 ri.compr = JFFS2_COMPR_ZERO;
1000 frag = frag_last(&f->fragtree);
1002 /* Fetch the inode length from the fragtree rather then
1003 * from i_size since i_size may have not been updated yet */
1004 ilen = frag->ofs + frag->size;
1006 ilen = JFFS2_F_I_SIZE(f);
1008 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1009 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1010 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1011 ri.isize = cpu_to_je32(ilen);
1012 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1013 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1014 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1015 ri.data_crc = cpu_to_je32(0);
1016 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1018 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1019 JFFS2_SUMMARY_INODE_SIZE);
1021 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1025 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1027 if (IS_ERR(new_fn)) {
1028 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1029 return PTR_ERR(new_fn);
1031 if (je32_to_cpu(ri.version) == f->highest_version) {
1032 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1034 jffs2_mark_node_obsolete(c, f->metadata->raw);
1035 jffs2_free_full_dnode(f->metadata);
1042 * We should only get here in the case where the node we are
1043 * replacing had more than one frag, so we kept the same version
1044 * number as before. (Except in case of error -- see 'goto fill;'
1047 D1(if(unlikely(fn->frags <= 1)) {
1048 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1049 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1050 je32_to_cpu(ri.ino));
1053 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1054 mark_ref_normal(new_fn->raw);
1056 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1057 frag; frag = frag_next(frag)) {
1058 if (frag->ofs > fn->size + fn->ofs)
1060 if (frag->node == fn) {
1061 frag->node = new_fn;
1067 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1070 if (!new_fn->frags) {
1071 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1075 jffs2_mark_node_obsolete(c, fn->raw);
1076 jffs2_free_full_dnode(fn);
1081 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1082 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1083 uint32_t start, uint32_t end)
1085 struct jffs2_full_dnode *new_fn;
1086 struct jffs2_raw_inode ri;
1087 uint32_t alloclen, offset, orig_end, orig_start;
1089 unsigned char *comprbuf = NULL, *writebuf;
1091 unsigned char *pg_ptr;
1093 memset(&ri, 0, sizeof(ri));
1095 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1096 f->inocache->ino, start, end));
1101 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1102 /* Attempt to do some merging. But only expand to cover logically
1103 adjacent frags if the block containing them is already considered
1104 to be dirty. Otherwise we end up with GC just going round in
1105 circles dirtying the nodes it already wrote out, especially
1106 on NAND where we have small eraseblocks and hence a much higher
1107 chance of nodes having to be split to cross boundaries. */
1109 struct jffs2_node_frag *frag;
1112 min = start & ~(PAGE_CACHE_SIZE-1);
1113 max = min + PAGE_CACHE_SIZE;
1115 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1117 /* BUG_ON(!frag) but that'll happen anyway... */
1119 BUG_ON(frag->ofs != start);
1121 /* First grow down... */
1122 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1124 /* If the previous frag doesn't even reach the beginning, there's
1125 excessive fragmentation. Just merge. */
1126 if (frag->ofs > min) {
1127 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1128 frag->ofs, frag->ofs+frag->size));
1132 /* OK. This frag holds the first byte of the page. */
1133 if (!frag->node || !frag->node->raw) {
1134 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1135 frag->ofs, frag->ofs+frag->size));
1139 /* OK, it's a frag which extends to the beginning of the page. Does it live
1140 in a block which is still considered clean? If so, don't obsolete it.
1141 If not, cover it anyway. */
1143 struct jffs2_raw_node_ref *raw = frag->node->raw;
1144 struct jffs2_eraseblock *jeb;
1146 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1148 if (jeb == c->gcblock) {
1149 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1150 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1154 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1155 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1156 frag->ofs, frag->ofs+frag->size, jeb->offset));
1160 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1161 frag->ofs, frag->ofs+frag->size, jeb->offset));
1169 /* Find last frag which is actually part of the node we're to GC. */
1170 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1172 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1174 /* If the previous frag doesn't even reach the beginning, there's lots
1175 of fragmentation. Just merge. */
1176 if (frag->ofs+frag->size < max) {
1177 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1178 frag->ofs, frag->ofs+frag->size));
1179 end = frag->ofs + frag->size;
1183 if (!frag->node || !frag->node->raw) {
1184 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1185 frag->ofs, frag->ofs+frag->size));
1189 /* OK, it's a frag which extends to the beginning of the page. Does it live
1190 in a block which is still considered clean? If so, don't obsolete it.
1191 If not, cover it anyway. */
1193 struct jffs2_raw_node_ref *raw = frag->node->raw;
1194 struct jffs2_eraseblock *jeb;
1196 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1198 if (jeb == c->gcblock) {
1199 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1200 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1201 end = frag->ofs + frag->size;
1204 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1205 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1206 frag->ofs, frag->ofs+frag->size, jeb->offset));
1210 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1211 frag->ofs, frag->ofs+frag->size, jeb->offset));
1212 end = frag->ofs + frag->size;
1216 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1217 orig_start, orig_end, start, end));
1219 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1220 BUG_ON(end < orig_end);
1221 BUG_ON(start > orig_start);
1224 /* First, use readpage() to read the appropriate page into the page cache */
1225 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1226 * triggered garbage collection in the first place?
1227 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1228 * page OK. We'll actually write it out again in commit_write, which is a little
1229 * suboptimal, but at least we're correct.
1231 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1233 if (IS_ERR(pg_ptr)) {
1234 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1235 return PTR_ERR(pg_ptr);
1239 while(offset < orig_end) {
1242 uint16_t comprtype = JFFS2_COMPR_NONE;
1244 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1245 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1248 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1249 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1252 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1253 datalen = end - offset;
1255 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1257 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1259 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1260 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1261 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1262 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1264 ri.ino = cpu_to_je32(f->inocache->ino);
1265 ri.version = cpu_to_je32(++f->highest_version);
1266 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1267 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1268 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1269 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1270 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1271 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1272 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1273 ri.offset = cpu_to_je32(offset);
1274 ri.csize = cpu_to_je32(cdatalen);
1275 ri.dsize = cpu_to_je32(datalen);
1276 ri.compr = comprtype & 0xff;
1277 ri.usercompr = (comprtype >> 8) & 0xff;
1278 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1279 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1281 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1283 jffs2_free_comprbuf(comprbuf, writebuf);
1285 if (IS_ERR(new_fn)) {
1286 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1287 ret = PTR_ERR(new_fn);
1290 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1293 jffs2_mark_node_obsolete(c, f->metadata->raw);
1294 jffs2_free_full_dnode(f->metadata);
1299 jffs2_gc_release_page(c, pg_ptr, &pg);