]> err.no Git - linux-2.6/blob - fs/jffs2/gc.c
[JFFS2] Check whether garbage-collection actually obsoleted its victim.
[linux-2.6] / fs / jffs2 / gc.c
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/crc32.h>
17 #include <linux/compiler.h>
18 #include <linux/stat.h>
19 #include "nodelist.h"
20 #include "compr.h"
21
22 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
23                                           struct jffs2_inode_cache *ic,
24                                           struct jffs2_raw_node_ref *raw);
25 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
26                                         struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
27 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
29 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33                                       uint32_t start, uint32_t end);
34 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36                                        uint32_t start, uint32_t end);
37 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
38                                struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
39
40 /* Called with erase_completion_lock held */
41 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
42 {
43         struct jffs2_eraseblock *ret;
44         struct list_head *nextlist = NULL;
45         int n = jiffies % 128;
46
47         /* Pick an eraseblock to garbage collect next. This is where we'll
48            put the clever wear-levelling algorithms. Eventually.  */
49         /* We possibly want to favour the dirtier blocks more when the
50            number of free blocks is low. */
51 again:
52         if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53                 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54                 nextlist = &c->bad_used_list;
55         } else if (n < 50 && !list_empty(&c->erasable_list)) {
56                 /* Note that most of them will have gone directly to be erased.
57                    So don't favour the erasable_list _too_ much. */
58                 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59                 nextlist = &c->erasable_list;
60         } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61                 /* Most of the time, pick one off the very_dirty list */
62                 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63                 nextlist = &c->very_dirty_list;
64         } else if (n < 126 && !list_empty(&c->dirty_list)) {
65                 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66                 nextlist = &c->dirty_list;
67         } else if (!list_empty(&c->clean_list)) {
68                 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69                 nextlist = &c->clean_list;
70         } else if (!list_empty(&c->dirty_list)) {
71                 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
72
73                 nextlist = &c->dirty_list;
74         } else if (!list_empty(&c->very_dirty_list)) {
75                 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76                 nextlist = &c->very_dirty_list;
77         } else if (!list_empty(&c->erasable_list)) {
78                 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
79
80                 nextlist = &c->erasable_list;
81         } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82                 /* There are blocks are wating for the wbuf sync */
83                 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
84                 spin_unlock(&c->erase_completion_lock);
85                 jffs2_flush_wbuf_pad(c);
86                 spin_lock(&c->erase_completion_lock);
87                 goto again;
88         } else {
89                 /* Eep. All were empty */
90                 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91                 return NULL;
92         }
93
94         ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95         list_del(&ret->list);
96         c->gcblock = ret;
97         ret->gc_node = ret->first_node;
98         if (!ret->gc_node) {
99                 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100                 BUG();
101         }
102
103         /* Have we accidentally picked a clean block with wasted space ? */
104         if (ret->wasted_size) {
105                 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106                 ret->dirty_size += ret->wasted_size;
107                 c->wasted_size -= ret->wasted_size;
108                 c->dirty_size += ret->wasted_size;
109                 ret->wasted_size = 0;
110         }
111
112         return ret;
113 }
114
115 /* jffs2_garbage_collect_pass
116  * Make a single attempt to progress GC. Move one node, and possibly
117  * start erasing one eraseblock.
118  */
119 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
120 {
121         struct jffs2_inode_info *f;
122         struct jffs2_inode_cache *ic;
123         struct jffs2_eraseblock *jeb;
124         struct jffs2_raw_node_ref *raw;
125         uint32_t gcblock_dirty;
126         int ret = 0, inum, nlink;
127         int xattr = 0;
128
129         if (down_interruptible(&c->alloc_sem))
130                 return -EINTR;
131
132         for (;;) {
133                 spin_lock(&c->erase_completion_lock);
134                 if (!c->unchecked_size)
135                         break;
136
137                 /* We can't start doing GC yet. We haven't finished checking
138                    the node CRCs etc. Do it now. */
139
140                 /* checked_ino is protected by the alloc_sem */
141                 if (c->checked_ino > c->highest_ino && xattr) {
142                         printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143                                c->unchecked_size);
144                         jffs2_dbg_dump_block_lists_nolock(c);
145                         spin_unlock(&c->erase_completion_lock);
146                         up(&c->alloc_sem);
147                         return -ENOSPC;
148                 }
149
150                 spin_unlock(&c->erase_completion_lock);
151
152                 if (!xattr)
153                         xattr = jffs2_verify_xattr(c);
154
155                 spin_lock(&c->inocache_lock);
156
157                 ic = jffs2_get_ino_cache(c, c->checked_ino++);
158
159                 if (!ic) {
160                         spin_unlock(&c->inocache_lock);
161                         continue;
162                 }
163
164                 if (!ic->nlink) {
165                         D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
166                                   ic->ino));
167                         spin_unlock(&c->inocache_lock);
168                         jffs2_xattr_delete_inode(c, ic);
169                         continue;
170                 }
171                 switch(ic->state) {
172                 case INO_STATE_CHECKEDABSENT:
173                 case INO_STATE_PRESENT:
174                         D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
175                         spin_unlock(&c->inocache_lock);
176                         continue;
177
178                 case INO_STATE_GC:
179                 case INO_STATE_CHECKING:
180                         printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
181                         spin_unlock(&c->inocache_lock);
182                         BUG();
183
184                 case INO_STATE_READING:
185                         /* We need to wait for it to finish, lest we move on
186                            and trigger the BUG() above while we haven't yet
187                            finished checking all its nodes */
188                         D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
189                         /* We need to come back again for the _same_ inode. We've
190                          made no progress in this case, but that should be OK */
191                         c->checked_ino--;
192
193                         up(&c->alloc_sem);
194                         sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
195                         return 0;
196
197                 default:
198                         BUG();
199
200                 case INO_STATE_UNCHECKED:
201                         ;
202                 }
203                 ic->state = INO_STATE_CHECKING;
204                 spin_unlock(&c->inocache_lock);
205
206                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
207
208                 ret = jffs2_do_crccheck_inode(c, ic);
209                 if (ret)
210                         printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
211
212                 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
213                 up(&c->alloc_sem);
214                 return ret;
215         }
216
217         /* First, work out which block we're garbage-collecting */
218         jeb = c->gcblock;
219
220         if (!jeb)
221                 jeb = jffs2_find_gc_block(c);
222
223         if (!jeb) {
224                 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
225                 spin_unlock(&c->erase_completion_lock);
226                 up(&c->alloc_sem);
227                 return -EIO;
228         }
229
230         D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
231         D1(if (c->nextblock)
232            printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
233
234         if (!jeb->used_size) {
235                 up(&c->alloc_sem);
236                 goto eraseit;
237         }
238
239         raw = jeb->gc_node;
240         gcblock_dirty = jeb->dirty_size;
241
242         while(ref_obsolete(raw)) {
243                 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
244                 raw = ref_next(raw);
245                 if (unlikely(!raw)) {
246                         printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
247                         printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
248                                jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
249                         jeb->gc_node = raw;
250                         spin_unlock(&c->erase_completion_lock);
251                         up(&c->alloc_sem);
252                         BUG();
253                 }
254         }
255         jeb->gc_node = raw;
256
257         D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
258
259         if (!raw->next_in_ino) {
260                 /* Inode-less node. Clean marker, snapshot or something like that */
261                 spin_unlock(&c->erase_completion_lock);
262                 if (ref_flags(raw) == REF_PRISTINE) {
263                         /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
264                         jffs2_garbage_collect_pristine(c, NULL, raw);
265                 } else {
266                         /* Just mark it obsolete */
267                         jffs2_mark_node_obsolete(c, raw);
268                 }
269                 up(&c->alloc_sem);
270                 goto eraseit_lock;
271         }
272
273         ic = jffs2_raw_ref_to_ic(raw);
274
275 #ifdef CONFIG_JFFS2_FS_XATTR
276         /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
277          * We can decide whether this node is inode or xattr by ic->class.     */
278         if (ic->class == RAWNODE_CLASS_XATTR_DATUM
279             || ic->class == RAWNODE_CLASS_XATTR_REF) {
280                 spin_unlock(&c->erase_completion_lock);
281
282                 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
283                         ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
284                 } else {
285                         ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
286                 }
287                 goto test_gcnode;
288         }
289 #endif
290
291         /* We need to hold the inocache. Either the erase_completion_lock or
292            the inocache_lock are sufficient; we trade down since the inocache_lock
293            causes less contention. */
294         spin_lock(&c->inocache_lock);
295
296         spin_unlock(&c->erase_completion_lock);
297
298         D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
299
300         /* Three possibilities:
301            1. Inode is already in-core. We must iget it and do proper
302               updating to its fragtree, etc.
303            2. Inode is not in-core, node is REF_PRISTINE. We lock the
304               inocache to prevent a read_inode(), copy the node intact.
305            3. Inode is not in-core, node is not pristine. We must iget()
306               and take the slow path.
307         */
308
309         switch(ic->state) {
310         case INO_STATE_CHECKEDABSENT:
311                 /* It's been checked, but it's not currently in-core.
312                    We can just copy any pristine nodes, but have
313                    to prevent anyone else from doing read_inode() while
314                    we're at it, so we set the state accordingly */
315                 if (ref_flags(raw) == REF_PRISTINE)
316                         ic->state = INO_STATE_GC;
317                 else {
318                         D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
319                                   ic->ino));
320                 }
321                 break;
322
323         case INO_STATE_PRESENT:
324                 /* It's in-core. GC must iget() it. */
325                 break;
326
327         case INO_STATE_UNCHECKED:
328         case INO_STATE_CHECKING:
329         case INO_STATE_GC:
330                 /* Should never happen. We should have finished checking
331                    by the time we actually start doing any GC, and since
332                    we're holding the alloc_sem, no other garbage collection
333                    can happen.
334                 */
335                 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
336                        ic->ino, ic->state);
337                 up(&c->alloc_sem);
338                 spin_unlock(&c->inocache_lock);
339                 BUG();
340
341         case INO_STATE_READING:
342                 /* Someone's currently trying to read it. We must wait for
343                    them to finish and then go through the full iget() route
344                    to do the GC. However, sometimes read_inode() needs to get
345                    the alloc_sem() (for marking nodes invalid) so we must
346                    drop the alloc_sem before sleeping. */
347
348                 up(&c->alloc_sem);
349                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
350                           ic->ino, ic->state));
351                 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
352                 /* And because we dropped the alloc_sem we must start again from the
353                    beginning. Ponder chance of livelock here -- we're returning success
354                    without actually making any progress.
355
356                    Q: What are the chances that the inode is back in INO_STATE_READING
357                    again by the time we next enter this function? And that this happens
358                    enough times to cause a real delay?
359
360                    A: Small enough that I don't care :)
361                 */
362                 return 0;
363         }
364
365         /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
366            node intact, and we don't have to muck about with the fragtree etc.
367            because we know it's not in-core. If it _was_ in-core, we go through
368            all the iget() crap anyway */
369
370         if (ic->state == INO_STATE_GC) {
371                 spin_unlock(&c->inocache_lock);
372
373                 ret = jffs2_garbage_collect_pristine(c, ic, raw);
374
375                 spin_lock(&c->inocache_lock);
376                 ic->state = INO_STATE_CHECKEDABSENT;
377                 wake_up(&c->inocache_wq);
378
379                 if (ret != -EBADFD) {
380                         spin_unlock(&c->inocache_lock);
381                         goto test_gcnode;
382                 }
383
384                 /* Fall through if it wanted us to, with inocache_lock held */
385         }
386
387         /* Prevent the fairly unlikely race where the gcblock is
388            entirely obsoleted by the final close of a file which had
389            the only valid nodes in the block, followed by erasure,
390            followed by freeing of the ic because the erased block(s)
391            held _all_ the nodes of that inode.... never been seen but
392            it's vaguely possible. */
393
394         inum = ic->ino;
395         nlink = ic->nlink;
396         spin_unlock(&c->inocache_lock);
397
398         f = jffs2_gc_fetch_inode(c, inum, nlink);
399         if (IS_ERR(f)) {
400                 ret = PTR_ERR(f);
401                 goto release_sem;
402         }
403         if (!f) {
404                 ret = 0;
405                 goto release_sem;
406         }
407
408         ret = jffs2_garbage_collect_live(c, jeb, raw, f);
409
410         jffs2_gc_release_inode(c, f);
411
412  test_gcnode:
413         if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
414                 /* Eep. This really should never happen. GC is broken */
415                 printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
416                 ret = -ENOSPC;
417         } else if (ref_offset(jeb->gc_node) == 0x1c616bdc)
418                 printk(KERN_ERR "Wheee. Correctly GC'd node at %08x\n", ref_offset(jeb->gc_node));
419
420  release_sem:
421         up(&c->alloc_sem);
422
423  eraseit_lock:
424         /* If we've finished this block, start it erasing */
425         spin_lock(&c->erase_completion_lock);
426
427  eraseit:
428         if (c->gcblock && !c->gcblock->used_size) {
429                 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
430                 /* We're GC'ing an empty block? */
431                 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
432                 c->gcblock = NULL;
433                 c->nr_erasing_blocks++;
434                 jffs2_erase_pending_trigger(c);
435         }
436         spin_unlock(&c->erase_completion_lock);
437
438         return ret;
439 }
440
441 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
442                                       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
443 {
444         struct jffs2_node_frag *frag;
445         struct jffs2_full_dnode *fn = NULL;
446         struct jffs2_full_dirent *fd;
447         uint32_t start = 0, end = 0, nrfrags = 0;
448         int ret = 0;
449
450         down(&f->sem);
451
452         /* Now we have the lock for this inode. Check that it's still the one at the head
453            of the list. */
454
455         spin_lock(&c->erase_completion_lock);
456
457         if (c->gcblock != jeb) {
458                 spin_unlock(&c->erase_completion_lock);
459                 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
460                 goto upnout;
461         }
462         if (ref_obsolete(raw)) {
463                 spin_unlock(&c->erase_completion_lock);
464                 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
465                 /* They'll call again */
466                 goto upnout;
467         }
468         spin_unlock(&c->erase_completion_lock);
469
470         /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
471         if (f->metadata && f->metadata->raw == raw) {
472                 fn = f->metadata;
473                 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
474                 goto upnout;
475         }
476
477         /* FIXME. Read node and do lookup? */
478         for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
479                 if (frag->node && frag->node->raw == raw) {
480                         fn = frag->node;
481                         end = frag->ofs + frag->size;
482                         if (!nrfrags++)
483                                 start = frag->ofs;
484                         if (nrfrags == frag->node->frags)
485                                 break; /* We've found them all */
486                 }
487         }
488         if (fn) {
489                 if (ref_flags(raw) == REF_PRISTINE) {
490                         ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
491                         if (!ret) {
492                                 /* Urgh. Return it sensibly. */
493                                 frag->node->raw = f->inocache->nodes;
494                         }
495                         if (ret != -EBADFD)
496                                 goto upnout;
497                 }
498                 /* We found a datanode. Do the GC */
499                 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
500                         /* It crosses a page boundary. Therefore, it must be a hole. */
501                         ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
502                 } else {
503                         /* It could still be a hole. But we GC the page this way anyway */
504                         ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
505                 }
506                 goto upnout;
507         }
508
509         /* Wasn't a dnode. Try dirent */
510         for (fd = f->dents; fd; fd=fd->next) {
511                 if (fd->raw == raw)
512                         break;
513         }
514
515         if (fd && fd->ino) {
516                 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
517         } else if (fd) {
518                 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
519         } else {
520                 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
521                        ref_offset(raw), f->inocache->ino);
522                 if (ref_obsolete(raw)) {
523                         printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
524                 } else {
525                         jffs2_dbg_dump_node(c, ref_offset(raw));
526                         BUG();
527                 }
528         }
529  upnout:
530         up(&f->sem);
531
532         return ret;
533 }
534
535 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
536                                           struct jffs2_inode_cache *ic,
537                                           struct jffs2_raw_node_ref *raw)
538 {
539         union jffs2_node_union *node;
540         size_t retlen;
541         int ret;
542         uint32_t phys_ofs, alloclen;
543         uint32_t crc, rawlen;
544         int retried = 0;
545
546         D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
547
548         alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
549
550         /* Ask for a small amount of space (or the totlen if smaller) because we
551            don't want to force wastage of the end of a block if splitting would
552            work. */
553         if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
554                 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
555
556         ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
557         /* 'rawlen' is not the exact summary size; it is only an upper estimation */
558
559         if (ret)
560                 return ret;
561
562         if (alloclen < rawlen) {
563                 /* Doesn't fit untouched. We'll go the old route and split it */
564                 return -EBADFD;
565         }
566
567         node = kmalloc(rawlen, GFP_KERNEL);
568         if (!node)
569                 return -ENOMEM;
570
571         ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
572         if (!ret && retlen != rawlen)
573                 ret = -EIO;
574         if (ret)
575                 goto out_node;
576
577         crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
578         if (je32_to_cpu(node->u.hdr_crc) != crc) {
579                 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
580                        ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
581                 goto bail;
582         }
583
584         switch(je16_to_cpu(node->u.nodetype)) {
585         case JFFS2_NODETYPE_INODE:
586                 crc = crc32(0, node, sizeof(node->i)-8);
587                 if (je32_to_cpu(node->i.node_crc) != crc) {
588                         printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
589                                ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
590                         goto bail;
591                 }
592
593                 if (je32_to_cpu(node->i.dsize)) {
594                         crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
595                         if (je32_to_cpu(node->i.data_crc) != crc) {
596                                 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
597                                        ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
598                                 goto bail;
599                         }
600                 }
601                 break;
602
603         case JFFS2_NODETYPE_DIRENT:
604                 crc = crc32(0, node, sizeof(node->d)-8);
605                 if (je32_to_cpu(node->d.node_crc) != crc) {
606                         printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
607                                ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
608                         goto bail;
609                 }
610
611                 if (node->d.nsize) {
612                         crc = crc32(0, node->d.name, node->d.nsize);
613                         if (je32_to_cpu(node->d.name_crc) != crc) {
614                                 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
615                                        ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
616                                 goto bail;
617                         }
618                 }
619                 break;
620         default:
621                 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
622                 if (ic) {
623                         printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
624                                ref_offset(raw), je16_to_cpu(node->u.nodetype));
625                         goto bail;
626                 }
627         }
628
629         /* OK, all the CRCs are good; this node can just be copied as-is. */
630  retry:
631         phys_ofs = write_ofs(c);
632
633         ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
634
635         if (ret || (retlen != rawlen)) {
636                 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
637                        rawlen, phys_ofs, ret, retlen);
638                 if (retlen) {
639                         jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
640                 } else {
641                         printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
642                 }
643                 if (!retried) {
644                         /* Try to reallocate space and retry */
645                         uint32_t dummy;
646                         struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
647
648                         retried = 1;
649
650                         D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
651
652                         jffs2_dbg_acct_sanity_check(c,jeb);
653                         jffs2_dbg_acct_paranoia_check(c, jeb);
654
655                         ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
656                                                 /* this is not the exact summary size of it,
657                                                         it is only an upper estimation */
658
659                         if (!ret) {
660                                 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
661
662                                 jffs2_dbg_acct_sanity_check(c,jeb);
663                                 jffs2_dbg_acct_paranoia_check(c, jeb);
664
665                                 goto retry;
666                         }
667                         D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
668                 }
669
670                 if (!ret)
671                         ret = -EIO;
672                 goto out_node;
673         }
674         jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
675
676         jffs2_mark_node_obsolete(c, raw);
677         D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
678
679  out_node:
680         kfree(node);
681         return ret;
682  bail:
683         ret = -EBADFD;
684         goto out_node;
685 }
686
687 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
688                                         struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
689 {
690         struct jffs2_full_dnode *new_fn;
691         struct jffs2_raw_inode ri;
692         struct jffs2_node_frag *last_frag;
693         union jffs2_device_node dev;
694         char *mdata = NULL, mdatalen = 0;
695         uint32_t alloclen, ilen;
696         int ret;
697
698         if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
699             S_ISCHR(JFFS2_F_I_MODE(f)) ) {
700                 /* For these, we don't actually need to read the old node */
701                 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
702                 mdata = (char *)&dev;
703                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
704         } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
705                 mdatalen = fn->size;
706                 mdata = kmalloc(fn->size, GFP_KERNEL);
707                 if (!mdata) {
708                         printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
709                         return -ENOMEM;
710                 }
711                 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
712                 if (ret) {
713                         printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
714                         kfree(mdata);
715                         return ret;
716                 }
717                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
718
719         }
720
721         ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
722                                 JFFS2_SUMMARY_INODE_SIZE);
723         if (ret) {
724                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
725                        sizeof(ri)+ mdatalen, ret);
726                 goto out;
727         }
728
729         last_frag = frag_last(&f->fragtree);
730         if (last_frag)
731                 /* Fetch the inode length from the fragtree rather then
732                  * from i_size since i_size may have not been updated yet */
733                 ilen = last_frag->ofs + last_frag->size;
734         else
735                 ilen = JFFS2_F_I_SIZE(f);
736
737         memset(&ri, 0, sizeof(ri));
738         ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
739         ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
740         ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
741         ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
742
743         ri.ino = cpu_to_je32(f->inocache->ino);
744         ri.version = cpu_to_je32(++f->highest_version);
745         ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
746         ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
747         ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
748         ri.isize = cpu_to_je32(ilen);
749         ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
750         ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
751         ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
752         ri.offset = cpu_to_je32(0);
753         ri.csize = cpu_to_je32(mdatalen);
754         ri.dsize = cpu_to_je32(mdatalen);
755         ri.compr = JFFS2_COMPR_NONE;
756         ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
757         ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
758
759         new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
760
761         if (IS_ERR(new_fn)) {
762                 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
763                 ret = PTR_ERR(new_fn);
764                 goto out;
765         }
766         jffs2_mark_node_obsolete(c, fn->raw);
767         jffs2_free_full_dnode(fn);
768         f->metadata = new_fn;
769  out:
770         if (S_ISLNK(JFFS2_F_I_MODE(f)))
771                 kfree(mdata);
772         return ret;
773 }
774
775 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
776                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
777 {
778         struct jffs2_full_dirent *new_fd;
779         struct jffs2_raw_dirent rd;
780         uint32_t alloclen;
781         int ret;
782
783         rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
784         rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
785         rd.nsize = strlen(fd->name);
786         rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
787         rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
788
789         rd.pino = cpu_to_je32(f->inocache->ino);
790         rd.version = cpu_to_je32(++f->highest_version);
791         rd.ino = cpu_to_je32(fd->ino);
792         /* If the times on this inode were set by explicit utime() they can be different,
793            so refrain from splatting them. */
794         if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
795                 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
796         else
797                 rd.mctime = cpu_to_je32(0);
798         rd.type = fd->type;
799         rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
800         rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
801
802         ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
803                                 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
804         if (ret) {
805                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
806                        sizeof(rd)+rd.nsize, ret);
807                 return ret;
808         }
809         new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
810
811         if (IS_ERR(new_fd)) {
812                 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
813                 return PTR_ERR(new_fd);
814         }
815         jffs2_add_fd_to_list(c, new_fd, &f->dents);
816         return 0;
817 }
818
819 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
820                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
821 {
822         struct jffs2_full_dirent **fdp = &f->dents;
823         int found = 0;
824
825         /* On a medium where we can't actually mark nodes obsolete
826            pernamently, such as NAND flash, we need to work out
827            whether this deletion dirent is still needed to actively
828            delete a 'real' dirent with the same name that's still
829            somewhere else on the flash. */
830         if (!jffs2_can_mark_obsolete(c)) {
831                 struct jffs2_raw_dirent *rd;
832                 struct jffs2_raw_node_ref *raw;
833                 int ret;
834                 size_t retlen;
835                 int name_len = strlen(fd->name);
836                 uint32_t name_crc = crc32(0, fd->name, name_len);
837                 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
838
839                 rd = kmalloc(rawlen, GFP_KERNEL);
840                 if (!rd)
841                         return -ENOMEM;
842
843                 /* Prevent the erase code from nicking the obsolete node refs while
844                    we're looking at them. I really don't like this extra lock but
845                    can't see any alternative. Suggestions on a postcard to... */
846                 down(&c->erase_free_sem);
847
848                 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
849
850                         cond_resched();
851
852                         /* We only care about obsolete ones */
853                         if (!(ref_obsolete(raw)))
854                                 continue;
855
856                         /* Any dirent with the same name is going to have the same length... */
857                         if (ref_totlen(c, NULL, raw) != rawlen)
858                                 continue;
859
860                         /* Doesn't matter if there's one in the same erase block. We're going to
861                            delete it too at the same time. */
862                         if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
863                                 continue;
864
865                         D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
866
867                         /* This is an obsolete node belonging to the same directory, and it's of the right
868                            length. We need to take a closer look...*/
869                         ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
870                         if (ret) {
871                                 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
872                                 /* If we can't read it, we don't need to continue to obsolete it. Continue */
873                                 continue;
874                         }
875                         if (retlen != rawlen) {
876                                 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
877                                        retlen, rawlen, ref_offset(raw));
878                                 continue;
879                         }
880
881                         if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
882                                 continue;
883
884                         /* If the name CRC doesn't match, skip */
885                         if (je32_to_cpu(rd->name_crc) != name_crc)
886                                 continue;
887
888                         /* If the name length doesn't match, or it's another deletion dirent, skip */
889                         if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
890                                 continue;
891
892                         /* OK, check the actual name now */
893                         if (memcmp(rd->name, fd->name, name_len))
894                                 continue;
895
896                         /* OK. The name really does match. There really is still an older node on
897                            the flash which our deletion dirent obsoletes. So we have to write out
898                            a new deletion dirent to replace it */
899                         up(&c->erase_free_sem);
900
901                         D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
902                                   ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
903                         kfree(rd);
904
905                         return jffs2_garbage_collect_dirent(c, jeb, f, fd);
906                 }
907
908                 up(&c->erase_free_sem);
909                 kfree(rd);
910         }
911
912         /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
913            we should update the metadata node with those times accordingly */
914
915         /* No need for it any more. Just mark it obsolete and remove it from the list */
916         while (*fdp) {
917                 if ((*fdp) == fd) {
918                         found = 1;
919                         *fdp = fd->next;
920                         break;
921                 }
922                 fdp = &(*fdp)->next;
923         }
924         if (!found) {
925                 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
926         }
927         jffs2_mark_node_obsolete(c, fd->raw);
928         jffs2_free_full_dirent(fd);
929         return 0;
930 }
931
932 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
933                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
934                                       uint32_t start, uint32_t end)
935 {
936         struct jffs2_raw_inode ri;
937         struct jffs2_node_frag *frag;
938         struct jffs2_full_dnode *new_fn;
939         uint32_t alloclen, ilen;
940         int ret;
941
942         D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
943                   f->inocache->ino, start, end));
944
945         memset(&ri, 0, sizeof(ri));
946
947         if(fn->frags > 1) {
948                 size_t readlen;
949                 uint32_t crc;
950                 /* It's partially obsoleted by a later write. So we have to
951                    write it out again with the _same_ version as before */
952                 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
953                 if (readlen != sizeof(ri) || ret) {
954                         printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
955                         goto fill;
956                 }
957                 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
958                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
959                                ref_offset(fn->raw),
960                                je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
961                         return -EIO;
962                 }
963                 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
964                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
965                                ref_offset(fn->raw),
966                                je32_to_cpu(ri.totlen), sizeof(ri));
967                         return -EIO;
968                 }
969                 crc = crc32(0, &ri, sizeof(ri)-8);
970                 if (crc != je32_to_cpu(ri.node_crc)) {
971                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
972                                ref_offset(fn->raw),
973                                je32_to_cpu(ri.node_crc), crc);
974                         /* FIXME: We could possibly deal with this by writing new holes for each frag */
975                         printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
976                                start, end, f->inocache->ino);
977                         goto fill;
978                 }
979                 if (ri.compr != JFFS2_COMPR_ZERO) {
980                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
981                         printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
982                                start, end, f->inocache->ino);
983                         goto fill;
984                 }
985         } else {
986         fill:
987                 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
988                 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
989                 ri.totlen = cpu_to_je32(sizeof(ri));
990                 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
991
992                 ri.ino = cpu_to_je32(f->inocache->ino);
993                 ri.version = cpu_to_je32(++f->highest_version);
994                 ri.offset = cpu_to_je32(start);
995                 ri.dsize = cpu_to_je32(end - start);
996                 ri.csize = cpu_to_je32(0);
997                 ri.compr = JFFS2_COMPR_ZERO;
998         }
999
1000         frag = frag_last(&f->fragtree);
1001         if (frag)
1002                 /* Fetch the inode length from the fragtree rather then
1003                  * from i_size since i_size may have not been updated yet */
1004                 ilen = frag->ofs + frag->size;
1005         else
1006                 ilen = JFFS2_F_I_SIZE(f);
1007
1008         ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1009         ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1010         ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1011         ri.isize = cpu_to_je32(ilen);
1012         ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1013         ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1014         ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1015         ri.data_crc = cpu_to_je32(0);
1016         ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1017
1018         ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1019                                      JFFS2_SUMMARY_INODE_SIZE);
1020         if (ret) {
1021                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1022                        sizeof(ri), ret);
1023                 return ret;
1024         }
1025         new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1026
1027         if (IS_ERR(new_fn)) {
1028                 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1029                 return PTR_ERR(new_fn);
1030         }
1031         if (je32_to_cpu(ri.version) == f->highest_version) {
1032                 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1033                 if (f->metadata) {
1034                         jffs2_mark_node_obsolete(c, f->metadata->raw);
1035                         jffs2_free_full_dnode(f->metadata);
1036                         f->metadata = NULL;
1037                 }
1038                 return 0;
1039         }
1040
1041         /*
1042          * We should only get here in the case where the node we are
1043          * replacing had more than one frag, so we kept the same version
1044          * number as before. (Except in case of error -- see 'goto fill;'
1045          * above.)
1046          */
1047         D1(if(unlikely(fn->frags <= 1)) {
1048                 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1049                        fn->frags, je32_to_cpu(ri.version), f->highest_version,
1050                        je32_to_cpu(ri.ino));
1051         });
1052
1053         /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1054         mark_ref_normal(new_fn->raw);
1055
1056         for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1057              frag; frag = frag_next(frag)) {
1058                 if (frag->ofs > fn->size + fn->ofs)
1059                         break;
1060                 if (frag->node == fn) {
1061                         frag->node = new_fn;
1062                         new_fn->frags++;
1063                         fn->frags--;
1064                 }
1065         }
1066         if (fn->frags) {
1067                 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1068                 BUG();
1069         }
1070         if (!new_fn->frags) {
1071                 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1072                 BUG();
1073         }
1074
1075         jffs2_mark_node_obsolete(c, fn->raw);
1076         jffs2_free_full_dnode(fn);
1077
1078         return 0;
1079 }
1080
1081 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1082                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1083                                        uint32_t start, uint32_t end)
1084 {
1085         struct jffs2_full_dnode *new_fn;
1086         struct jffs2_raw_inode ri;
1087         uint32_t alloclen, offset, orig_end, orig_start;
1088         int ret = 0;
1089         unsigned char *comprbuf = NULL, *writebuf;
1090         unsigned long pg;
1091         unsigned char *pg_ptr;
1092
1093         memset(&ri, 0, sizeof(ri));
1094
1095         D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1096                   f->inocache->ino, start, end));
1097
1098         orig_end = end;
1099         orig_start = start;
1100
1101         if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1102                 /* Attempt to do some merging. But only expand to cover logically
1103                    adjacent frags if the block containing them is already considered
1104                    to be dirty. Otherwise we end up with GC just going round in
1105                    circles dirtying the nodes it already wrote out, especially
1106                    on NAND where we have small eraseblocks and hence a much higher
1107                    chance of nodes having to be split to cross boundaries. */
1108
1109                 struct jffs2_node_frag *frag;
1110                 uint32_t min, max;
1111
1112                 min = start & ~(PAGE_CACHE_SIZE-1);
1113                 max = min + PAGE_CACHE_SIZE;
1114
1115                 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1116
1117                 /* BUG_ON(!frag) but that'll happen anyway... */
1118
1119                 BUG_ON(frag->ofs != start);
1120
1121                 /* First grow down... */
1122                 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1123
1124                         /* If the previous frag doesn't even reach the beginning, there's
1125                            excessive fragmentation. Just merge. */
1126                         if (frag->ofs > min) {
1127                                 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1128                                           frag->ofs, frag->ofs+frag->size));
1129                                 start = frag->ofs;
1130                                 continue;
1131                         }
1132                         /* OK. This frag holds the first byte of the page. */
1133                         if (!frag->node || !frag->node->raw) {
1134                                 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1135                                           frag->ofs, frag->ofs+frag->size));
1136                                 break;
1137                         } else {
1138
1139                                 /* OK, it's a frag which extends to the beginning of the page. Does it live
1140                                    in a block which is still considered clean? If so, don't obsolete it.
1141                                    If not, cover it anyway. */
1142
1143                                 struct jffs2_raw_node_ref *raw = frag->node->raw;
1144                                 struct jffs2_eraseblock *jeb;
1145
1146                                 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1147
1148                                 if (jeb == c->gcblock) {
1149                                         D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1150                                                   frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1151                                         start = frag->ofs;
1152                                         break;
1153                                 }
1154                                 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1155                                         D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1156                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1157                                         break;
1158                                 }
1159
1160                                 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1161                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1162                                 start = frag->ofs;
1163                                 break;
1164                         }
1165                 }
1166
1167                 /* ... then up */
1168
1169                 /* Find last frag which is actually part of the node we're to GC. */
1170                 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1171
1172                 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1173
1174                         /* If the previous frag doesn't even reach the beginning, there's lots
1175                            of fragmentation. Just merge. */
1176                         if (frag->ofs+frag->size < max) {
1177                                 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1178                                           frag->ofs, frag->ofs+frag->size));
1179                                 end = frag->ofs + frag->size;
1180                                 continue;
1181                         }
1182
1183                         if (!frag->node || !frag->node->raw) {
1184                                 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1185                                           frag->ofs, frag->ofs+frag->size));
1186                                 break;
1187                         } else {
1188
1189                                 /* OK, it's a frag which extends to the beginning of the page. Does it live
1190                                    in a block which is still considered clean? If so, don't obsolete it.
1191                                    If not, cover it anyway. */
1192
1193                                 struct jffs2_raw_node_ref *raw = frag->node->raw;
1194                                 struct jffs2_eraseblock *jeb;
1195
1196                                 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1197
1198                                 if (jeb == c->gcblock) {
1199                                         D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1200                                                   frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1201                                         end = frag->ofs + frag->size;
1202                                         break;
1203                                 }
1204                                 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1205                                         D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1206                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1207                                         break;
1208                                 }
1209
1210                                 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1211                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1212                                 end = frag->ofs + frag->size;
1213                                 break;
1214                         }
1215                 }
1216                 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1217                           orig_start, orig_end, start, end));
1218
1219                 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1220                 BUG_ON(end < orig_end);
1221                 BUG_ON(start > orig_start);
1222         }
1223
1224         /* First, use readpage() to read the appropriate page into the page cache */
1225         /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1226          *    triggered garbage collection in the first place?
1227          * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1228          *    page OK. We'll actually write it out again in commit_write, which is a little
1229          *    suboptimal, but at least we're correct.
1230          */
1231         pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1232
1233         if (IS_ERR(pg_ptr)) {
1234                 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1235                 return PTR_ERR(pg_ptr);
1236         }
1237
1238         offset = start;
1239         while(offset < orig_end) {
1240                 uint32_t datalen;
1241                 uint32_t cdatalen;
1242                 uint16_t comprtype = JFFS2_COMPR_NONE;
1243
1244                 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1245                                         &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1246
1247                 if (ret) {
1248                         printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1249                                sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1250                         break;
1251                 }
1252                 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1253                 datalen = end - offset;
1254
1255                 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1256
1257                 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1258
1259                 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1260                 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1261                 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1262                 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1263
1264                 ri.ino = cpu_to_je32(f->inocache->ino);
1265                 ri.version = cpu_to_je32(++f->highest_version);
1266                 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1267                 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1268                 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1269                 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1270                 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1271                 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1272                 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1273                 ri.offset = cpu_to_je32(offset);
1274                 ri.csize = cpu_to_je32(cdatalen);
1275                 ri.dsize = cpu_to_je32(datalen);
1276                 ri.compr = comprtype & 0xff;
1277                 ri.usercompr = (comprtype >> 8) & 0xff;
1278                 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1279                 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1280
1281                 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1282
1283                 jffs2_free_comprbuf(comprbuf, writebuf);
1284
1285                 if (IS_ERR(new_fn)) {
1286                         printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1287                         ret = PTR_ERR(new_fn);
1288                         break;
1289                 }
1290                 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1291                 offset += datalen;
1292                 if (f->metadata) {
1293                         jffs2_mark_node_obsolete(c, f->metadata->raw);
1294                         jffs2_free_full_dnode(f->metadata);
1295                         f->metadata = NULL;
1296                 }
1297         }
1298
1299         jffs2_gc_release_page(c, pg_ptr, &pg);
1300         return ret;
1301 }