2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
69 BUFFER_TRACE(bh, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
96 ext4_abort(inode->i_sb, __FUNCTION__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode *inode)
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
121 /* But we need to bound the transaction so we don't overflow the
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t *start_transaction(struct inode *inode)
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode * inode)
184 truncate_inode_pages(&inode->i_data, 0);
186 if (is_bad_inode(inode))
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
196 ext4_orphan_del(NULL, inode);
204 ext4_truncate(inode);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
231 clear_inode(inode); /* We must guarantee clearing of inode... */
237 struct buffer_head *bh;
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 p->key = *(p->p = v);
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
277 static int ext4_block_to_path(struct inode *inode,
279 ext4_lblk_t offsets[4], int *boundary)
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
316 *boundary = final - 1 - (i_block & (ptrs - 1));
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
354 struct super_block *sb = inode->i_sb;
356 struct buffer_head *bh;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
364 bh = sb_bread(sb, le32_to_cpu(p->key));
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
381 * ext4_find_near - find a place for allocation with sufficient locality
383 * @ind: descriptor of indirect block.
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
411 return le32_to_cpu(*p);
414 /* No such thing, so let's try location of indirect block */
416 return ind->bh->b_blocknr;
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423 colour = (current->pid % 16) *
424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 return bg_start + colour;
429 * ext4_find_goal - find a prefered place for allocation.
431 * @block: block we want
432 * @partial: pointer to the last triple within a chain
434 * Normally this function find the prefered place for block allocation,
437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
440 struct ext4_block_alloc_info *block_i;
442 block_i = EXT4_I(inode)->i_block_alloc_info;
445 * try the heuristic for sequential allocation,
446 * failing that at least try to get decent locality.
448 if (block_i && (block == block_i->last_alloc_logical_block + 1)
449 && (block_i->last_alloc_physical_block != 0)) {
450 return block_i->last_alloc_physical_block + 1;
453 return ext4_find_near(inode, partial);
457 * ext4_blks_to_allocate: Look up the block map and count the number
458 * of direct blocks need to be allocated for the given branch.
460 * @branch: chain of indirect blocks
461 * @k: number of blocks need for indirect blocks
462 * @blks: number of data blocks to be mapped.
463 * @blocks_to_boundary: the offset in the indirect block
465 * return the total number of blocks to be allocate, including the
466 * direct and indirect blocks.
468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469 int blocks_to_boundary)
471 unsigned long count = 0;
474 * Simple case, [t,d]Indirect block(s) has not allocated yet
475 * then it's clear blocks on that path have not allocated
478 /* right now we don't handle cross boundary allocation */
479 if (blks < blocks_to_boundary + 1)
482 count += blocks_to_boundary + 1;
487 while (count < blks && count <= blocks_to_boundary &&
488 le32_to_cpu(*(branch[0].p + count)) == 0) {
495 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
496 * @indirect_blks: the number of blocks need to allocate for indirect
499 * @new_blocks: on return it will store the new block numbers for
500 * the indirect blocks(if needed) and the first direct block,
501 * @blks: on return it will store the total number of allocated
504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505 ext4_fsblk_t goal, int indirect_blks, int blks,
506 ext4_fsblk_t new_blocks[4], int *err)
509 unsigned long count = 0;
511 ext4_fsblk_t current_block = 0;
515 * Here we try to allocate the requested multiple blocks at once,
516 * on a best-effort basis.
517 * To build a branch, we should allocate blocks for
518 * the indirect blocks(if not allocated yet), and at least
519 * the first direct block of this branch. That's the
520 * minimum number of blocks need to allocate(required)
522 target = blks + indirect_blks;
526 /* allocating blocks for indirect blocks and direct blocks */
527 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
532 /* allocate blocks for indirect blocks */
533 while (index < indirect_blks && count) {
534 new_blocks[index++] = current_block++;
542 /* save the new block number for the first direct block */
543 new_blocks[index] = current_block;
545 /* total number of blocks allocated for direct blocks */
550 for (i = 0; i <index; i++)
551 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
556 * ext4_alloc_branch - allocate and set up a chain of blocks.
558 * @indirect_blks: number of allocated indirect blocks
559 * @blks: number of allocated direct blocks
560 * @offsets: offsets (in the blocks) to store the pointers to next.
561 * @branch: place to store the chain in.
563 * This function allocates blocks, zeroes out all but the last one,
564 * links them into chain and (if we are synchronous) writes them to disk.
565 * In other words, it prepares a branch that can be spliced onto the
566 * inode. It stores the information about that chain in the branch[], in
567 * the same format as ext4_get_branch() would do. We are calling it after
568 * we had read the existing part of chain and partial points to the last
569 * triple of that (one with zero ->key). Upon the exit we have the same
570 * picture as after the successful ext4_get_block(), except that in one
571 * place chain is disconnected - *branch->p is still zero (we did not
572 * set the last link), but branch->key contains the number that should
573 * be placed into *branch->p to fill that gap.
575 * If allocation fails we free all blocks we've allocated (and forget
576 * their buffer_heads) and return the error value the from failed
577 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578 * as described above and return 0.
580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581 int indirect_blks, int *blks, ext4_fsblk_t goal,
582 ext4_lblk_t *offsets, Indirect *branch)
584 int blocksize = inode->i_sb->s_blocksize;
587 struct buffer_head *bh;
589 ext4_fsblk_t new_blocks[4];
590 ext4_fsblk_t current_block;
592 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593 *blks, new_blocks, &err);
597 branch[0].key = cpu_to_le32(new_blocks[0]);
599 * metadata blocks and data blocks are allocated.
601 for (n = 1; n <= indirect_blks; n++) {
603 * Get buffer_head for parent block, zero it out
604 * and set the pointer to new one, then send
607 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
610 BUFFER_TRACE(bh, "call get_create_access");
611 err = ext4_journal_get_create_access(handle, bh);
618 memset(bh->b_data, 0, blocksize);
619 branch[n].p = (__le32 *) bh->b_data + offsets[n];
620 branch[n].key = cpu_to_le32(new_blocks[n]);
621 *branch[n].p = branch[n].key;
622 if ( n == indirect_blks) {
623 current_block = new_blocks[n];
625 * End of chain, update the last new metablock of
626 * the chain to point to the new allocated
627 * data blocks numbers
629 for (i=1; i < num; i++)
630 *(branch[n].p + i) = cpu_to_le32(++current_block);
632 BUFFER_TRACE(bh, "marking uptodate");
633 set_buffer_uptodate(bh);
636 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637 err = ext4_journal_dirty_metadata(handle, bh);
644 /* Allocation failed, free what we already allocated */
645 for (i = 1; i <= n ; i++) {
646 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647 ext4_journal_forget(handle, branch[i].bh);
649 for (i = 0; i <indirect_blks; i++)
650 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
652 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
658 * ext4_splice_branch - splice the allocated branch onto inode.
660 * @block: (logical) number of block we are adding
661 * @chain: chain of indirect blocks (with a missing link - see
663 * @where: location of missing link
664 * @num: number of indirect blocks we are adding
665 * @blks: number of direct blocks we are adding
667 * This function fills the missing link and does all housekeeping needed in
668 * inode (->i_blocks, etc.). In case of success we end up with the full
669 * chain to new block and return 0.
671 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
672 ext4_lblk_t block, Indirect *where, int num, int blks)
676 struct ext4_block_alloc_info *block_i;
677 ext4_fsblk_t current_block;
679 block_i = EXT4_I(inode)->i_block_alloc_info;
681 * If we're splicing into a [td]indirect block (as opposed to the
682 * inode) then we need to get write access to the [td]indirect block
686 BUFFER_TRACE(where->bh, "get_write_access");
687 err = ext4_journal_get_write_access(handle, where->bh);
693 *where->p = where->key;
696 * Update the host buffer_head or inode to point to more just allocated
697 * direct blocks blocks
699 if (num == 0 && blks > 1) {
700 current_block = le32_to_cpu(where->key) + 1;
701 for (i = 1; i < blks; i++)
702 *(where->p + i ) = cpu_to_le32(current_block++);
706 * update the most recently allocated logical & physical block
707 * in i_block_alloc_info, to assist find the proper goal block for next
711 block_i->last_alloc_logical_block = block + blks - 1;
712 block_i->last_alloc_physical_block =
713 le32_to_cpu(where[num].key) + blks - 1;
716 /* We are done with atomic stuff, now do the rest of housekeeping */
718 inode->i_ctime = ext4_current_time(inode);
719 ext4_mark_inode_dirty(handle, inode);
721 /* had we spliced it onto indirect block? */
724 * If we spliced it onto an indirect block, we haven't
725 * altered the inode. Note however that if it is being spliced
726 * onto an indirect block at the very end of the file (the
727 * file is growing) then we *will* alter the inode to reflect
728 * the new i_size. But that is not done here - it is done in
729 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
731 jbd_debug(5, "splicing indirect only\n");
732 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733 err = ext4_journal_dirty_metadata(handle, where->bh);
738 * OK, we spliced it into the inode itself on a direct block.
739 * Inode was dirtied above.
741 jbd_debug(5, "splicing direct\n");
746 for (i = 1; i <= num; i++) {
747 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748 ext4_journal_forget(handle, where[i].bh);
749 ext4_free_blocks(handle, inode,
750 le32_to_cpu(where[i-1].key), 1, 0);
752 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
758 * Allocation strategy is simple: if we have to allocate something, we will
759 * have to go the whole way to leaf. So let's do it before attaching anything
760 * to tree, set linkage between the newborn blocks, write them if sync is
761 * required, recheck the path, free and repeat if check fails, otherwise
762 * set the last missing link (that will protect us from any truncate-generated
763 * removals - all blocks on the path are immune now) and possibly force the
764 * write on the parent block.
765 * That has a nice additional property: no special recovery from the failed
766 * allocations is needed - we simply release blocks and do not touch anything
767 * reachable from inode.
769 * `handle' can be NULL if create == 0.
771 * The BKL may not be held on entry here. Be sure to take it early.
772 * return > 0, # of blocks mapped or allocated.
773 * return = 0, if plain lookup failed.
774 * return < 0, error case.
777 * Need to be called with
778 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
779 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
782 ext4_lblk_t iblock, unsigned long maxblocks,
783 struct buffer_head *bh_result,
784 int create, int extend_disksize)
787 ext4_lblk_t offsets[4];
792 int blocks_to_boundary = 0;
794 struct ext4_inode_info *ei = EXT4_I(inode);
796 ext4_fsblk_t first_block = 0;
799 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
800 J_ASSERT(handle != NULL || create == 0);
801 depth = ext4_block_to_path(inode, iblock, offsets,
802 &blocks_to_boundary);
807 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
809 /* Simplest case - block found, no allocation needed */
811 first_block = le32_to_cpu(chain[depth - 1].key);
812 clear_buffer_new(bh_result);
815 while (count < maxblocks && count <= blocks_to_boundary) {
818 blk = le32_to_cpu(*(chain[depth-1].p + count));
820 if (blk == first_block + count)
828 /* Next simple case - plain lookup or failed read of indirect block */
829 if (!create || err == -EIO)
833 * Okay, we need to do block allocation. Lazily initialize the block
834 * allocation info here if necessary
836 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
837 ext4_init_block_alloc_info(inode);
839 goal = ext4_find_goal(inode, iblock, partial);
841 /* the number of blocks need to allocate for [d,t]indirect blocks */
842 indirect_blks = (chain + depth) - partial - 1;
845 * Next look up the indirect map to count the totoal number of
846 * direct blocks to allocate for this branch.
848 count = ext4_blks_to_allocate(partial, indirect_blks,
849 maxblocks, blocks_to_boundary);
851 * Block out ext4_truncate while we alter the tree
853 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
854 offsets + (partial - chain), partial);
857 * The ext4_splice_branch call will free and forget any buffers
858 * on the new chain if there is a failure, but that risks using
859 * up transaction credits, especially for bitmaps where the
860 * credits cannot be returned. Can we handle this somehow? We
861 * may need to return -EAGAIN upwards in the worst case. --sct
864 err = ext4_splice_branch(handle, inode, iblock,
865 partial, indirect_blks, count);
867 * i_disksize growing is protected by i_data_sem. Don't forget to
868 * protect it if you're about to implement concurrent
869 * ext4_get_block() -bzzz
871 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
872 ei->i_disksize = inode->i_size;
876 set_buffer_new(bh_result);
878 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
879 if (count > blocks_to_boundary)
880 set_buffer_boundary(bh_result);
882 /* Clean up and exit */
883 partial = chain + depth - 1; /* the whole chain */
885 while (partial > chain) {
886 BUFFER_TRACE(partial->bh, "call brelse");
890 BUFFER_TRACE(bh_result, "returned");
895 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
897 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
898 unsigned long max_blocks, struct buffer_head *bh,
899 int create, int extend_disksize)
903 * Try to see if we can get the block without requesting
904 * for new file system block.
906 down_read((&EXT4_I(inode)->i_data_sem));
907 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
908 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
911 retval = ext4_get_blocks_handle(handle,
912 inode, block, max_blocks, bh, 0, 0);
914 up_read((&EXT4_I(inode)->i_data_sem));
915 if (!create || (retval > 0))
919 * We need to allocate new blocks which will result
922 down_write((&EXT4_I(inode)->i_data_sem));
924 * We need to check for EXT4 here because migrate
925 * could have changed the inode type in between
927 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
928 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
929 bh, create, extend_disksize);
931 retval = ext4_get_blocks_handle(handle, inode, block,
932 max_blocks, bh, create, extend_disksize);
934 up_write((&EXT4_I(inode)->i_data_sem));
938 static int ext4_get_block(struct inode *inode, sector_t iblock,
939 struct buffer_head *bh_result, int create)
941 handle_t *handle = ext4_journal_current_handle();
943 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
946 goto get_block; /* A read */
949 goto get_block; /* A single block get */
951 if (handle->h_transaction->t_state == T_LOCKED) {
953 * Huge direct-io writes can hold off commits for long
954 * periods of time. Let this commit run.
956 ext4_journal_stop(handle);
957 handle = ext4_journal_start(inode, DIO_CREDITS);
959 ret = PTR_ERR(handle);
963 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
965 * Getting low on buffer credits...
967 ret = ext4_journal_extend(handle, DIO_CREDITS);
970 * Couldn't extend the transaction. Start a new one.
972 ret = ext4_journal_restart(handle, DIO_CREDITS);
978 ret = ext4_get_blocks_wrap(handle, inode, iblock,
979 max_blocks, bh_result, create, 0);
981 bh_result->b_size = (ret << inode->i_blkbits);
989 * `handle' can be NULL if create is zero
991 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
992 ext4_lblk_t block, int create, int *errp)
994 struct buffer_head dummy;
997 J_ASSERT(handle != NULL || create == 0);
1000 dummy.b_blocknr = -1000;
1001 buffer_trace_init(&dummy.b_history);
1002 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1005 * ext4_get_blocks_handle() returns number of blocks
1006 * mapped. 0 in case of a HOLE.
1014 if (!err && buffer_mapped(&dummy)) {
1015 struct buffer_head *bh;
1016 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1021 if (buffer_new(&dummy)) {
1022 J_ASSERT(create != 0);
1023 J_ASSERT(handle != NULL);
1026 * Now that we do not always journal data, we should
1027 * keep in mind whether this should always journal the
1028 * new buffer as metadata. For now, regular file
1029 * writes use ext4_get_block instead, so it's not a
1033 BUFFER_TRACE(bh, "call get_create_access");
1034 fatal = ext4_journal_get_create_access(handle, bh);
1035 if (!fatal && !buffer_uptodate(bh)) {
1036 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1037 set_buffer_uptodate(bh);
1040 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1041 err = ext4_journal_dirty_metadata(handle, bh);
1045 BUFFER_TRACE(bh, "not a new buffer");
1058 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1059 ext4_lblk_t block, int create, int *err)
1061 struct buffer_head * bh;
1063 bh = ext4_getblk(handle, inode, block, create, err);
1066 if (buffer_uptodate(bh))
1068 ll_rw_block(READ_META, 1, &bh);
1070 if (buffer_uptodate(bh))
1077 static int walk_page_buffers( handle_t *handle,
1078 struct buffer_head *head,
1082 int (*fn)( handle_t *handle,
1083 struct buffer_head *bh))
1085 struct buffer_head *bh;
1086 unsigned block_start, block_end;
1087 unsigned blocksize = head->b_size;
1089 struct buffer_head *next;
1091 for ( bh = head, block_start = 0;
1092 ret == 0 && (bh != head || !block_start);
1093 block_start = block_end, bh = next)
1095 next = bh->b_this_page;
1096 block_end = block_start + blocksize;
1097 if (block_end <= from || block_start >= to) {
1098 if (partial && !buffer_uptodate(bh))
1102 err = (*fn)(handle, bh);
1110 * To preserve ordering, it is essential that the hole instantiation and
1111 * the data write be encapsulated in a single transaction. We cannot
1112 * close off a transaction and start a new one between the ext4_get_block()
1113 * and the commit_write(). So doing the jbd2_journal_start at the start of
1114 * prepare_write() is the right place.
1116 * Also, this function can nest inside ext4_writepage() ->
1117 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1118 * has generated enough buffer credits to do the whole page. So we won't
1119 * block on the journal in that case, which is good, because the caller may
1122 * By accident, ext4 can be reentered when a transaction is open via
1123 * quota file writes. If we were to commit the transaction while thus
1124 * reentered, there can be a deadlock - we would be holding a quota
1125 * lock, and the commit would never complete if another thread had a
1126 * transaction open and was blocking on the quota lock - a ranking
1129 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1130 * will _not_ run commit under these circumstances because handle->h_ref
1131 * is elevated. We'll still have enough credits for the tiny quotafile
1134 static int do_journal_get_write_access(handle_t *handle,
1135 struct buffer_head *bh)
1137 if (!buffer_mapped(bh) || buffer_freed(bh))
1139 return ext4_journal_get_write_access(handle, bh);
1142 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143 loff_t pos, unsigned len, unsigned flags,
1144 struct page **pagep, void **fsdata)
1146 struct inode *inode = mapping->host;
1147 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1154 index = pos >> PAGE_CACHE_SHIFT;
1155 from = pos & (PAGE_CACHE_SIZE - 1);
1159 page = __grab_cache_page(mapping, index);
1164 handle = ext4_journal_start(inode, needed_blocks);
1165 if (IS_ERR(handle)) {
1167 page_cache_release(page);
1168 ret = PTR_ERR(handle);
1172 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1175 if (!ret && ext4_should_journal_data(inode)) {
1176 ret = walk_page_buffers(handle, page_buffers(page),
1177 from, to, NULL, do_journal_get_write_access);
1181 ext4_journal_stop(handle);
1183 page_cache_release(page);
1186 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1192 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1194 int err = jbd2_journal_dirty_data(handle, bh);
1196 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1201 /* For write_end() in data=journal mode */
1202 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1204 if (!buffer_mapped(bh) || buffer_freed(bh))
1206 set_buffer_uptodate(bh);
1207 return ext4_journal_dirty_metadata(handle, bh);
1211 * Generic write_end handler for ordered and writeback ext4 journal modes.
1212 * We can't use generic_write_end, because that unlocks the page and we need to
1213 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1214 * after block_write_end.
1216 static int ext4_generic_write_end(struct file *file,
1217 struct address_space *mapping,
1218 loff_t pos, unsigned len, unsigned copied,
1219 struct page *page, void *fsdata)
1221 struct inode *inode = file->f_mapping->host;
1223 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1225 if (pos+copied > inode->i_size) {
1226 i_size_write(inode, pos+copied);
1227 mark_inode_dirty(inode);
1234 * We need to pick up the new inode size which generic_commit_write gave us
1235 * `file' can be NULL - eg, when called from page_symlink().
1237 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1238 * buffers are managed internally.
1240 static int ext4_ordered_write_end(struct file *file,
1241 struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned copied,
1243 struct page *page, void *fsdata)
1245 handle_t *handle = ext4_journal_current_handle();
1246 struct inode *inode = file->f_mapping->host;
1250 from = pos & (PAGE_CACHE_SIZE - 1);
1253 ret = walk_page_buffers(handle, page_buffers(page),
1254 from, to, NULL, ext4_journal_dirty_data);
1258 * generic_write_end() will run mark_inode_dirty() if i_size
1259 * changes. So let's piggyback the i_disksize mark_inode_dirty
1264 new_i_size = pos + copied;
1265 if (new_i_size > EXT4_I(inode)->i_disksize)
1266 EXT4_I(inode)->i_disksize = new_i_size;
1267 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1272 ret2 = ext4_journal_stop(handle);
1276 page_cache_release(page);
1278 return ret ? ret : copied;
1281 static int ext4_writeback_write_end(struct file *file,
1282 struct address_space *mapping,
1283 loff_t pos, unsigned len, unsigned copied,
1284 struct page *page, void *fsdata)
1286 handle_t *handle = ext4_journal_current_handle();
1287 struct inode *inode = file->f_mapping->host;
1291 new_i_size = pos + copied;
1292 if (new_i_size > EXT4_I(inode)->i_disksize)
1293 EXT4_I(inode)->i_disksize = new_i_size;
1295 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1300 ret2 = ext4_journal_stop(handle);
1304 page_cache_release(page);
1306 return ret ? ret : copied;
1309 static int ext4_journalled_write_end(struct file *file,
1310 struct address_space *mapping,
1311 loff_t pos, unsigned len, unsigned copied,
1312 struct page *page, void *fsdata)
1314 handle_t *handle = ext4_journal_current_handle();
1315 struct inode *inode = mapping->host;
1320 from = pos & (PAGE_CACHE_SIZE - 1);
1324 if (!PageUptodate(page))
1326 page_zero_new_buffers(page, from+copied, to);
1329 ret = walk_page_buffers(handle, page_buffers(page), from,
1330 to, &partial, write_end_fn);
1332 SetPageUptodate(page);
1333 if (pos+copied > inode->i_size)
1334 i_size_write(inode, pos+copied);
1335 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1336 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1337 EXT4_I(inode)->i_disksize = inode->i_size;
1338 ret2 = ext4_mark_inode_dirty(handle, inode);
1343 ret2 = ext4_journal_stop(handle);
1347 page_cache_release(page);
1349 return ret ? ret : copied;
1353 * bmap() is special. It gets used by applications such as lilo and by
1354 * the swapper to find the on-disk block of a specific piece of data.
1356 * Naturally, this is dangerous if the block concerned is still in the
1357 * journal. If somebody makes a swapfile on an ext4 data-journaling
1358 * filesystem and enables swap, then they may get a nasty shock when the
1359 * data getting swapped to that swapfile suddenly gets overwritten by
1360 * the original zero's written out previously to the journal and
1361 * awaiting writeback in the kernel's buffer cache.
1363 * So, if we see any bmap calls here on a modified, data-journaled file,
1364 * take extra steps to flush any blocks which might be in the cache.
1366 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1368 struct inode *inode = mapping->host;
1372 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1374 * This is a REALLY heavyweight approach, but the use of
1375 * bmap on dirty files is expected to be extremely rare:
1376 * only if we run lilo or swapon on a freshly made file
1377 * do we expect this to happen.
1379 * (bmap requires CAP_SYS_RAWIO so this does not
1380 * represent an unprivileged user DOS attack --- we'd be
1381 * in trouble if mortal users could trigger this path at
1384 * NB. EXT4_STATE_JDATA is not set on files other than
1385 * regular files. If somebody wants to bmap a directory
1386 * or symlink and gets confused because the buffer
1387 * hasn't yet been flushed to disk, they deserve
1388 * everything they get.
1391 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1392 journal = EXT4_JOURNAL(inode);
1393 jbd2_journal_lock_updates(journal);
1394 err = jbd2_journal_flush(journal);
1395 jbd2_journal_unlock_updates(journal);
1401 return generic_block_bmap(mapping,block,ext4_get_block);
1404 static int bget_one(handle_t *handle, struct buffer_head *bh)
1410 static int bput_one(handle_t *handle, struct buffer_head *bh)
1416 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1418 if (buffer_mapped(bh))
1419 return ext4_journal_dirty_data(handle, bh);
1424 * Note that we always start a transaction even if we're not journalling
1425 * data. This is to preserve ordering: any hole instantiation within
1426 * __block_write_full_page -> ext4_get_block() should be journalled
1427 * along with the data so we don't crash and then get metadata which
1428 * refers to old data.
1430 * In all journalling modes block_write_full_page() will start the I/O.
1434 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1439 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1441 * Same applies to ext4_get_block(). We will deadlock on various things like
1442 * lock_journal and i_data_sem
1444 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1447 * 16May01: If we're reentered then journal_current_handle() will be
1448 * non-zero. We simply *return*.
1450 * 1 July 2001: @@@ FIXME:
1451 * In journalled data mode, a data buffer may be metadata against the
1452 * current transaction. But the same file is part of a shared mapping
1453 * and someone does a writepage() on it.
1455 * We will move the buffer onto the async_data list, but *after* it has
1456 * been dirtied. So there's a small window where we have dirty data on
1459 * Note that this only applies to the last partial page in the file. The
1460 * bit which block_write_full_page() uses prepare/commit for. (That's
1461 * broken code anyway: it's wrong for msync()).
1463 * It's a rare case: affects the final partial page, for journalled data
1464 * where the file is subject to bith write() and writepage() in the same
1465 * transction. To fix it we'll need a custom block_write_full_page().
1466 * We'll probably need that anyway for journalling writepage() output.
1468 * We don't honour synchronous mounts for writepage(). That would be
1469 * disastrous. Any write() or metadata operation will sync the fs for
1472 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1473 * we don't need to open a transaction here.
1475 static int ext4_ordered_writepage(struct page *page,
1476 struct writeback_control *wbc)
1478 struct inode *inode = page->mapping->host;
1479 struct buffer_head *page_bufs;
1480 handle_t *handle = NULL;
1484 J_ASSERT(PageLocked(page));
1487 * We give up here if we're reentered, because it might be for a
1488 * different filesystem.
1490 if (ext4_journal_current_handle())
1493 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1495 if (IS_ERR(handle)) {
1496 ret = PTR_ERR(handle);
1500 if (!page_has_buffers(page)) {
1501 create_empty_buffers(page, inode->i_sb->s_blocksize,
1502 (1 << BH_Dirty)|(1 << BH_Uptodate));
1504 page_bufs = page_buffers(page);
1505 walk_page_buffers(handle, page_bufs, 0,
1506 PAGE_CACHE_SIZE, NULL, bget_one);
1508 ret = block_write_full_page(page, ext4_get_block, wbc);
1511 * The page can become unlocked at any point now, and
1512 * truncate can then come in and change things. So we
1513 * can't touch *page from now on. But *page_bufs is
1514 * safe due to elevated refcount.
1518 * And attach them to the current transaction. But only if
1519 * block_write_full_page() succeeded. Otherwise they are unmapped,
1520 * and generally junk.
1523 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1524 NULL, jbd2_journal_dirty_data_fn);
1528 walk_page_buffers(handle, page_bufs, 0,
1529 PAGE_CACHE_SIZE, NULL, bput_one);
1530 err = ext4_journal_stop(handle);
1536 redirty_page_for_writepage(wbc, page);
1541 static int ext4_writeback_writepage(struct page *page,
1542 struct writeback_control *wbc)
1544 struct inode *inode = page->mapping->host;
1545 handle_t *handle = NULL;
1549 if (ext4_journal_current_handle())
1552 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1553 if (IS_ERR(handle)) {
1554 ret = PTR_ERR(handle);
1558 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1559 ret = nobh_writepage(page, ext4_get_block, wbc);
1561 ret = block_write_full_page(page, ext4_get_block, wbc);
1563 err = ext4_journal_stop(handle);
1569 redirty_page_for_writepage(wbc, page);
1574 static int ext4_journalled_writepage(struct page *page,
1575 struct writeback_control *wbc)
1577 struct inode *inode = page->mapping->host;
1578 handle_t *handle = NULL;
1582 if (ext4_journal_current_handle())
1585 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1586 if (IS_ERR(handle)) {
1587 ret = PTR_ERR(handle);
1591 if (!page_has_buffers(page) || PageChecked(page)) {
1593 * It's mmapped pagecache. Add buffers and journal it. There
1594 * doesn't seem much point in redirtying the page here.
1596 ClearPageChecked(page);
1597 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1600 ext4_journal_stop(handle);
1603 ret = walk_page_buffers(handle, page_buffers(page), 0,
1604 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1606 err = walk_page_buffers(handle, page_buffers(page), 0,
1607 PAGE_CACHE_SIZE, NULL, write_end_fn);
1610 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1614 * It may be a page full of checkpoint-mode buffers. We don't
1615 * really know unless we go poke around in the buffer_heads.
1616 * But block_write_full_page will do the right thing.
1618 ret = block_write_full_page(page, ext4_get_block, wbc);
1620 err = ext4_journal_stop(handle);
1627 redirty_page_for_writepage(wbc, page);
1633 static int ext4_readpage(struct file *file, struct page *page)
1635 return mpage_readpage(page, ext4_get_block);
1639 ext4_readpages(struct file *file, struct address_space *mapping,
1640 struct list_head *pages, unsigned nr_pages)
1642 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1645 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1647 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1650 * If it's a full truncate we just forget about the pending dirtying
1653 ClearPageChecked(page);
1655 jbd2_journal_invalidatepage(journal, page, offset);
1658 static int ext4_releasepage(struct page *page, gfp_t wait)
1660 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1662 WARN_ON(PageChecked(page));
1663 if (!page_has_buffers(page))
1665 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1669 * If the O_DIRECT write will extend the file then add this inode to the
1670 * orphan list. So recovery will truncate it back to the original size
1671 * if the machine crashes during the write.
1673 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1674 * crashes then stale disk data _may_ be exposed inside the file.
1676 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1677 const struct iovec *iov, loff_t offset,
1678 unsigned long nr_segs)
1680 struct file *file = iocb->ki_filp;
1681 struct inode *inode = file->f_mapping->host;
1682 struct ext4_inode_info *ei = EXT4_I(inode);
1683 handle_t *handle = NULL;
1686 size_t count = iov_length(iov, nr_segs);
1689 loff_t final_size = offset + count;
1691 handle = ext4_journal_start(inode, DIO_CREDITS);
1692 if (IS_ERR(handle)) {
1693 ret = PTR_ERR(handle);
1696 if (final_size > inode->i_size) {
1697 ret = ext4_orphan_add(handle, inode);
1701 ei->i_disksize = inode->i_size;
1705 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1707 ext4_get_block, NULL);
1710 * Reacquire the handle: ext4_get_block() can restart the transaction
1712 handle = ext4_journal_current_handle();
1718 if (orphan && inode->i_nlink)
1719 ext4_orphan_del(handle, inode);
1720 if (orphan && ret > 0) {
1721 loff_t end = offset + ret;
1722 if (end > inode->i_size) {
1723 ei->i_disksize = end;
1724 i_size_write(inode, end);
1726 * We're going to return a positive `ret'
1727 * here due to non-zero-length I/O, so there's
1728 * no way of reporting error returns from
1729 * ext4_mark_inode_dirty() to userspace. So
1732 ext4_mark_inode_dirty(handle, inode);
1735 err = ext4_journal_stop(handle);
1744 * Pages can be marked dirty completely asynchronously from ext4's journalling
1745 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1746 * much here because ->set_page_dirty is called under VFS locks. The page is
1747 * not necessarily locked.
1749 * We cannot just dirty the page and leave attached buffers clean, because the
1750 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1751 * or jbddirty because all the journalling code will explode.
1753 * So what we do is to mark the page "pending dirty" and next time writepage
1754 * is called, propagate that into the buffers appropriately.
1756 static int ext4_journalled_set_page_dirty(struct page *page)
1758 SetPageChecked(page);
1759 return __set_page_dirty_nobuffers(page);
1762 static const struct address_space_operations ext4_ordered_aops = {
1763 .readpage = ext4_readpage,
1764 .readpages = ext4_readpages,
1765 .writepage = ext4_ordered_writepage,
1766 .sync_page = block_sync_page,
1767 .write_begin = ext4_write_begin,
1768 .write_end = ext4_ordered_write_end,
1770 .invalidatepage = ext4_invalidatepage,
1771 .releasepage = ext4_releasepage,
1772 .direct_IO = ext4_direct_IO,
1773 .migratepage = buffer_migrate_page,
1776 static const struct address_space_operations ext4_writeback_aops = {
1777 .readpage = ext4_readpage,
1778 .readpages = ext4_readpages,
1779 .writepage = ext4_writeback_writepage,
1780 .sync_page = block_sync_page,
1781 .write_begin = ext4_write_begin,
1782 .write_end = ext4_writeback_write_end,
1784 .invalidatepage = ext4_invalidatepage,
1785 .releasepage = ext4_releasepage,
1786 .direct_IO = ext4_direct_IO,
1787 .migratepage = buffer_migrate_page,
1790 static const struct address_space_operations ext4_journalled_aops = {
1791 .readpage = ext4_readpage,
1792 .readpages = ext4_readpages,
1793 .writepage = ext4_journalled_writepage,
1794 .sync_page = block_sync_page,
1795 .write_begin = ext4_write_begin,
1796 .write_end = ext4_journalled_write_end,
1797 .set_page_dirty = ext4_journalled_set_page_dirty,
1799 .invalidatepage = ext4_invalidatepage,
1800 .releasepage = ext4_releasepage,
1803 void ext4_set_aops(struct inode *inode)
1805 if (ext4_should_order_data(inode))
1806 inode->i_mapping->a_ops = &ext4_ordered_aops;
1807 else if (ext4_should_writeback_data(inode))
1808 inode->i_mapping->a_ops = &ext4_writeback_aops;
1810 inode->i_mapping->a_ops = &ext4_journalled_aops;
1814 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1815 * up to the end of the block which corresponds to `from'.
1816 * This required during truncate. We need to physically zero the tail end
1817 * of that block so it doesn't yield old data if the file is later grown.
1819 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1820 struct address_space *mapping, loff_t from)
1822 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1823 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1824 unsigned blocksize, length, pos;
1826 struct inode *inode = mapping->host;
1827 struct buffer_head *bh;
1830 blocksize = inode->i_sb->s_blocksize;
1831 length = blocksize - (offset & (blocksize - 1));
1832 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1835 * For "nobh" option, we can only work if we don't need to
1836 * read-in the page - otherwise we create buffers to do the IO.
1838 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1839 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1840 zero_user(page, offset, length);
1841 set_page_dirty(page);
1845 if (!page_has_buffers(page))
1846 create_empty_buffers(page, blocksize, 0);
1848 /* Find the buffer that contains "offset" */
1849 bh = page_buffers(page);
1851 while (offset >= pos) {
1852 bh = bh->b_this_page;
1858 if (buffer_freed(bh)) {
1859 BUFFER_TRACE(bh, "freed: skip");
1863 if (!buffer_mapped(bh)) {
1864 BUFFER_TRACE(bh, "unmapped");
1865 ext4_get_block(inode, iblock, bh, 0);
1866 /* unmapped? It's a hole - nothing to do */
1867 if (!buffer_mapped(bh)) {
1868 BUFFER_TRACE(bh, "still unmapped");
1873 /* Ok, it's mapped. Make sure it's up-to-date */
1874 if (PageUptodate(page))
1875 set_buffer_uptodate(bh);
1877 if (!buffer_uptodate(bh)) {
1879 ll_rw_block(READ, 1, &bh);
1881 /* Uhhuh. Read error. Complain and punt. */
1882 if (!buffer_uptodate(bh))
1886 if (ext4_should_journal_data(inode)) {
1887 BUFFER_TRACE(bh, "get write access");
1888 err = ext4_journal_get_write_access(handle, bh);
1893 zero_user(page, offset, length);
1895 BUFFER_TRACE(bh, "zeroed end of block");
1898 if (ext4_should_journal_data(inode)) {
1899 err = ext4_journal_dirty_metadata(handle, bh);
1901 if (ext4_should_order_data(inode))
1902 err = ext4_journal_dirty_data(handle, bh);
1903 mark_buffer_dirty(bh);
1908 page_cache_release(page);
1913 * Probably it should be a library function... search for first non-zero word
1914 * or memcmp with zero_page, whatever is better for particular architecture.
1917 static inline int all_zeroes(__le32 *p, __le32 *q)
1926 * ext4_find_shared - find the indirect blocks for partial truncation.
1927 * @inode: inode in question
1928 * @depth: depth of the affected branch
1929 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1930 * @chain: place to store the pointers to partial indirect blocks
1931 * @top: place to the (detached) top of branch
1933 * This is a helper function used by ext4_truncate().
1935 * When we do truncate() we may have to clean the ends of several
1936 * indirect blocks but leave the blocks themselves alive. Block is
1937 * partially truncated if some data below the new i_size is refered
1938 * from it (and it is on the path to the first completely truncated
1939 * data block, indeed). We have to free the top of that path along
1940 * with everything to the right of the path. Since no allocation
1941 * past the truncation point is possible until ext4_truncate()
1942 * finishes, we may safely do the latter, but top of branch may
1943 * require special attention - pageout below the truncation point
1944 * might try to populate it.
1946 * We atomically detach the top of branch from the tree, store the
1947 * block number of its root in *@top, pointers to buffer_heads of
1948 * partially truncated blocks - in @chain[].bh and pointers to
1949 * their last elements that should not be removed - in
1950 * @chain[].p. Return value is the pointer to last filled element
1953 * The work left to caller to do the actual freeing of subtrees:
1954 * a) free the subtree starting from *@top
1955 * b) free the subtrees whose roots are stored in
1956 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1957 * c) free the subtrees growing from the inode past the @chain[0].
1958 * (no partially truncated stuff there). */
1960 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1961 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1963 Indirect *partial, *p;
1967 /* Make k index the deepest non-null offest + 1 */
1968 for (k = depth; k > 1 && !offsets[k-1]; k--)
1970 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1971 /* Writer: pointers */
1973 partial = chain + k-1;
1975 * If the branch acquired continuation since we've looked at it -
1976 * fine, it should all survive and (new) top doesn't belong to us.
1978 if (!partial->key && *partial->p)
1981 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1984 * OK, we've found the last block that must survive. The rest of our
1985 * branch should be detached before unlocking. However, if that rest
1986 * of branch is all ours and does not grow immediately from the inode
1987 * it's easier to cheat and just decrement partial->p.
1989 if (p == chain + k - 1 && p > chain) {
1993 /* Nope, don't do this in ext4. Must leave the tree intact */
2000 while(partial > p) {
2001 brelse(partial->bh);
2009 * Zero a number of block pointers in either an inode or an indirect block.
2010 * If we restart the transaction we must again get write access to the
2011 * indirect block for further modification.
2013 * We release `count' blocks on disk, but (last - first) may be greater
2014 * than `count' because there can be holes in there.
2016 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2017 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2018 unsigned long count, __le32 *first, __le32 *last)
2021 if (try_to_extend_transaction(handle, inode)) {
2023 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2024 ext4_journal_dirty_metadata(handle, bh);
2026 ext4_mark_inode_dirty(handle, inode);
2027 ext4_journal_test_restart(handle, inode);
2029 BUFFER_TRACE(bh, "retaking write access");
2030 ext4_journal_get_write_access(handle, bh);
2035 * Any buffers which are on the journal will be in memory. We find
2036 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2037 * on them. We've already detached each block from the file, so
2038 * bforget() in jbd2_journal_forget() should be safe.
2040 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2042 for (p = first; p < last; p++) {
2043 u32 nr = le32_to_cpu(*p);
2045 struct buffer_head *tbh;
2048 tbh = sb_find_get_block(inode->i_sb, nr);
2049 ext4_forget(handle, 0, inode, tbh, nr);
2053 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2057 * ext4_free_data - free a list of data blocks
2058 * @handle: handle for this transaction
2059 * @inode: inode we are dealing with
2060 * @this_bh: indirect buffer_head which contains *@first and *@last
2061 * @first: array of block numbers
2062 * @last: points immediately past the end of array
2064 * We are freeing all blocks refered from that array (numbers are stored as
2065 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2067 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2068 * blocks are contiguous then releasing them at one time will only affect one
2069 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2070 * actually use a lot of journal space.
2072 * @this_bh will be %NULL if @first and @last point into the inode's direct
2075 static void ext4_free_data(handle_t *handle, struct inode *inode,
2076 struct buffer_head *this_bh,
2077 __le32 *first, __le32 *last)
2079 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2080 unsigned long count = 0; /* Number of blocks in the run */
2081 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2084 ext4_fsblk_t nr; /* Current block # */
2085 __le32 *p; /* Pointer into inode/ind
2086 for current block */
2089 if (this_bh) { /* For indirect block */
2090 BUFFER_TRACE(this_bh, "get_write_access");
2091 err = ext4_journal_get_write_access(handle, this_bh);
2092 /* Important: if we can't update the indirect pointers
2093 * to the blocks, we can't free them. */
2098 for (p = first; p < last; p++) {
2099 nr = le32_to_cpu(*p);
2101 /* accumulate blocks to free if they're contiguous */
2104 block_to_free_p = p;
2106 } else if (nr == block_to_free + count) {
2109 ext4_clear_blocks(handle, inode, this_bh,
2111 count, block_to_free_p, p);
2113 block_to_free_p = p;
2120 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2121 count, block_to_free_p, p);
2124 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2125 ext4_journal_dirty_metadata(handle, this_bh);
2130 * ext4_free_branches - free an array of branches
2131 * @handle: JBD handle for this transaction
2132 * @inode: inode we are dealing with
2133 * @parent_bh: the buffer_head which contains *@first and *@last
2134 * @first: array of block numbers
2135 * @last: pointer immediately past the end of array
2136 * @depth: depth of the branches to free
2138 * We are freeing all blocks refered from these branches (numbers are
2139 * stored as little-endian 32-bit) and updating @inode->i_blocks
2142 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2143 struct buffer_head *parent_bh,
2144 __le32 *first, __le32 *last, int depth)
2149 if (is_handle_aborted(handle))
2153 struct buffer_head *bh;
2154 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2156 while (--p >= first) {
2157 nr = le32_to_cpu(*p);
2159 continue; /* A hole */
2161 /* Go read the buffer for the next level down */
2162 bh = sb_bread(inode->i_sb, nr);
2165 * A read failure? Report error and clear slot
2169 ext4_error(inode->i_sb, "ext4_free_branches",
2170 "Read failure, inode=%lu, block=%llu",
2175 /* This zaps the entire block. Bottom up. */
2176 BUFFER_TRACE(bh, "free child branches");
2177 ext4_free_branches(handle, inode, bh,
2178 (__le32*)bh->b_data,
2179 (__le32*)bh->b_data + addr_per_block,
2183 * We've probably journalled the indirect block several
2184 * times during the truncate. But it's no longer
2185 * needed and we now drop it from the transaction via
2186 * jbd2_journal_revoke().
2188 * That's easy if it's exclusively part of this
2189 * transaction. But if it's part of the committing
2190 * transaction then jbd2_journal_forget() will simply
2191 * brelse() it. That means that if the underlying
2192 * block is reallocated in ext4_get_block(),
2193 * unmap_underlying_metadata() will find this block
2194 * and will try to get rid of it. damn, damn.
2196 * If this block has already been committed to the
2197 * journal, a revoke record will be written. And
2198 * revoke records must be emitted *before* clearing
2199 * this block's bit in the bitmaps.
2201 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2204 * Everything below this this pointer has been
2205 * released. Now let this top-of-subtree go.
2207 * We want the freeing of this indirect block to be
2208 * atomic in the journal with the updating of the
2209 * bitmap block which owns it. So make some room in
2212 * We zero the parent pointer *after* freeing its
2213 * pointee in the bitmaps, so if extend_transaction()
2214 * for some reason fails to put the bitmap changes and
2215 * the release into the same transaction, recovery
2216 * will merely complain about releasing a free block,
2217 * rather than leaking blocks.
2219 if (is_handle_aborted(handle))
2221 if (try_to_extend_transaction(handle, inode)) {
2222 ext4_mark_inode_dirty(handle, inode);
2223 ext4_journal_test_restart(handle, inode);
2226 ext4_free_blocks(handle, inode, nr, 1, 1);
2230 * The block which we have just freed is
2231 * pointed to by an indirect block: journal it
2233 BUFFER_TRACE(parent_bh, "get_write_access");
2234 if (!ext4_journal_get_write_access(handle,
2237 BUFFER_TRACE(parent_bh,
2238 "call ext4_journal_dirty_metadata");
2239 ext4_journal_dirty_metadata(handle,
2245 /* We have reached the bottom of the tree. */
2246 BUFFER_TRACE(parent_bh, "free data blocks");
2247 ext4_free_data(handle, inode, parent_bh, first, last);
2254 * We block out ext4_get_block() block instantiations across the entire
2255 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2256 * simultaneously on behalf of the same inode.
2258 * As we work through the truncate and commmit bits of it to the journal there
2259 * is one core, guiding principle: the file's tree must always be consistent on
2260 * disk. We must be able to restart the truncate after a crash.
2262 * The file's tree may be transiently inconsistent in memory (although it
2263 * probably isn't), but whenever we close off and commit a journal transaction,
2264 * the contents of (the filesystem + the journal) must be consistent and
2265 * restartable. It's pretty simple, really: bottom up, right to left (although
2266 * left-to-right works OK too).
2268 * Note that at recovery time, journal replay occurs *before* the restart of
2269 * truncate against the orphan inode list.
2271 * The committed inode has the new, desired i_size (which is the same as
2272 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2273 * that this inode's truncate did not complete and it will again call
2274 * ext4_truncate() to have another go. So there will be instantiated blocks
2275 * to the right of the truncation point in a crashed ext4 filesystem. But
2276 * that's fine - as long as they are linked from the inode, the post-crash
2277 * ext4_truncate() run will find them and release them.
2279 void ext4_truncate(struct inode *inode)
2282 struct ext4_inode_info *ei = EXT4_I(inode);
2283 __le32 *i_data = ei->i_data;
2284 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2285 struct address_space *mapping = inode->i_mapping;
2286 ext4_lblk_t offsets[4];
2291 ext4_lblk_t last_block;
2292 unsigned blocksize = inode->i_sb->s_blocksize;
2295 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2296 S_ISLNK(inode->i_mode)))
2298 if (ext4_inode_is_fast_symlink(inode))
2300 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2304 * We have to lock the EOF page here, because lock_page() nests
2305 * outside jbd2_journal_start().
2307 if ((inode->i_size & (blocksize - 1)) == 0) {
2308 /* Block boundary? Nothing to do */
2311 page = grab_cache_page(mapping,
2312 inode->i_size >> PAGE_CACHE_SHIFT);
2317 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2318 ext4_ext_truncate(inode, page);
2322 handle = start_transaction(inode);
2323 if (IS_ERR(handle)) {
2325 clear_highpage(page);
2326 flush_dcache_page(page);
2328 page_cache_release(page);
2330 return; /* AKPM: return what? */
2333 last_block = (inode->i_size + blocksize-1)
2334 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2337 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2339 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2341 goto out_stop; /* error */
2344 * OK. This truncate is going to happen. We add the inode to the
2345 * orphan list, so that if this truncate spans multiple transactions,
2346 * and we crash, we will resume the truncate when the filesystem
2347 * recovers. It also marks the inode dirty, to catch the new size.
2349 * Implication: the file must always be in a sane, consistent
2350 * truncatable state while each transaction commits.
2352 if (ext4_orphan_add(handle, inode))
2356 * The orphan list entry will now protect us from any crash which
2357 * occurs before the truncate completes, so it is now safe to propagate
2358 * the new, shorter inode size (held for now in i_size) into the
2359 * on-disk inode. We do this via i_disksize, which is the value which
2360 * ext4 *really* writes onto the disk inode.
2362 ei->i_disksize = inode->i_size;
2365 * From here we block out all ext4_get_block() callers who want to
2366 * modify the block allocation tree.
2368 down_write(&ei->i_data_sem);
2370 if (n == 1) { /* direct blocks */
2371 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2372 i_data + EXT4_NDIR_BLOCKS);
2376 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2377 /* Kill the top of shared branch (not detached) */
2379 if (partial == chain) {
2380 /* Shared branch grows from the inode */
2381 ext4_free_branches(handle, inode, NULL,
2382 &nr, &nr+1, (chain+n-1) - partial);
2385 * We mark the inode dirty prior to restart,
2386 * and prior to stop. No need for it here.
2389 /* Shared branch grows from an indirect block */
2390 BUFFER_TRACE(partial->bh, "get_write_access");
2391 ext4_free_branches(handle, inode, partial->bh,
2393 partial->p+1, (chain+n-1) - partial);
2396 /* Clear the ends of indirect blocks on the shared branch */
2397 while (partial > chain) {
2398 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2399 (__le32*)partial->bh->b_data+addr_per_block,
2400 (chain+n-1) - partial);
2401 BUFFER_TRACE(partial->bh, "call brelse");
2402 brelse (partial->bh);
2406 /* Kill the remaining (whole) subtrees */
2407 switch (offsets[0]) {
2409 nr = i_data[EXT4_IND_BLOCK];
2411 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2412 i_data[EXT4_IND_BLOCK] = 0;
2414 case EXT4_IND_BLOCK:
2415 nr = i_data[EXT4_DIND_BLOCK];
2417 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2418 i_data[EXT4_DIND_BLOCK] = 0;
2420 case EXT4_DIND_BLOCK:
2421 nr = i_data[EXT4_TIND_BLOCK];
2423 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2424 i_data[EXT4_TIND_BLOCK] = 0;
2426 case EXT4_TIND_BLOCK:
2430 ext4_discard_reservation(inode);
2432 up_write(&ei->i_data_sem);
2433 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2434 ext4_mark_inode_dirty(handle, inode);
2437 * In a multi-transaction truncate, we only make the final transaction
2444 * If this was a simple ftruncate(), and the file will remain alive
2445 * then we need to clear up the orphan record which we created above.
2446 * However, if this was a real unlink then we were called by
2447 * ext4_delete_inode(), and we allow that function to clean up the
2448 * orphan info for us.
2451 ext4_orphan_del(handle, inode);
2453 ext4_journal_stop(handle);
2456 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2457 unsigned long ino, struct ext4_iloc *iloc)
2459 unsigned long desc, group_desc;
2460 ext4_group_t block_group;
2461 unsigned long offset;
2463 struct buffer_head *bh;
2464 struct ext4_group_desc * gdp;
2466 if (!ext4_valid_inum(sb, ino)) {
2468 * This error is already checked for in namei.c unless we are
2469 * looking at an NFS filehandle, in which case no error
2475 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2476 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2477 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2481 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2482 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2483 bh = EXT4_SB(sb)->s_group_desc[group_desc];
2485 ext4_error (sb, "ext4_get_inode_block",
2486 "Descriptor not loaded");
2490 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2491 desc * EXT4_DESC_SIZE(sb));
2493 * Figure out the offset within the block group inode table
2495 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2496 EXT4_INODE_SIZE(sb);
2497 block = ext4_inode_table(sb, gdp) +
2498 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2500 iloc->block_group = block_group;
2501 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2506 * ext4_get_inode_loc returns with an extra refcount against the inode's
2507 * underlying buffer_head on success. If 'in_mem' is true, we have all
2508 * data in memory that is needed to recreate the on-disk version of this
2511 static int __ext4_get_inode_loc(struct inode *inode,
2512 struct ext4_iloc *iloc, int in_mem)
2515 struct buffer_head *bh;
2517 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2521 bh = sb_getblk(inode->i_sb, block);
2523 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2524 "unable to read inode block - "
2525 "inode=%lu, block=%llu",
2526 inode->i_ino, block);
2529 if (!buffer_uptodate(bh)) {
2531 if (buffer_uptodate(bh)) {
2532 /* someone brought it uptodate while we waited */
2538 * If we have all information of the inode in memory and this
2539 * is the only valid inode in the block, we need not read the
2543 struct buffer_head *bitmap_bh;
2544 struct ext4_group_desc *desc;
2545 int inodes_per_buffer;
2546 int inode_offset, i;
2547 ext4_group_t block_group;
2550 block_group = (inode->i_ino - 1) /
2551 EXT4_INODES_PER_GROUP(inode->i_sb);
2552 inodes_per_buffer = bh->b_size /
2553 EXT4_INODE_SIZE(inode->i_sb);
2554 inode_offset = ((inode->i_ino - 1) %
2555 EXT4_INODES_PER_GROUP(inode->i_sb));
2556 start = inode_offset & ~(inodes_per_buffer - 1);
2558 /* Is the inode bitmap in cache? */
2559 desc = ext4_get_group_desc(inode->i_sb,
2564 bitmap_bh = sb_getblk(inode->i_sb,
2565 ext4_inode_bitmap(inode->i_sb, desc));
2570 * If the inode bitmap isn't in cache then the
2571 * optimisation may end up performing two reads instead
2572 * of one, so skip it.
2574 if (!buffer_uptodate(bitmap_bh)) {
2578 for (i = start; i < start + inodes_per_buffer; i++) {
2579 if (i == inode_offset)
2581 if (ext4_test_bit(i, bitmap_bh->b_data))
2585 if (i == start + inodes_per_buffer) {
2586 /* all other inodes are free, so skip I/O */
2587 memset(bh->b_data, 0, bh->b_size);
2588 set_buffer_uptodate(bh);
2596 * There are other valid inodes in the buffer, this inode
2597 * has in-inode xattrs, or we don't have this inode in memory.
2598 * Read the block from disk.
2601 bh->b_end_io = end_buffer_read_sync;
2602 submit_bh(READ_META, bh);
2604 if (!buffer_uptodate(bh)) {
2605 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2606 "unable to read inode block - "
2607 "inode=%lu, block=%llu",
2608 inode->i_ino, block);
2618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2620 /* We have all inode data except xattrs in memory here. */
2621 return __ext4_get_inode_loc(inode, iloc,
2622 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2625 void ext4_set_inode_flags(struct inode *inode)
2627 unsigned int flags = EXT4_I(inode)->i_flags;
2629 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2630 if (flags & EXT4_SYNC_FL)
2631 inode->i_flags |= S_SYNC;
2632 if (flags & EXT4_APPEND_FL)
2633 inode->i_flags |= S_APPEND;
2634 if (flags & EXT4_IMMUTABLE_FL)
2635 inode->i_flags |= S_IMMUTABLE;
2636 if (flags & EXT4_NOATIME_FL)
2637 inode->i_flags |= S_NOATIME;
2638 if (flags & EXT4_DIRSYNC_FL)
2639 inode->i_flags |= S_DIRSYNC;
2642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2643 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2645 unsigned int flags = ei->vfs_inode.i_flags;
2647 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2648 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2650 ei->i_flags |= EXT4_SYNC_FL;
2651 if (flags & S_APPEND)
2652 ei->i_flags |= EXT4_APPEND_FL;
2653 if (flags & S_IMMUTABLE)
2654 ei->i_flags |= EXT4_IMMUTABLE_FL;
2655 if (flags & S_NOATIME)
2656 ei->i_flags |= EXT4_NOATIME_FL;
2657 if (flags & S_DIRSYNC)
2658 ei->i_flags |= EXT4_DIRSYNC_FL;
2660 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2661 struct ext4_inode_info *ei)
2664 struct inode *inode = &(ei->vfs_inode);
2665 struct super_block *sb = inode->i_sb;
2667 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2668 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2669 /* we are using combined 48 bit field */
2670 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2671 le32_to_cpu(raw_inode->i_blocks_lo);
2672 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2673 /* i_blocks represent file system block size */
2674 return i_blocks << (inode->i_blkbits - 9);
2679 return le32_to_cpu(raw_inode->i_blocks_lo);
2683 void ext4_read_inode(struct inode * inode)
2685 struct ext4_iloc iloc;
2686 struct ext4_inode *raw_inode;
2687 struct ext4_inode_info *ei = EXT4_I(inode);
2688 struct buffer_head *bh;
2691 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2692 ei->i_acl = EXT4_ACL_NOT_CACHED;
2693 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2695 ei->i_block_alloc_info = NULL;
2697 if (__ext4_get_inode_loc(inode, &iloc, 0))
2700 raw_inode = ext4_raw_inode(&iloc);
2701 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2702 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2703 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2704 if(!(test_opt (inode->i_sb, NO_UID32))) {
2705 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2706 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2708 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2711 ei->i_dir_start_lookup = 0;
2712 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2713 /* We now have enough fields to check if the inode was active or not.
2714 * This is needed because nfsd might try to access dead inodes
2715 * the test is that same one that e2fsck uses
2716 * NeilBrown 1999oct15
2718 if (inode->i_nlink == 0) {
2719 if (inode->i_mode == 0 ||
2720 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2721 /* this inode is deleted */
2725 /* The only unlinked inodes we let through here have
2726 * valid i_mode and are being read by the orphan
2727 * recovery code: that's fine, we're about to complete
2728 * the process of deleting those. */
2730 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2731 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2732 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2733 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2734 cpu_to_le32(EXT4_OS_HURD)) {
2736 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2738 inode->i_size = ext4_isize(raw_inode);
2739 ei->i_disksize = inode->i_size;
2740 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2741 ei->i_block_group = iloc.block_group;
2743 * NOTE! The in-memory inode i_data array is in little-endian order
2744 * even on big-endian machines: we do NOT byteswap the block numbers!
2746 for (block = 0; block < EXT4_N_BLOCKS; block++)
2747 ei->i_data[block] = raw_inode->i_block[block];
2748 INIT_LIST_HEAD(&ei->i_orphan);
2750 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2751 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2753 * When mke2fs creates big inodes it does not zero out
2754 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2755 * so ignore those first few inodes.
2757 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2758 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2759 EXT4_INODE_SIZE(inode->i_sb)) {
2763 if (ei->i_extra_isize == 0) {
2764 /* The extra space is currently unused. Use it. */
2765 ei->i_extra_isize = sizeof(struct ext4_inode) -
2766 EXT4_GOOD_OLD_INODE_SIZE;
2768 __le32 *magic = (void *)raw_inode +
2769 EXT4_GOOD_OLD_INODE_SIZE +
2771 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2772 ei->i_state |= EXT4_STATE_XATTR;
2775 ei->i_extra_isize = 0;
2777 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2778 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2779 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2780 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2782 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2783 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2784 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2786 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2789 if (S_ISREG(inode->i_mode)) {
2790 inode->i_op = &ext4_file_inode_operations;
2791 inode->i_fop = &ext4_file_operations;
2792 ext4_set_aops(inode);
2793 } else if (S_ISDIR(inode->i_mode)) {
2794 inode->i_op = &ext4_dir_inode_operations;
2795 inode->i_fop = &ext4_dir_operations;
2796 } else if (S_ISLNK(inode->i_mode)) {
2797 if (ext4_inode_is_fast_symlink(inode))
2798 inode->i_op = &ext4_fast_symlink_inode_operations;
2800 inode->i_op = &ext4_symlink_inode_operations;
2801 ext4_set_aops(inode);
2804 inode->i_op = &ext4_special_inode_operations;
2805 if (raw_inode->i_block[0])
2806 init_special_inode(inode, inode->i_mode,
2807 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2809 init_special_inode(inode, inode->i_mode,
2810 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2813 ext4_set_inode_flags(inode);
2817 make_bad_inode(inode);
2821 static int ext4_inode_blocks_set(handle_t *handle,
2822 struct ext4_inode *raw_inode,
2823 struct ext4_inode_info *ei)
2825 struct inode *inode = &(ei->vfs_inode);
2826 u64 i_blocks = inode->i_blocks;
2827 struct super_block *sb = inode->i_sb;
2830 if (i_blocks <= ~0U) {
2832 * i_blocks can be represnted in a 32 bit variable
2833 * as multiple of 512 bytes
2835 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2836 raw_inode->i_blocks_high = 0;
2837 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2838 } else if (i_blocks <= 0xffffffffffffULL) {
2840 * i_blocks can be represented in a 48 bit variable
2841 * as multiple of 512 bytes
2843 err = ext4_update_rocompat_feature(handle, sb,
2844 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2847 /* i_block is stored in the split 48 bit fields */
2848 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2849 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2850 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2853 * i_blocks should be represented in a 48 bit variable
2854 * as multiple of file system block size
2856 err = ext4_update_rocompat_feature(handle, sb,
2857 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2860 ei->i_flags |= EXT4_HUGE_FILE_FL;
2861 /* i_block is stored in file system block size */
2862 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2863 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2864 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2871 * Post the struct inode info into an on-disk inode location in the
2872 * buffer-cache. This gobbles the caller's reference to the
2873 * buffer_head in the inode location struct.
2875 * The caller must have write access to iloc->bh.
2877 static int ext4_do_update_inode(handle_t *handle,
2878 struct inode *inode,
2879 struct ext4_iloc *iloc)
2881 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2882 struct ext4_inode_info *ei = EXT4_I(inode);
2883 struct buffer_head *bh = iloc->bh;
2884 int err = 0, rc, block;
2886 /* For fields not not tracking in the in-memory inode,
2887 * initialise them to zero for new inodes. */
2888 if (ei->i_state & EXT4_STATE_NEW)
2889 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2891 ext4_get_inode_flags(ei);
2892 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2893 if(!(test_opt(inode->i_sb, NO_UID32))) {
2894 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2895 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2897 * Fix up interoperability with old kernels. Otherwise, old inodes get
2898 * re-used with the upper 16 bits of the uid/gid intact
2901 raw_inode->i_uid_high =
2902 cpu_to_le16(high_16_bits(inode->i_uid));
2903 raw_inode->i_gid_high =
2904 cpu_to_le16(high_16_bits(inode->i_gid));
2906 raw_inode->i_uid_high = 0;
2907 raw_inode->i_gid_high = 0;
2910 raw_inode->i_uid_low =
2911 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2912 raw_inode->i_gid_low =
2913 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2914 raw_inode->i_uid_high = 0;
2915 raw_inode->i_gid_high = 0;
2917 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2919 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2920 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2921 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2922 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2924 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2926 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2927 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2928 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2929 cpu_to_le32(EXT4_OS_HURD))
2930 raw_inode->i_file_acl_high =
2931 cpu_to_le16(ei->i_file_acl >> 32);
2932 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2933 ext4_isize_set(raw_inode, ei->i_disksize);
2934 if (ei->i_disksize > 0x7fffffffULL) {
2935 struct super_block *sb = inode->i_sb;
2936 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2937 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2938 EXT4_SB(sb)->s_es->s_rev_level ==
2939 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2940 /* If this is the first large file
2941 * created, add a flag to the superblock.
2943 err = ext4_journal_get_write_access(handle,
2944 EXT4_SB(sb)->s_sbh);
2947 ext4_update_dynamic_rev(sb);
2948 EXT4_SET_RO_COMPAT_FEATURE(sb,
2949 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2952 err = ext4_journal_dirty_metadata(handle,
2953 EXT4_SB(sb)->s_sbh);
2956 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2957 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2958 if (old_valid_dev(inode->i_rdev)) {
2959 raw_inode->i_block[0] =
2960 cpu_to_le32(old_encode_dev(inode->i_rdev));
2961 raw_inode->i_block[1] = 0;
2963 raw_inode->i_block[0] = 0;
2964 raw_inode->i_block[1] =
2965 cpu_to_le32(new_encode_dev(inode->i_rdev));
2966 raw_inode->i_block[2] = 0;
2968 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2969 raw_inode->i_block[block] = ei->i_data[block];
2971 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2972 if (ei->i_extra_isize) {
2973 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2974 raw_inode->i_version_hi =
2975 cpu_to_le32(inode->i_version >> 32);
2976 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2980 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2981 rc = ext4_journal_dirty_metadata(handle, bh);
2984 ei->i_state &= ~EXT4_STATE_NEW;
2988 ext4_std_error(inode->i_sb, err);
2993 * ext4_write_inode()
2995 * We are called from a few places:
2997 * - Within generic_file_write() for O_SYNC files.
2998 * Here, there will be no transaction running. We wait for any running
2999 * trasnaction to commit.
3001 * - Within sys_sync(), kupdate and such.
3002 * We wait on commit, if tol to.
3004 * - Within prune_icache() (PF_MEMALLOC == true)
3005 * Here we simply return. We can't afford to block kswapd on the
3008 * In all cases it is actually safe for us to return without doing anything,
3009 * because the inode has been copied into a raw inode buffer in
3010 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3013 * Note that we are absolutely dependent upon all inode dirtiers doing the
3014 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3015 * which we are interested.
3017 * It would be a bug for them to not do this. The code:
3019 * mark_inode_dirty(inode)
3021 * inode->i_size = expr;
3023 * is in error because a kswapd-driven write_inode() could occur while
3024 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3025 * will no longer be on the superblock's dirty inode list.
3027 int ext4_write_inode(struct inode *inode, int wait)
3029 if (current->flags & PF_MEMALLOC)
3032 if (ext4_journal_current_handle()) {
3033 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3041 return ext4_force_commit(inode->i_sb);
3047 * Called from notify_change.
3049 * We want to trap VFS attempts to truncate the file as soon as
3050 * possible. In particular, we want to make sure that when the VFS
3051 * shrinks i_size, we put the inode on the orphan list and modify
3052 * i_disksize immediately, so that during the subsequent flushing of
3053 * dirty pages and freeing of disk blocks, we can guarantee that any
3054 * commit will leave the blocks being flushed in an unused state on
3055 * disk. (On recovery, the inode will get truncated and the blocks will
3056 * be freed, so we have a strong guarantee that no future commit will
3057 * leave these blocks visible to the user.)
3059 * Called with inode->sem down.
3061 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3063 struct inode *inode = dentry->d_inode;
3065 const unsigned int ia_valid = attr->ia_valid;
3067 error = inode_change_ok(inode, attr);
3071 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3072 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3075 /* (user+group)*(old+new) structure, inode write (sb,
3076 * inode block, ? - but truncate inode update has it) */
3077 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3078 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3079 if (IS_ERR(handle)) {
3080 error = PTR_ERR(handle);
3083 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3085 ext4_journal_stop(handle);
3088 /* Update corresponding info in inode so that everything is in
3089 * one transaction */
3090 if (attr->ia_valid & ATTR_UID)
3091 inode->i_uid = attr->ia_uid;
3092 if (attr->ia_valid & ATTR_GID)
3093 inode->i_gid = attr->ia_gid;
3094 error = ext4_mark_inode_dirty(handle, inode);
3095 ext4_journal_stop(handle);
3098 if (attr->ia_valid & ATTR_SIZE) {
3099 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3100 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3102 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3109 if (S_ISREG(inode->i_mode) &&
3110 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3113 handle = ext4_journal_start(inode, 3);
3114 if (IS_ERR(handle)) {
3115 error = PTR_ERR(handle);
3119 error = ext4_orphan_add(handle, inode);
3120 EXT4_I(inode)->i_disksize = attr->ia_size;
3121 rc = ext4_mark_inode_dirty(handle, inode);
3124 ext4_journal_stop(handle);
3127 rc = inode_setattr(inode, attr);
3129 /* If inode_setattr's call to ext4_truncate failed to get a
3130 * transaction handle at all, we need to clean up the in-core
3131 * orphan list manually. */
3133 ext4_orphan_del(NULL, inode);
3135 if (!rc && (ia_valid & ATTR_MODE))
3136 rc = ext4_acl_chmod(inode);
3139 ext4_std_error(inode->i_sb, error);
3147 * How many blocks doth make a writepage()?
3149 * With N blocks per page, it may be:
3154 * N+5 bitmap blocks (from the above)
3155 * N+5 group descriptor summary blocks
3158 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3160 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3162 * With ordered or writeback data it's the same, less the N data blocks.
3164 * If the inode's direct blocks can hold an integral number of pages then a
3165 * page cannot straddle two indirect blocks, and we can only touch one indirect
3166 * and dindirect block, and the "5" above becomes "3".
3168 * This still overestimates under most circumstances. If we were to pass the
3169 * start and end offsets in here as well we could do block_to_path() on each
3170 * block and work out the exact number of indirects which are touched. Pah.
3173 int ext4_writepage_trans_blocks(struct inode *inode)
3175 int bpp = ext4_journal_blocks_per_page(inode);
3176 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3179 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3180 return ext4_ext_writepage_trans_blocks(inode, bpp);
3182 if (ext4_should_journal_data(inode))
3183 ret = 3 * (bpp + indirects) + 2;
3185 ret = 2 * (bpp + indirects) + 2;
3188 /* We know that structure was already allocated during DQUOT_INIT so
3189 * we will be updating only the data blocks + inodes */
3190 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3197 * The caller must have previously called ext4_reserve_inode_write().
3198 * Give this, we know that the caller already has write access to iloc->bh.
3200 int ext4_mark_iloc_dirty(handle_t *handle,
3201 struct inode *inode, struct ext4_iloc *iloc)
3205 if (test_opt(inode->i_sb, I_VERSION))
3206 inode_inc_iversion(inode);
3208 /* the do_update_inode consumes one bh->b_count */
3211 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3212 err = ext4_do_update_inode(handle, inode, iloc);
3218 * On success, We end up with an outstanding reference count against
3219 * iloc->bh. This _must_ be cleaned up later.
3223 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3224 struct ext4_iloc *iloc)
3228 err = ext4_get_inode_loc(inode, iloc);
3230 BUFFER_TRACE(iloc->bh, "get_write_access");
3231 err = ext4_journal_get_write_access(handle, iloc->bh);
3238 ext4_std_error(inode->i_sb, err);
3243 * Expand an inode by new_extra_isize bytes.
3244 * Returns 0 on success or negative error number on failure.
3246 static int ext4_expand_extra_isize(struct inode *inode,
3247 unsigned int new_extra_isize,
3248 struct ext4_iloc iloc,
3251 struct ext4_inode *raw_inode;
3252 struct ext4_xattr_ibody_header *header;
3253 struct ext4_xattr_entry *entry;
3255 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3258 raw_inode = ext4_raw_inode(&iloc);
3260 header = IHDR(inode, raw_inode);
3261 entry = IFIRST(header);
3263 /* No extended attributes present */
3264 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3265 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3266 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3268 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3272 /* try to expand with EAs present */
3273 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3278 * What we do here is to mark the in-core inode as clean with respect to inode
3279 * dirtiness (it may still be data-dirty).
3280 * This means that the in-core inode may be reaped by prune_icache
3281 * without having to perform any I/O. This is a very good thing,
3282 * because *any* task may call prune_icache - even ones which
3283 * have a transaction open against a different journal.
3285 * Is this cheating? Not really. Sure, we haven't written the
3286 * inode out, but prune_icache isn't a user-visible syncing function.
3287 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3288 * we start and wait on commits.
3290 * Is this efficient/effective? Well, we're being nice to the system
3291 * by cleaning up our inodes proactively so they can be reaped
3292 * without I/O. But we are potentially leaving up to five seconds'
3293 * worth of inodes floating about which prune_icache wants us to
3294 * write out. One way to fix that would be to get prune_icache()
3295 * to do a write_super() to free up some memory. It has the desired
3298 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3300 struct ext4_iloc iloc;
3301 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3302 static unsigned int mnt_count;
3306 err = ext4_reserve_inode_write(handle, inode, &iloc);
3307 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3308 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3310 * We need extra buffer credits since we may write into EA block
3311 * with this same handle. If journal_extend fails, then it will
3312 * only result in a minor loss of functionality for that inode.
3313 * If this is felt to be critical, then e2fsck should be run to
3314 * force a large enough s_min_extra_isize.
3316 if ((jbd2_journal_extend(handle,
3317 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3318 ret = ext4_expand_extra_isize(inode,
3319 sbi->s_want_extra_isize,
3322 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3324 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3325 ext4_warning(inode->i_sb, __FUNCTION__,
3326 "Unable to expand inode %lu. Delete"
3327 " some EAs or run e2fsck.",
3330 le16_to_cpu(sbi->s_es->s_mnt_count);
3336 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3341 * ext4_dirty_inode() is called from __mark_inode_dirty()
3343 * We're really interested in the case where a file is being extended.
3344 * i_size has been changed by generic_commit_write() and we thus need
3345 * to include the updated inode in the current transaction.
3347 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3348 * are allocated to the file.
3350 * If the inode is marked synchronous, we don't honour that here - doing
3351 * so would cause a commit on atime updates, which we don't bother doing.
3352 * We handle synchronous inodes at the highest possible level.
3354 void ext4_dirty_inode(struct inode *inode)
3356 handle_t *current_handle = ext4_journal_current_handle();
3359 handle = ext4_journal_start(inode, 2);
3362 if (current_handle &&
3363 current_handle->h_transaction != handle->h_transaction) {
3364 /* This task has a transaction open against a different fs */
3365 printk(KERN_EMERG "%s: transactions do not match!\n",
3368 jbd_debug(5, "marking dirty. outer handle=%p\n",
3370 ext4_mark_inode_dirty(handle, inode);
3372 ext4_journal_stop(handle);
3379 * Bind an inode's backing buffer_head into this transaction, to prevent
3380 * it from being flushed to disk early. Unlike
3381 * ext4_reserve_inode_write, this leaves behind no bh reference and
3382 * returns no iloc structure, so the caller needs to repeat the iloc
3383 * lookup to mark the inode dirty later.
3385 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3387 struct ext4_iloc iloc;
3391 err = ext4_get_inode_loc(inode, &iloc);
3393 BUFFER_TRACE(iloc.bh, "get_write_access");
3394 err = jbd2_journal_get_write_access(handle, iloc.bh);
3396 err = ext4_journal_dirty_metadata(handle,
3401 ext4_std_error(inode->i_sb, err);
3406 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3413 * We have to be very careful here: changing a data block's
3414 * journaling status dynamically is dangerous. If we write a
3415 * data block to the journal, change the status and then delete
3416 * that block, we risk forgetting to revoke the old log record
3417 * from the journal and so a subsequent replay can corrupt data.
3418 * So, first we make sure that the journal is empty and that
3419 * nobody is changing anything.
3422 journal = EXT4_JOURNAL(inode);
3423 if (is_journal_aborted(journal))
3426 jbd2_journal_lock_updates(journal);
3427 jbd2_journal_flush(journal);
3430 * OK, there are no updates running now, and all cached data is
3431 * synced to disk. We are now in a completely consistent state
3432 * which doesn't have anything in the journal, and we know that
3433 * no filesystem updates are running, so it is safe to modify
3434 * the inode's in-core data-journaling state flag now.
3438 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3440 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3441 ext4_set_aops(inode);
3443 jbd2_journal_unlock_updates(journal);
3445 /* Finally we can mark the inode as dirty. */
3447 handle = ext4_journal_start(inode, 1);
3449 return PTR_ERR(handle);
3451 err = ext4_mark_inode_dirty(handle, inode);
3453 ext4_journal_stop(handle);
3454 ext4_std_error(inode->i_sb, err);