]> err.no Git - linux-2.6/blob - fs/ext4/inode.c
Merge branch 'async-tx-for-linus' of git://lost.foo-projects.org/~dwillia2/git/iop...
[linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_grpblk_t colour;
407
408         /* Try to find previous block */
409         for (p = ind->p - 1; p >= start; p--) {
410                 if (*p)
411                         return le32_to_cpu(*p);
412         }
413
414         /* No such thing, so let's try location of indirect block */
415         if (ind->bh)
416                 return ind->bh->b_blocknr;
417
418         /*
419          * It is going to be referred to from the inode itself? OK, just put it
420          * into the same cylinder group then.
421          */
422         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423         colour = (current->pid % 16) *
424                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425         return bg_start + colour;
426 }
427
428 /**
429  *      ext4_find_goal - find a prefered place for allocation.
430  *      @inode: owner
431  *      @block:  block we want
432  *      @partial: pointer to the last triple within a chain
433  *
434  *      Normally this function find the prefered place for block allocation,
435  *      returns it.
436  */
437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
438                 Indirect *partial)
439 {
440         struct ext4_block_alloc_info *block_i;
441
442         block_i =  EXT4_I(inode)->i_block_alloc_info;
443
444         /*
445          * try the heuristic for sequential allocation,
446          * failing that at least try to get decent locality.
447          */
448         if (block_i && (block == block_i->last_alloc_logical_block + 1)
449                 && (block_i->last_alloc_physical_block != 0)) {
450                 return block_i->last_alloc_physical_block + 1;
451         }
452
453         return ext4_find_near(inode, partial);
454 }
455
456 /**
457  *      ext4_blks_to_allocate: Look up the block map and count the number
458  *      of direct blocks need to be allocated for the given branch.
459  *
460  *      @branch: chain of indirect blocks
461  *      @k: number of blocks need for indirect blocks
462  *      @blks: number of data blocks to be mapped.
463  *      @blocks_to_boundary:  the offset in the indirect block
464  *
465  *      return the total number of blocks to be allocate, including the
466  *      direct and indirect blocks.
467  */
468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469                 int blocks_to_boundary)
470 {
471         unsigned long count = 0;
472
473         /*
474          * Simple case, [t,d]Indirect block(s) has not allocated yet
475          * then it's clear blocks on that path have not allocated
476          */
477         if (k > 0) {
478                 /* right now we don't handle cross boundary allocation */
479                 if (blks < blocks_to_boundary + 1)
480                         count += blks;
481                 else
482                         count += blocks_to_boundary + 1;
483                 return count;
484         }
485
486         count++;
487         while (count < blks && count <= blocks_to_boundary &&
488                 le32_to_cpu(*(branch[0].p + count)) == 0) {
489                 count++;
490         }
491         return count;
492 }
493
494 /**
495  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
496  *      @indirect_blks: the number of blocks need to allocate for indirect
497  *                      blocks
498  *
499  *      @new_blocks: on return it will store the new block numbers for
500  *      the indirect blocks(if needed) and the first direct block,
501  *      @blks:  on return it will store the total number of allocated
502  *              direct blocks
503  */
504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505                         ext4_fsblk_t goal, int indirect_blks, int blks,
506                         ext4_fsblk_t new_blocks[4], int *err)
507 {
508         int target, i;
509         unsigned long count = 0;
510         int index = 0;
511         ext4_fsblk_t current_block = 0;
512         int ret = 0;
513
514         /*
515          * Here we try to allocate the requested multiple blocks at once,
516          * on a best-effort basis.
517          * To build a branch, we should allocate blocks for
518          * the indirect blocks(if not allocated yet), and at least
519          * the first direct block of this branch.  That's the
520          * minimum number of blocks need to allocate(required)
521          */
522         target = blks + indirect_blks;
523
524         while (1) {
525                 count = target;
526                 /* allocating blocks for indirect blocks and direct blocks */
527                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
528                 if (*err)
529                         goto failed_out;
530
531                 target -= count;
532                 /* allocate blocks for indirect blocks */
533                 while (index < indirect_blks && count) {
534                         new_blocks[index++] = current_block++;
535                         count--;
536                 }
537
538                 if (count > 0)
539                         break;
540         }
541
542         /* save the new block number for the first direct block */
543         new_blocks[index] = current_block;
544
545         /* total number of blocks allocated for direct blocks */
546         ret = count;
547         *err = 0;
548         return ret;
549 failed_out:
550         for (i = 0; i <index; i++)
551                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
552         return ret;
553 }
554
555 /**
556  *      ext4_alloc_branch - allocate and set up a chain of blocks.
557  *      @inode: owner
558  *      @indirect_blks: number of allocated indirect blocks
559  *      @blks: number of allocated direct blocks
560  *      @offsets: offsets (in the blocks) to store the pointers to next.
561  *      @branch: place to store the chain in.
562  *
563  *      This function allocates blocks, zeroes out all but the last one,
564  *      links them into chain and (if we are synchronous) writes them to disk.
565  *      In other words, it prepares a branch that can be spliced onto the
566  *      inode. It stores the information about that chain in the branch[], in
567  *      the same format as ext4_get_branch() would do. We are calling it after
568  *      we had read the existing part of chain and partial points to the last
569  *      triple of that (one with zero ->key). Upon the exit we have the same
570  *      picture as after the successful ext4_get_block(), except that in one
571  *      place chain is disconnected - *branch->p is still zero (we did not
572  *      set the last link), but branch->key contains the number that should
573  *      be placed into *branch->p to fill that gap.
574  *
575  *      If allocation fails we free all blocks we've allocated (and forget
576  *      their buffer_heads) and return the error value the from failed
577  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578  *      as described above and return 0.
579  */
580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581                         int indirect_blks, int *blks, ext4_fsblk_t goal,
582                         ext4_lblk_t *offsets, Indirect *branch)
583 {
584         int blocksize = inode->i_sb->s_blocksize;
585         int i, n = 0;
586         int err = 0;
587         struct buffer_head *bh;
588         int num;
589         ext4_fsblk_t new_blocks[4];
590         ext4_fsblk_t current_block;
591
592         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593                                 *blks, new_blocks, &err);
594         if (err)
595                 return err;
596
597         branch[0].key = cpu_to_le32(new_blocks[0]);
598         /*
599          * metadata blocks and data blocks are allocated.
600          */
601         for (n = 1; n <= indirect_blks;  n++) {
602                 /*
603                  * Get buffer_head for parent block, zero it out
604                  * and set the pointer to new one, then send
605                  * parent to disk.
606                  */
607                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608                 branch[n].bh = bh;
609                 lock_buffer(bh);
610                 BUFFER_TRACE(bh, "call get_create_access");
611                 err = ext4_journal_get_create_access(handle, bh);
612                 if (err) {
613                         unlock_buffer(bh);
614                         brelse(bh);
615                         goto failed;
616                 }
617
618                 memset(bh->b_data, 0, blocksize);
619                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
620                 branch[n].key = cpu_to_le32(new_blocks[n]);
621                 *branch[n].p = branch[n].key;
622                 if ( n == indirect_blks) {
623                         current_block = new_blocks[n];
624                         /*
625                          * End of chain, update the last new metablock of
626                          * the chain to point to the new allocated
627                          * data blocks numbers
628                          */
629                         for (i=1; i < num; i++)
630                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
631                 }
632                 BUFFER_TRACE(bh, "marking uptodate");
633                 set_buffer_uptodate(bh);
634                 unlock_buffer(bh);
635
636                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637                 err = ext4_journal_dirty_metadata(handle, bh);
638                 if (err)
639                         goto failed;
640         }
641         *blks = num;
642         return err;
643 failed:
644         /* Allocation failed, free what we already allocated */
645         for (i = 1; i <= n ; i++) {
646                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647                 ext4_journal_forget(handle, branch[i].bh);
648         }
649         for (i = 0; i <indirect_blks; i++)
650                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
651
652         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
653
654         return err;
655 }
656
657 /**
658  * ext4_splice_branch - splice the allocated branch onto inode.
659  * @inode: owner
660  * @block: (logical) number of block we are adding
661  * @chain: chain of indirect blocks (with a missing link - see
662  *      ext4_alloc_branch)
663  * @where: location of missing link
664  * @num:   number of indirect blocks we are adding
665  * @blks:  number of direct blocks we are adding
666  *
667  * This function fills the missing link and does all housekeeping needed in
668  * inode (->i_blocks, etc.). In case of success we end up with the full
669  * chain to new block and return 0.
670  */
671 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
672                         ext4_lblk_t block, Indirect *where, int num, int blks)
673 {
674         int i;
675         int err = 0;
676         struct ext4_block_alloc_info *block_i;
677         ext4_fsblk_t current_block;
678
679         block_i = EXT4_I(inode)->i_block_alloc_info;
680         /*
681          * If we're splicing into a [td]indirect block (as opposed to the
682          * inode) then we need to get write access to the [td]indirect block
683          * before the splice.
684          */
685         if (where->bh) {
686                 BUFFER_TRACE(where->bh, "get_write_access");
687                 err = ext4_journal_get_write_access(handle, where->bh);
688                 if (err)
689                         goto err_out;
690         }
691         /* That's it */
692
693         *where->p = where->key;
694
695         /*
696          * Update the host buffer_head or inode to point to more just allocated
697          * direct blocks blocks
698          */
699         if (num == 0 && blks > 1) {
700                 current_block = le32_to_cpu(where->key) + 1;
701                 for (i = 1; i < blks; i++)
702                         *(where->p + i ) = cpu_to_le32(current_block++);
703         }
704
705         /*
706          * update the most recently allocated logical & physical block
707          * in i_block_alloc_info, to assist find the proper goal block for next
708          * allocation
709          */
710         if (block_i) {
711                 block_i->last_alloc_logical_block = block + blks - 1;
712                 block_i->last_alloc_physical_block =
713                                 le32_to_cpu(where[num].key) + blks - 1;
714         }
715
716         /* We are done with atomic stuff, now do the rest of housekeeping */
717
718         inode->i_ctime = ext4_current_time(inode);
719         ext4_mark_inode_dirty(handle, inode);
720
721         /* had we spliced it onto indirect block? */
722         if (where->bh) {
723                 /*
724                  * If we spliced it onto an indirect block, we haven't
725                  * altered the inode.  Note however that if it is being spliced
726                  * onto an indirect block at the very end of the file (the
727                  * file is growing) then we *will* alter the inode to reflect
728                  * the new i_size.  But that is not done here - it is done in
729                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
730                  */
731                 jbd_debug(5, "splicing indirect only\n");
732                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733                 err = ext4_journal_dirty_metadata(handle, where->bh);
734                 if (err)
735                         goto err_out;
736         } else {
737                 /*
738                  * OK, we spliced it into the inode itself on a direct block.
739                  * Inode was dirtied above.
740                  */
741                 jbd_debug(5, "splicing direct\n");
742         }
743         return err;
744
745 err_out:
746         for (i = 1; i <= num; i++) {
747                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748                 ext4_journal_forget(handle, where[i].bh);
749                 ext4_free_blocks(handle, inode,
750                                         le32_to_cpu(where[i-1].key), 1, 0);
751         }
752         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
753
754         return err;
755 }
756
757 /*
758  * Allocation strategy is simple: if we have to allocate something, we will
759  * have to go the whole way to leaf. So let's do it before attaching anything
760  * to tree, set linkage between the newborn blocks, write them if sync is
761  * required, recheck the path, free and repeat if check fails, otherwise
762  * set the last missing link (that will protect us from any truncate-generated
763  * removals - all blocks on the path are immune now) and possibly force the
764  * write on the parent block.
765  * That has a nice additional property: no special recovery from the failed
766  * allocations is needed - we simply release blocks and do not touch anything
767  * reachable from inode.
768  *
769  * `handle' can be NULL if create == 0.
770  *
771  * The BKL may not be held on entry here.  Be sure to take it early.
772  * return > 0, # of blocks mapped or allocated.
773  * return = 0, if plain lookup failed.
774  * return < 0, error case.
775  *
776  *
777  * Need to be called with
778  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
779  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
780  */
781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
782                 ext4_lblk_t iblock, unsigned long maxblocks,
783                 struct buffer_head *bh_result,
784                 int create, int extend_disksize)
785 {
786         int err = -EIO;
787         ext4_lblk_t offsets[4];
788         Indirect chain[4];
789         Indirect *partial;
790         ext4_fsblk_t goal;
791         int indirect_blks;
792         int blocks_to_boundary = 0;
793         int depth;
794         struct ext4_inode_info *ei = EXT4_I(inode);
795         int count = 0;
796         ext4_fsblk_t first_block = 0;
797
798
799         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
800         J_ASSERT(handle != NULL || create == 0);
801         depth = ext4_block_to_path(inode, iblock, offsets,
802                                         &blocks_to_boundary);
803
804         if (depth == 0)
805                 goto out;
806
807         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
808
809         /* Simplest case - block found, no allocation needed */
810         if (!partial) {
811                 first_block = le32_to_cpu(chain[depth - 1].key);
812                 clear_buffer_new(bh_result);
813                 count++;
814                 /*map more blocks*/
815                 while (count < maxblocks && count <= blocks_to_boundary) {
816                         ext4_fsblk_t blk;
817
818                         blk = le32_to_cpu(*(chain[depth-1].p + count));
819
820                         if (blk == first_block + count)
821                                 count++;
822                         else
823                                 break;
824                 }
825                 goto got_it;
826         }
827
828         /* Next simple case - plain lookup or failed read of indirect block */
829         if (!create || err == -EIO)
830                 goto cleanup;
831
832         /*
833          * Okay, we need to do block allocation.  Lazily initialize the block
834          * allocation info here if necessary
835         */
836         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
837                 ext4_init_block_alloc_info(inode);
838
839         goal = ext4_find_goal(inode, iblock, partial);
840
841         /* the number of blocks need to allocate for [d,t]indirect blocks */
842         indirect_blks = (chain + depth) - partial - 1;
843
844         /*
845          * Next look up the indirect map to count the totoal number of
846          * direct blocks to allocate for this branch.
847          */
848         count = ext4_blks_to_allocate(partial, indirect_blks,
849                                         maxblocks, blocks_to_boundary);
850         /*
851          * Block out ext4_truncate while we alter the tree
852          */
853         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
854                                 offsets + (partial - chain), partial);
855
856         /*
857          * The ext4_splice_branch call will free and forget any buffers
858          * on the new chain if there is a failure, but that risks using
859          * up transaction credits, especially for bitmaps where the
860          * credits cannot be returned.  Can we handle this somehow?  We
861          * may need to return -EAGAIN upwards in the worst case.  --sct
862          */
863         if (!err)
864                 err = ext4_splice_branch(handle, inode, iblock,
865                                         partial, indirect_blks, count);
866         /*
867          * i_disksize growing is protected by i_data_sem.  Don't forget to
868          * protect it if you're about to implement concurrent
869          * ext4_get_block() -bzzz
870         */
871         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
872                 ei->i_disksize = inode->i_size;
873         if (err)
874                 goto cleanup;
875
876         set_buffer_new(bh_result);
877 got_it:
878         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
879         if (count > blocks_to_boundary)
880                 set_buffer_boundary(bh_result);
881         err = count;
882         /* Clean up and exit */
883         partial = chain + depth - 1;    /* the whole chain */
884 cleanup:
885         while (partial > chain) {
886                 BUFFER_TRACE(partial->bh, "call brelse");
887                 brelse(partial->bh);
888                 partial--;
889         }
890         BUFFER_TRACE(bh_result, "returned");
891 out:
892         return err;
893 }
894
895 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
896
897 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
898                         unsigned long max_blocks, struct buffer_head *bh,
899                         int create, int extend_disksize)
900 {
901         int retval;
902         /*
903          * Try to see if we can get  the block without requesting
904          * for new file system block.
905          */
906         down_read((&EXT4_I(inode)->i_data_sem));
907         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
908                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
909                                 bh, 0, 0);
910         } else {
911                 retval = ext4_get_blocks_handle(handle,
912                                 inode, block, max_blocks, bh, 0, 0);
913         }
914         up_read((&EXT4_I(inode)->i_data_sem));
915         if (!create || (retval > 0))
916                 return retval;
917
918         /*
919          * We need to allocate new blocks which will result
920          * in i_data update
921          */
922         down_write((&EXT4_I(inode)->i_data_sem));
923         /*
924          * We need to check for EXT4 here because migrate
925          * could have changed the inode type in between
926          */
927         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
928                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
929                                 bh, create, extend_disksize);
930         } else {
931                 retval = ext4_get_blocks_handle(handle, inode, block,
932                                 max_blocks, bh, create, extend_disksize);
933         }
934         up_write((&EXT4_I(inode)->i_data_sem));
935         return retval;
936 }
937
938 static int ext4_get_block(struct inode *inode, sector_t iblock,
939                         struct buffer_head *bh_result, int create)
940 {
941         handle_t *handle = ext4_journal_current_handle();
942         int ret = 0;
943         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
944
945         if (!create)
946                 goto get_block;         /* A read */
947
948         if (max_blocks == 1)
949                 goto get_block;         /* A single block get */
950
951         if (handle->h_transaction->t_state == T_LOCKED) {
952                 /*
953                  * Huge direct-io writes can hold off commits for long
954                  * periods of time.  Let this commit run.
955                  */
956                 ext4_journal_stop(handle);
957                 handle = ext4_journal_start(inode, DIO_CREDITS);
958                 if (IS_ERR(handle))
959                         ret = PTR_ERR(handle);
960                 goto get_block;
961         }
962
963         if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
964                 /*
965                  * Getting low on buffer credits...
966                  */
967                 ret = ext4_journal_extend(handle, DIO_CREDITS);
968                 if (ret > 0) {
969                         /*
970                          * Couldn't extend the transaction.  Start a new one.
971                          */
972                         ret = ext4_journal_restart(handle, DIO_CREDITS);
973                 }
974         }
975
976 get_block:
977         if (ret == 0) {
978                 ret = ext4_get_blocks_wrap(handle, inode, iblock,
979                                         max_blocks, bh_result, create, 0);
980                 if (ret > 0) {
981                         bh_result->b_size = (ret << inode->i_blkbits);
982                         ret = 0;
983                 }
984         }
985         return ret;
986 }
987
988 /*
989  * `handle' can be NULL if create is zero
990  */
991 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
992                                 ext4_lblk_t block, int create, int *errp)
993 {
994         struct buffer_head dummy;
995         int fatal = 0, err;
996
997         J_ASSERT(handle != NULL || create == 0);
998
999         dummy.b_state = 0;
1000         dummy.b_blocknr = -1000;
1001         buffer_trace_init(&dummy.b_history);
1002         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1003                                         &dummy, create, 1);
1004         /*
1005          * ext4_get_blocks_handle() returns number of blocks
1006          * mapped. 0 in case of a HOLE.
1007          */
1008         if (err > 0) {
1009                 if (err > 1)
1010                         WARN_ON(1);
1011                 err = 0;
1012         }
1013         *errp = err;
1014         if (!err && buffer_mapped(&dummy)) {
1015                 struct buffer_head *bh;
1016                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1017                 if (!bh) {
1018                         *errp = -EIO;
1019                         goto err;
1020                 }
1021                 if (buffer_new(&dummy)) {
1022                         J_ASSERT(create != 0);
1023                         J_ASSERT(handle != NULL);
1024
1025                         /*
1026                          * Now that we do not always journal data, we should
1027                          * keep in mind whether this should always journal the
1028                          * new buffer as metadata.  For now, regular file
1029                          * writes use ext4_get_block instead, so it's not a
1030                          * problem.
1031                          */
1032                         lock_buffer(bh);
1033                         BUFFER_TRACE(bh, "call get_create_access");
1034                         fatal = ext4_journal_get_create_access(handle, bh);
1035                         if (!fatal && !buffer_uptodate(bh)) {
1036                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1037                                 set_buffer_uptodate(bh);
1038                         }
1039                         unlock_buffer(bh);
1040                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1041                         err = ext4_journal_dirty_metadata(handle, bh);
1042                         if (!fatal)
1043                                 fatal = err;
1044                 } else {
1045                         BUFFER_TRACE(bh, "not a new buffer");
1046                 }
1047                 if (fatal) {
1048                         *errp = fatal;
1049                         brelse(bh);
1050                         bh = NULL;
1051                 }
1052                 return bh;
1053         }
1054 err:
1055         return NULL;
1056 }
1057
1058 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1059                                ext4_lblk_t block, int create, int *err)
1060 {
1061         struct buffer_head * bh;
1062
1063         bh = ext4_getblk(handle, inode, block, create, err);
1064         if (!bh)
1065                 return bh;
1066         if (buffer_uptodate(bh))
1067                 return bh;
1068         ll_rw_block(READ_META, 1, &bh);
1069         wait_on_buffer(bh);
1070         if (buffer_uptodate(bh))
1071                 return bh;
1072         put_bh(bh);
1073         *err = -EIO;
1074         return NULL;
1075 }
1076
1077 static int walk_page_buffers(   handle_t *handle,
1078                                 struct buffer_head *head,
1079                                 unsigned from,
1080                                 unsigned to,
1081                                 int *partial,
1082                                 int (*fn)(      handle_t *handle,
1083                                                 struct buffer_head *bh))
1084 {
1085         struct buffer_head *bh;
1086         unsigned block_start, block_end;
1087         unsigned blocksize = head->b_size;
1088         int err, ret = 0;
1089         struct buffer_head *next;
1090
1091         for (   bh = head, block_start = 0;
1092                 ret == 0 && (bh != head || !block_start);
1093                 block_start = block_end, bh = next)
1094         {
1095                 next = bh->b_this_page;
1096                 block_end = block_start + blocksize;
1097                 if (block_end <= from || block_start >= to) {
1098                         if (partial && !buffer_uptodate(bh))
1099                                 *partial = 1;
1100                         continue;
1101                 }
1102                 err = (*fn)(handle, bh);
1103                 if (!ret)
1104                         ret = err;
1105         }
1106         return ret;
1107 }
1108
1109 /*
1110  * To preserve ordering, it is essential that the hole instantiation and
1111  * the data write be encapsulated in a single transaction.  We cannot
1112  * close off a transaction and start a new one between the ext4_get_block()
1113  * and the commit_write().  So doing the jbd2_journal_start at the start of
1114  * prepare_write() is the right place.
1115  *
1116  * Also, this function can nest inside ext4_writepage() ->
1117  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1118  * has generated enough buffer credits to do the whole page.  So we won't
1119  * block on the journal in that case, which is good, because the caller may
1120  * be PF_MEMALLOC.
1121  *
1122  * By accident, ext4 can be reentered when a transaction is open via
1123  * quota file writes.  If we were to commit the transaction while thus
1124  * reentered, there can be a deadlock - we would be holding a quota
1125  * lock, and the commit would never complete if another thread had a
1126  * transaction open and was blocking on the quota lock - a ranking
1127  * violation.
1128  *
1129  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1130  * will _not_ run commit under these circumstances because handle->h_ref
1131  * is elevated.  We'll still have enough credits for the tiny quotafile
1132  * write.
1133  */
1134 static int do_journal_get_write_access(handle_t *handle,
1135                                         struct buffer_head *bh)
1136 {
1137         if (!buffer_mapped(bh) || buffer_freed(bh))
1138                 return 0;
1139         return ext4_journal_get_write_access(handle, bh);
1140 }
1141
1142 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143                                 loff_t pos, unsigned len, unsigned flags,
1144                                 struct page **pagep, void **fsdata)
1145 {
1146         struct inode *inode = mapping->host;
1147         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1148         handle_t *handle;
1149         int retries = 0;
1150         struct page *page;
1151         pgoff_t index;
1152         unsigned from, to;
1153
1154         index = pos >> PAGE_CACHE_SHIFT;
1155         from = pos & (PAGE_CACHE_SIZE - 1);
1156         to = from + len;
1157
1158 retry:
1159         page = __grab_cache_page(mapping, index);
1160         if (!page)
1161                 return -ENOMEM;
1162         *pagep = page;
1163
1164         handle = ext4_journal_start(inode, needed_blocks);
1165         if (IS_ERR(handle)) {
1166                 unlock_page(page);
1167                 page_cache_release(page);
1168                 ret = PTR_ERR(handle);
1169                 goto out;
1170         }
1171
1172         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1173                                                         ext4_get_block);
1174
1175         if (!ret && ext4_should_journal_data(inode)) {
1176                 ret = walk_page_buffers(handle, page_buffers(page),
1177                                 from, to, NULL, do_journal_get_write_access);
1178         }
1179
1180         if (ret) {
1181                 ext4_journal_stop(handle);
1182                 unlock_page(page);
1183                 page_cache_release(page);
1184         }
1185
1186         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1187                 goto retry;
1188 out:
1189         return ret;
1190 }
1191
1192 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1193 {
1194         int err = jbd2_journal_dirty_data(handle, bh);
1195         if (err)
1196                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1197                                                 bh, handle, err);
1198         return err;
1199 }
1200
1201 /* For write_end() in data=journal mode */
1202 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1203 {
1204         if (!buffer_mapped(bh) || buffer_freed(bh))
1205                 return 0;
1206         set_buffer_uptodate(bh);
1207         return ext4_journal_dirty_metadata(handle, bh);
1208 }
1209
1210 /*
1211  * Generic write_end handler for ordered and writeback ext4 journal modes.
1212  * We can't use generic_write_end, because that unlocks the page and we need to
1213  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1214  * after block_write_end.
1215  */
1216 static int ext4_generic_write_end(struct file *file,
1217                                 struct address_space *mapping,
1218                                 loff_t pos, unsigned len, unsigned copied,
1219                                 struct page *page, void *fsdata)
1220 {
1221         struct inode *inode = file->f_mapping->host;
1222
1223         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1224
1225         if (pos+copied > inode->i_size) {
1226                 i_size_write(inode, pos+copied);
1227                 mark_inode_dirty(inode);
1228         }
1229
1230         return copied;
1231 }
1232
1233 /*
1234  * We need to pick up the new inode size which generic_commit_write gave us
1235  * `file' can be NULL - eg, when called from page_symlink().
1236  *
1237  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1238  * buffers are managed internally.
1239  */
1240 static int ext4_ordered_write_end(struct file *file,
1241                                 struct address_space *mapping,
1242                                 loff_t pos, unsigned len, unsigned copied,
1243                                 struct page *page, void *fsdata)
1244 {
1245         handle_t *handle = ext4_journal_current_handle();
1246         struct inode *inode = file->f_mapping->host;
1247         unsigned from, to;
1248         int ret = 0, ret2;
1249
1250         from = pos & (PAGE_CACHE_SIZE - 1);
1251         to = from + len;
1252
1253         ret = walk_page_buffers(handle, page_buffers(page),
1254                 from, to, NULL, ext4_journal_dirty_data);
1255
1256         if (ret == 0) {
1257                 /*
1258                  * generic_write_end() will run mark_inode_dirty() if i_size
1259                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1260                  * into that.
1261                  */
1262                 loff_t new_i_size;
1263
1264                 new_i_size = pos + copied;
1265                 if (new_i_size > EXT4_I(inode)->i_disksize)
1266                         EXT4_I(inode)->i_disksize = new_i_size;
1267                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1268                                                         page, fsdata);
1269                 if (copied < 0)
1270                         ret = copied;
1271         }
1272         ret2 = ext4_journal_stop(handle);
1273         if (!ret)
1274                 ret = ret2;
1275         unlock_page(page);
1276         page_cache_release(page);
1277
1278         return ret ? ret : copied;
1279 }
1280
1281 static int ext4_writeback_write_end(struct file *file,
1282                                 struct address_space *mapping,
1283                                 loff_t pos, unsigned len, unsigned copied,
1284                                 struct page *page, void *fsdata)
1285 {
1286         handle_t *handle = ext4_journal_current_handle();
1287         struct inode *inode = file->f_mapping->host;
1288         int ret = 0, ret2;
1289         loff_t new_i_size;
1290
1291         new_i_size = pos + copied;
1292         if (new_i_size > EXT4_I(inode)->i_disksize)
1293                 EXT4_I(inode)->i_disksize = new_i_size;
1294
1295         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1296                                                         page, fsdata);
1297         if (copied < 0)
1298                 ret = copied;
1299
1300         ret2 = ext4_journal_stop(handle);
1301         if (!ret)
1302                 ret = ret2;
1303         unlock_page(page);
1304         page_cache_release(page);
1305
1306         return ret ? ret : copied;
1307 }
1308
1309 static int ext4_journalled_write_end(struct file *file,
1310                                 struct address_space *mapping,
1311                                 loff_t pos, unsigned len, unsigned copied,
1312                                 struct page *page, void *fsdata)
1313 {
1314         handle_t *handle = ext4_journal_current_handle();
1315         struct inode *inode = mapping->host;
1316         int ret = 0, ret2;
1317         int partial = 0;
1318         unsigned from, to;
1319
1320         from = pos & (PAGE_CACHE_SIZE - 1);
1321         to = from + len;
1322
1323         if (copied < len) {
1324                 if (!PageUptodate(page))
1325                         copied = 0;
1326                 page_zero_new_buffers(page, from+copied, to);
1327         }
1328
1329         ret = walk_page_buffers(handle, page_buffers(page), from,
1330                                 to, &partial, write_end_fn);
1331         if (!partial)
1332                 SetPageUptodate(page);
1333         if (pos+copied > inode->i_size)
1334                 i_size_write(inode, pos+copied);
1335         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1336         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1337                 EXT4_I(inode)->i_disksize = inode->i_size;
1338                 ret2 = ext4_mark_inode_dirty(handle, inode);
1339                 if (!ret)
1340                         ret = ret2;
1341         }
1342
1343         ret2 = ext4_journal_stop(handle);
1344         if (!ret)
1345                 ret = ret2;
1346         unlock_page(page);
1347         page_cache_release(page);
1348
1349         return ret ? ret : copied;
1350 }
1351
1352 /*
1353  * bmap() is special.  It gets used by applications such as lilo and by
1354  * the swapper to find the on-disk block of a specific piece of data.
1355  *
1356  * Naturally, this is dangerous if the block concerned is still in the
1357  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1358  * filesystem and enables swap, then they may get a nasty shock when the
1359  * data getting swapped to that swapfile suddenly gets overwritten by
1360  * the original zero's written out previously to the journal and
1361  * awaiting writeback in the kernel's buffer cache.
1362  *
1363  * So, if we see any bmap calls here on a modified, data-journaled file,
1364  * take extra steps to flush any blocks which might be in the cache.
1365  */
1366 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1367 {
1368         struct inode *inode = mapping->host;
1369         journal_t *journal;
1370         int err;
1371
1372         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1373                 /*
1374                  * This is a REALLY heavyweight approach, but the use of
1375                  * bmap on dirty files is expected to be extremely rare:
1376                  * only if we run lilo or swapon on a freshly made file
1377                  * do we expect this to happen.
1378                  *
1379                  * (bmap requires CAP_SYS_RAWIO so this does not
1380                  * represent an unprivileged user DOS attack --- we'd be
1381                  * in trouble if mortal users could trigger this path at
1382                  * will.)
1383                  *
1384                  * NB. EXT4_STATE_JDATA is not set on files other than
1385                  * regular files.  If somebody wants to bmap a directory
1386                  * or symlink and gets confused because the buffer
1387                  * hasn't yet been flushed to disk, they deserve
1388                  * everything they get.
1389                  */
1390
1391                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1392                 journal = EXT4_JOURNAL(inode);
1393                 jbd2_journal_lock_updates(journal);
1394                 err = jbd2_journal_flush(journal);
1395                 jbd2_journal_unlock_updates(journal);
1396
1397                 if (err)
1398                         return 0;
1399         }
1400
1401         return generic_block_bmap(mapping,block,ext4_get_block);
1402 }
1403
1404 static int bget_one(handle_t *handle, struct buffer_head *bh)
1405 {
1406         get_bh(bh);
1407         return 0;
1408 }
1409
1410 static int bput_one(handle_t *handle, struct buffer_head *bh)
1411 {
1412         put_bh(bh);
1413         return 0;
1414 }
1415
1416 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1417 {
1418         if (buffer_mapped(bh))
1419                 return ext4_journal_dirty_data(handle, bh);
1420         return 0;
1421 }
1422
1423 /*
1424  * Note that we always start a transaction even if we're not journalling
1425  * data.  This is to preserve ordering: any hole instantiation within
1426  * __block_write_full_page -> ext4_get_block() should be journalled
1427  * along with the data so we don't crash and then get metadata which
1428  * refers to old data.
1429  *
1430  * In all journalling modes block_write_full_page() will start the I/O.
1431  *
1432  * Problem:
1433  *
1434  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1435  *              ext4_writepage()
1436  *
1437  * Similar for:
1438  *
1439  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1440  *
1441  * Same applies to ext4_get_block().  We will deadlock on various things like
1442  * lock_journal and i_data_sem
1443  *
1444  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1445  * allocations fail.
1446  *
1447  * 16May01: If we're reentered then journal_current_handle() will be
1448  *          non-zero. We simply *return*.
1449  *
1450  * 1 July 2001: @@@ FIXME:
1451  *   In journalled data mode, a data buffer may be metadata against the
1452  *   current transaction.  But the same file is part of a shared mapping
1453  *   and someone does a writepage() on it.
1454  *
1455  *   We will move the buffer onto the async_data list, but *after* it has
1456  *   been dirtied. So there's a small window where we have dirty data on
1457  *   BJ_Metadata.
1458  *
1459  *   Note that this only applies to the last partial page in the file.  The
1460  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1461  *   broken code anyway: it's wrong for msync()).
1462  *
1463  *   It's a rare case: affects the final partial page, for journalled data
1464  *   where the file is subject to bith write() and writepage() in the same
1465  *   transction.  To fix it we'll need a custom block_write_full_page().
1466  *   We'll probably need that anyway for journalling writepage() output.
1467  *
1468  * We don't honour synchronous mounts for writepage().  That would be
1469  * disastrous.  Any write() or metadata operation will sync the fs for
1470  * us.
1471  *
1472  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1473  * we don't need to open a transaction here.
1474  */
1475 static int ext4_ordered_writepage(struct page *page,
1476                                 struct writeback_control *wbc)
1477 {
1478         struct inode *inode = page->mapping->host;
1479         struct buffer_head *page_bufs;
1480         handle_t *handle = NULL;
1481         int ret = 0;
1482         int err;
1483
1484         J_ASSERT(PageLocked(page));
1485
1486         /*
1487          * We give up here if we're reentered, because it might be for a
1488          * different filesystem.
1489          */
1490         if (ext4_journal_current_handle())
1491                 goto out_fail;
1492
1493         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1494
1495         if (IS_ERR(handle)) {
1496                 ret = PTR_ERR(handle);
1497                 goto out_fail;
1498         }
1499
1500         if (!page_has_buffers(page)) {
1501                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1502                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1503         }
1504         page_bufs = page_buffers(page);
1505         walk_page_buffers(handle, page_bufs, 0,
1506                         PAGE_CACHE_SIZE, NULL, bget_one);
1507
1508         ret = block_write_full_page(page, ext4_get_block, wbc);
1509
1510         /*
1511          * The page can become unlocked at any point now, and
1512          * truncate can then come in and change things.  So we
1513          * can't touch *page from now on.  But *page_bufs is
1514          * safe due to elevated refcount.
1515          */
1516
1517         /*
1518          * And attach them to the current transaction.  But only if
1519          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1520          * and generally junk.
1521          */
1522         if (ret == 0) {
1523                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1524                                         NULL, jbd2_journal_dirty_data_fn);
1525                 if (!ret)
1526                         ret = err;
1527         }
1528         walk_page_buffers(handle, page_bufs, 0,
1529                         PAGE_CACHE_SIZE, NULL, bput_one);
1530         err = ext4_journal_stop(handle);
1531         if (!ret)
1532                 ret = err;
1533         return ret;
1534
1535 out_fail:
1536         redirty_page_for_writepage(wbc, page);
1537         unlock_page(page);
1538         return ret;
1539 }
1540
1541 static int ext4_writeback_writepage(struct page *page,
1542                                 struct writeback_control *wbc)
1543 {
1544         struct inode *inode = page->mapping->host;
1545         handle_t *handle = NULL;
1546         int ret = 0;
1547         int err;
1548
1549         if (ext4_journal_current_handle())
1550                 goto out_fail;
1551
1552         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1553         if (IS_ERR(handle)) {
1554                 ret = PTR_ERR(handle);
1555                 goto out_fail;
1556         }
1557
1558         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1559                 ret = nobh_writepage(page, ext4_get_block, wbc);
1560         else
1561                 ret = block_write_full_page(page, ext4_get_block, wbc);
1562
1563         err = ext4_journal_stop(handle);
1564         if (!ret)
1565                 ret = err;
1566         return ret;
1567
1568 out_fail:
1569         redirty_page_for_writepage(wbc, page);
1570         unlock_page(page);
1571         return ret;
1572 }
1573
1574 static int ext4_journalled_writepage(struct page *page,
1575                                 struct writeback_control *wbc)
1576 {
1577         struct inode *inode = page->mapping->host;
1578         handle_t *handle = NULL;
1579         int ret = 0;
1580         int err;
1581
1582         if (ext4_journal_current_handle())
1583                 goto no_write;
1584
1585         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1586         if (IS_ERR(handle)) {
1587                 ret = PTR_ERR(handle);
1588                 goto no_write;
1589         }
1590
1591         if (!page_has_buffers(page) || PageChecked(page)) {
1592                 /*
1593                  * It's mmapped pagecache.  Add buffers and journal it.  There
1594                  * doesn't seem much point in redirtying the page here.
1595                  */
1596                 ClearPageChecked(page);
1597                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1598                                         ext4_get_block);
1599                 if (ret != 0) {
1600                         ext4_journal_stop(handle);
1601                         goto out_unlock;
1602                 }
1603                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1604                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1605
1606                 err = walk_page_buffers(handle, page_buffers(page), 0,
1607                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1608                 if (ret == 0)
1609                         ret = err;
1610                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1611                 unlock_page(page);
1612         } else {
1613                 /*
1614                  * It may be a page full of checkpoint-mode buffers.  We don't
1615                  * really know unless we go poke around in the buffer_heads.
1616                  * But block_write_full_page will do the right thing.
1617                  */
1618                 ret = block_write_full_page(page, ext4_get_block, wbc);
1619         }
1620         err = ext4_journal_stop(handle);
1621         if (!ret)
1622                 ret = err;
1623 out:
1624         return ret;
1625
1626 no_write:
1627         redirty_page_for_writepage(wbc, page);
1628 out_unlock:
1629         unlock_page(page);
1630         goto out;
1631 }
1632
1633 static int ext4_readpage(struct file *file, struct page *page)
1634 {
1635         return mpage_readpage(page, ext4_get_block);
1636 }
1637
1638 static int
1639 ext4_readpages(struct file *file, struct address_space *mapping,
1640                 struct list_head *pages, unsigned nr_pages)
1641 {
1642         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1643 }
1644
1645 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1646 {
1647         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1648
1649         /*
1650          * If it's a full truncate we just forget about the pending dirtying
1651          */
1652         if (offset == 0)
1653                 ClearPageChecked(page);
1654
1655         jbd2_journal_invalidatepage(journal, page, offset);
1656 }
1657
1658 static int ext4_releasepage(struct page *page, gfp_t wait)
1659 {
1660         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1661
1662         WARN_ON(PageChecked(page));
1663         if (!page_has_buffers(page))
1664                 return 0;
1665         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1666 }
1667
1668 /*
1669  * If the O_DIRECT write will extend the file then add this inode to the
1670  * orphan list.  So recovery will truncate it back to the original size
1671  * if the machine crashes during the write.
1672  *
1673  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1674  * crashes then stale disk data _may_ be exposed inside the file.
1675  */
1676 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1677                         const struct iovec *iov, loff_t offset,
1678                         unsigned long nr_segs)
1679 {
1680         struct file *file = iocb->ki_filp;
1681         struct inode *inode = file->f_mapping->host;
1682         struct ext4_inode_info *ei = EXT4_I(inode);
1683         handle_t *handle = NULL;
1684         ssize_t ret;
1685         int orphan = 0;
1686         size_t count = iov_length(iov, nr_segs);
1687
1688         if (rw == WRITE) {
1689                 loff_t final_size = offset + count;
1690
1691                 handle = ext4_journal_start(inode, DIO_CREDITS);
1692                 if (IS_ERR(handle)) {
1693                         ret = PTR_ERR(handle);
1694                         goto out;
1695                 }
1696                 if (final_size > inode->i_size) {
1697                         ret = ext4_orphan_add(handle, inode);
1698                         if (ret)
1699                                 goto out_stop;
1700                         orphan = 1;
1701                         ei->i_disksize = inode->i_size;
1702                 }
1703         }
1704
1705         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1706                                  offset, nr_segs,
1707                                  ext4_get_block, NULL);
1708
1709         /*
1710          * Reacquire the handle: ext4_get_block() can restart the transaction
1711          */
1712         handle = ext4_journal_current_handle();
1713
1714 out_stop:
1715         if (handle) {
1716                 int err;
1717
1718                 if (orphan && inode->i_nlink)
1719                         ext4_orphan_del(handle, inode);
1720                 if (orphan && ret > 0) {
1721                         loff_t end = offset + ret;
1722                         if (end > inode->i_size) {
1723                                 ei->i_disksize = end;
1724                                 i_size_write(inode, end);
1725                                 /*
1726                                  * We're going to return a positive `ret'
1727                                  * here due to non-zero-length I/O, so there's
1728                                  * no way of reporting error returns from
1729                                  * ext4_mark_inode_dirty() to userspace.  So
1730                                  * ignore it.
1731                                  */
1732                                 ext4_mark_inode_dirty(handle, inode);
1733                         }
1734                 }
1735                 err = ext4_journal_stop(handle);
1736                 if (ret == 0)
1737                         ret = err;
1738         }
1739 out:
1740         return ret;
1741 }
1742
1743 /*
1744  * Pages can be marked dirty completely asynchronously from ext4's journalling
1745  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1746  * much here because ->set_page_dirty is called under VFS locks.  The page is
1747  * not necessarily locked.
1748  *
1749  * We cannot just dirty the page and leave attached buffers clean, because the
1750  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1751  * or jbddirty because all the journalling code will explode.
1752  *
1753  * So what we do is to mark the page "pending dirty" and next time writepage
1754  * is called, propagate that into the buffers appropriately.
1755  */
1756 static int ext4_journalled_set_page_dirty(struct page *page)
1757 {
1758         SetPageChecked(page);
1759         return __set_page_dirty_nobuffers(page);
1760 }
1761
1762 static const struct address_space_operations ext4_ordered_aops = {
1763         .readpage       = ext4_readpage,
1764         .readpages      = ext4_readpages,
1765         .writepage      = ext4_ordered_writepage,
1766         .sync_page      = block_sync_page,
1767         .write_begin    = ext4_write_begin,
1768         .write_end      = ext4_ordered_write_end,
1769         .bmap           = ext4_bmap,
1770         .invalidatepage = ext4_invalidatepage,
1771         .releasepage    = ext4_releasepage,
1772         .direct_IO      = ext4_direct_IO,
1773         .migratepage    = buffer_migrate_page,
1774 };
1775
1776 static const struct address_space_operations ext4_writeback_aops = {
1777         .readpage       = ext4_readpage,
1778         .readpages      = ext4_readpages,
1779         .writepage      = ext4_writeback_writepage,
1780         .sync_page      = block_sync_page,
1781         .write_begin    = ext4_write_begin,
1782         .write_end      = ext4_writeback_write_end,
1783         .bmap           = ext4_bmap,
1784         .invalidatepage = ext4_invalidatepage,
1785         .releasepage    = ext4_releasepage,
1786         .direct_IO      = ext4_direct_IO,
1787         .migratepage    = buffer_migrate_page,
1788 };
1789
1790 static const struct address_space_operations ext4_journalled_aops = {
1791         .readpage       = ext4_readpage,
1792         .readpages      = ext4_readpages,
1793         .writepage      = ext4_journalled_writepage,
1794         .sync_page      = block_sync_page,
1795         .write_begin    = ext4_write_begin,
1796         .write_end      = ext4_journalled_write_end,
1797         .set_page_dirty = ext4_journalled_set_page_dirty,
1798         .bmap           = ext4_bmap,
1799         .invalidatepage = ext4_invalidatepage,
1800         .releasepage    = ext4_releasepage,
1801 };
1802
1803 void ext4_set_aops(struct inode *inode)
1804 {
1805         if (ext4_should_order_data(inode))
1806                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1807         else if (ext4_should_writeback_data(inode))
1808                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1809         else
1810                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1811 }
1812
1813 /*
1814  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1815  * up to the end of the block which corresponds to `from'.
1816  * This required during truncate. We need to physically zero the tail end
1817  * of that block so it doesn't yield old data if the file is later grown.
1818  */
1819 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1820                 struct address_space *mapping, loff_t from)
1821 {
1822         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1823         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1824         unsigned blocksize, length, pos;
1825         ext4_lblk_t iblock;
1826         struct inode *inode = mapping->host;
1827         struct buffer_head *bh;
1828         int err = 0;
1829
1830         blocksize = inode->i_sb->s_blocksize;
1831         length = blocksize - (offset & (blocksize - 1));
1832         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1833
1834         /*
1835          * For "nobh" option,  we can only work if we don't need to
1836          * read-in the page - otherwise we create buffers to do the IO.
1837          */
1838         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1839              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1840                 zero_user(page, offset, length);
1841                 set_page_dirty(page);
1842                 goto unlock;
1843         }
1844
1845         if (!page_has_buffers(page))
1846                 create_empty_buffers(page, blocksize, 0);
1847
1848         /* Find the buffer that contains "offset" */
1849         bh = page_buffers(page);
1850         pos = blocksize;
1851         while (offset >= pos) {
1852                 bh = bh->b_this_page;
1853                 iblock++;
1854                 pos += blocksize;
1855         }
1856
1857         err = 0;
1858         if (buffer_freed(bh)) {
1859                 BUFFER_TRACE(bh, "freed: skip");
1860                 goto unlock;
1861         }
1862
1863         if (!buffer_mapped(bh)) {
1864                 BUFFER_TRACE(bh, "unmapped");
1865                 ext4_get_block(inode, iblock, bh, 0);
1866                 /* unmapped? It's a hole - nothing to do */
1867                 if (!buffer_mapped(bh)) {
1868                         BUFFER_TRACE(bh, "still unmapped");
1869                         goto unlock;
1870                 }
1871         }
1872
1873         /* Ok, it's mapped. Make sure it's up-to-date */
1874         if (PageUptodate(page))
1875                 set_buffer_uptodate(bh);
1876
1877         if (!buffer_uptodate(bh)) {
1878                 err = -EIO;
1879                 ll_rw_block(READ, 1, &bh);
1880                 wait_on_buffer(bh);
1881                 /* Uhhuh. Read error. Complain and punt. */
1882                 if (!buffer_uptodate(bh))
1883                         goto unlock;
1884         }
1885
1886         if (ext4_should_journal_data(inode)) {
1887                 BUFFER_TRACE(bh, "get write access");
1888                 err = ext4_journal_get_write_access(handle, bh);
1889                 if (err)
1890                         goto unlock;
1891         }
1892
1893         zero_user(page, offset, length);
1894
1895         BUFFER_TRACE(bh, "zeroed end of block");
1896
1897         err = 0;
1898         if (ext4_should_journal_data(inode)) {
1899                 err = ext4_journal_dirty_metadata(handle, bh);
1900         } else {
1901                 if (ext4_should_order_data(inode))
1902                         err = ext4_journal_dirty_data(handle, bh);
1903                 mark_buffer_dirty(bh);
1904         }
1905
1906 unlock:
1907         unlock_page(page);
1908         page_cache_release(page);
1909         return err;
1910 }
1911
1912 /*
1913  * Probably it should be a library function... search for first non-zero word
1914  * or memcmp with zero_page, whatever is better for particular architecture.
1915  * Linus?
1916  */
1917 static inline int all_zeroes(__le32 *p, __le32 *q)
1918 {
1919         while (p < q)
1920                 if (*p++)
1921                         return 0;
1922         return 1;
1923 }
1924
1925 /**
1926  *      ext4_find_shared - find the indirect blocks for partial truncation.
1927  *      @inode:   inode in question
1928  *      @depth:   depth of the affected branch
1929  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1930  *      @chain:   place to store the pointers to partial indirect blocks
1931  *      @top:     place to the (detached) top of branch
1932  *
1933  *      This is a helper function used by ext4_truncate().
1934  *
1935  *      When we do truncate() we may have to clean the ends of several
1936  *      indirect blocks but leave the blocks themselves alive. Block is
1937  *      partially truncated if some data below the new i_size is refered
1938  *      from it (and it is on the path to the first completely truncated
1939  *      data block, indeed).  We have to free the top of that path along
1940  *      with everything to the right of the path. Since no allocation
1941  *      past the truncation point is possible until ext4_truncate()
1942  *      finishes, we may safely do the latter, but top of branch may
1943  *      require special attention - pageout below the truncation point
1944  *      might try to populate it.
1945  *
1946  *      We atomically detach the top of branch from the tree, store the
1947  *      block number of its root in *@top, pointers to buffer_heads of
1948  *      partially truncated blocks - in @chain[].bh and pointers to
1949  *      their last elements that should not be removed - in
1950  *      @chain[].p. Return value is the pointer to last filled element
1951  *      of @chain.
1952  *
1953  *      The work left to caller to do the actual freeing of subtrees:
1954  *              a) free the subtree starting from *@top
1955  *              b) free the subtrees whose roots are stored in
1956  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1957  *              c) free the subtrees growing from the inode past the @chain[0].
1958  *                      (no partially truncated stuff there).  */
1959
1960 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1961                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1962 {
1963         Indirect *partial, *p;
1964         int k, err;
1965
1966         *top = 0;
1967         /* Make k index the deepest non-null offest + 1 */
1968         for (k = depth; k > 1 && !offsets[k-1]; k--)
1969                 ;
1970         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1971         /* Writer: pointers */
1972         if (!partial)
1973                 partial = chain + k-1;
1974         /*
1975          * If the branch acquired continuation since we've looked at it -
1976          * fine, it should all survive and (new) top doesn't belong to us.
1977          */
1978         if (!partial->key && *partial->p)
1979                 /* Writer: end */
1980                 goto no_top;
1981         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1982                 ;
1983         /*
1984          * OK, we've found the last block that must survive. The rest of our
1985          * branch should be detached before unlocking. However, if that rest
1986          * of branch is all ours and does not grow immediately from the inode
1987          * it's easier to cheat and just decrement partial->p.
1988          */
1989         if (p == chain + k - 1 && p > chain) {
1990                 p->p--;
1991         } else {
1992                 *top = *p->p;
1993                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1994 #if 0
1995                 *p->p = 0;
1996 #endif
1997         }
1998         /* Writer: end */
1999
2000         while(partial > p) {
2001                 brelse(partial->bh);
2002                 partial--;
2003         }
2004 no_top:
2005         return partial;
2006 }
2007
2008 /*
2009  * Zero a number of block pointers in either an inode or an indirect block.
2010  * If we restart the transaction we must again get write access to the
2011  * indirect block for further modification.
2012  *
2013  * We release `count' blocks on disk, but (last - first) may be greater
2014  * than `count' because there can be holes in there.
2015  */
2016 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2017                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2018                 unsigned long count, __le32 *first, __le32 *last)
2019 {
2020         __le32 *p;
2021         if (try_to_extend_transaction(handle, inode)) {
2022                 if (bh) {
2023                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2024                         ext4_journal_dirty_metadata(handle, bh);
2025                 }
2026                 ext4_mark_inode_dirty(handle, inode);
2027                 ext4_journal_test_restart(handle, inode);
2028                 if (bh) {
2029                         BUFFER_TRACE(bh, "retaking write access");
2030                         ext4_journal_get_write_access(handle, bh);
2031                 }
2032         }
2033
2034         /*
2035          * Any buffers which are on the journal will be in memory. We find
2036          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2037          * on them.  We've already detached each block from the file, so
2038          * bforget() in jbd2_journal_forget() should be safe.
2039          *
2040          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2041          */
2042         for (p = first; p < last; p++) {
2043                 u32 nr = le32_to_cpu(*p);
2044                 if (nr) {
2045                         struct buffer_head *tbh;
2046
2047                         *p = 0;
2048                         tbh = sb_find_get_block(inode->i_sb, nr);
2049                         ext4_forget(handle, 0, inode, tbh, nr);
2050                 }
2051         }
2052
2053         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2054 }
2055
2056 /**
2057  * ext4_free_data - free a list of data blocks
2058  * @handle:     handle for this transaction
2059  * @inode:      inode we are dealing with
2060  * @this_bh:    indirect buffer_head which contains *@first and *@last
2061  * @first:      array of block numbers
2062  * @last:       points immediately past the end of array
2063  *
2064  * We are freeing all blocks refered from that array (numbers are stored as
2065  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2066  *
2067  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2068  * blocks are contiguous then releasing them at one time will only affect one
2069  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2070  * actually use a lot of journal space.
2071  *
2072  * @this_bh will be %NULL if @first and @last point into the inode's direct
2073  * block pointers.
2074  */
2075 static void ext4_free_data(handle_t *handle, struct inode *inode,
2076                            struct buffer_head *this_bh,
2077                            __le32 *first, __le32 *last)
2078 {
2079         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2080         unsigned long count = 0;            /* Number of blocks in the run */
2081         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2082                                                corresponding to
2083                                                block_to_free */
2084         ext4_fsblk_t nr;                    /* Current block # */
2085         __le32 *p;                          /* Pointer into inode/ind
2086                                                for current block */
2087         int err;
2088
2089         if (this_bh) {                          /* For indirect block */
2090                 BUFFER_TRACE(this_bh, "get_write_access");
2091                 err = ext4_journal_get_write_access(handle, this_bh);
2092                 /* Important: if we can't update the indirect pointers
2093                  * to the blocks, we can't free them. */
2094                 if (err)
2095                         return;
2096         }
2097
2098         for (p = first; p < last; p++) {
2099                 nr = le32_to_cpu(*p);
2100                 if (nr) {
2101                         /* accumulate blocks to free if they're contiguous */
2102                         if (count == 0) {
2103                                 block_to_free = nr;
2104                                 block_to_free_p = p;
2105                                 count = 1;
2106                         } else if (nr == block_to_free + count) {
2107                                 count++;
2108                         } else {
2109                                 ext4_clear_blocks(handle, inode, this_bh,
2110                                                   block_to_free,
2111                                                   count, block_to_free_p, p);
2112                                 block_to_free = nr;
2113                                 block_to_free_p = p;
2114                                 count = 1;
2115                         }
2116                 }
2117         }
2118
2119         if (count > 0)
2120                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2121                                   count, block_to_free_p, p);
2122
2123         if (this_bh) {
2124                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2125                 ext4_journal_dirty_metadata(handle, this_bh);
2126         }
2127 }
2128
2129 /**
2130  *      ext4_free_branches - free an array of branches
2131  *      @handle: JBD handle for this transaction
2132  *      @inode: inode we are dealing with
2133  *      @parent_bh: the buffer_head which contains *@first and *@last
2134  *      @first: array of block numbers
2135  *      @last:  pointer immediately past the end of array
2136  *      @depth: depth of the branches to free
2137  *
2138  *      We are freeing all blocks refered from these branches (numbers are
2139  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2140  *      appropriately.
2141  */
2142 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2143                                struct buffer_head *parent_bh,
2144                                __le32 *first, __le32 *last, int depth)
2145 {
2146         ext4_fsblk_t nr;
2147         __le32 *p;
2148
2149         if (is_handle_aborted(handle))
2150                 return;
2151
2152         if (depth--) {
2153                 struct buffer_head *bh;
2154                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2155                 p = last;
2156                 while (--p >= first) {
2157                         nr = le32_to_cpu(*p);
2158                         if (!nr)
2159                                 continue;               /* A hole */
2160
2161                         /* Go read the buffer for the next level down */
2162                         bh = sb_bread(inode->i_sb, nr);
2163
2164                         /*
2165                          * A read failure? Report error and clear slot
2166                          * (should be rare).
2167                          */
2168                         if (!bh) {
2169                                 ext4_error(inode->i_sb, "ext4_free_branches",
2170                                            "Read failure, inode=%lu, block=%llu",
2171                                            inode->i_ino, nr);
2172                                 continue;
2173                         }
2174
2175                         /* This zaps the entire block.  Bottom up. */
2176                         BUFFER_TRACE(bh, "free child branches");
2177                         ext4_free_branches(handle, inode, bh,
2178                                            (__le32*)bh->b_data,
2179                                            (__le32*)bh->b_data + addr_per_block,
2180                                            depth);
2181
2182                         /*
2183                          * We've probably journalled the indirect block several
2184                          * times during the truncate.  But it's no longer
2185                          * needed and we now drop it from the transaction via
2186                          * jbd2_journal_revoke().
2187                          *
2188                          * That's easy if it's exclusively part of this
2189                          * transaction.  But if it's part of the committing
2190                          * transaction then jbd2_journal_forget() will simply
2191                          * brelse() it.  That means that if the underlying
2192                          * block is reallocated in ext4_get_block(),
2193                          * unmap_underlying_metadata() will find this block
2194                          * and will try to get rid of it.  damn, damn.
2195                          *
2196                          * If this block has already been committed to the
2197                          * journal, a revoke record will be written.  And
2198                          * revoke records must be emitted *before* clearing
2199                          * this block's bit in the bitmaps.
2200                          */
2201                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2202
2203                         /*
2204                          * Everything below this this pointer has been
2205                          * released.  Now let this top-of-subtree go.
2206                          *
2207                          * We want the freeing of this indirect block to be
2208                          * atomic in the journal with the updating of the
2209                          * bitmap block which owns it.  So make some room in
2210                          * the journal.
2211                          *
2212                          * We zero the parent pointer *after* freeing its
2213                          * pointee in the bitmaps, so if extend_transaction()
2214                          * for some reason fails to put the bitmap changes and
2215                          * the release into the same transaction, recovery
2216                          * will merely complain about releasing a free block,
2217                          * rather than leaking blocks.
2218                          */
2219                         if (is_handle_aborted(handle))
2220                                 return;
2221                         if (try_to_extend_transaction(handle, inode)) {
2222                                 ext4_mark_inode_dirty(handle, inode);
2223                                 ext4_journal_test_restart(handle, inode);
2224                         }
2225
2226                         ext4_free_blocks(handle, inode, nr, 1, 1);
2227
2228                         if (parent_bh) {
2229                                 /*
2230                                  * The block which we have just freed is
2231                                  * pointed to by an indirect block: journal it
2232                                  */
2233                                 BUFFER_TRACE(parent_bh, "get_write_access");
2234                                 if (!ext4_journal_get_write_access(handle,
2235                                                                    parent_bh)){
2236                                         *p = 0;
2237                                         BUFFER_TRACE(parent_bh,
2238                                         "call ext4_journal_dirty_metadata");
2239                                         ext4_journal_dirty_metadata(handle,
2240                                                                     parent_bh);
2241                                 }
2242                         }
2243                 }
2244         } else {
2245                 /* We have reached the bottom of the tree. */
2246                 BUFFER_TRACE(parent_bh, "free data blocks");
2247                 ext4_free_data(handle, inode, parent_bh, first, last);
2248         }
2249 }
2250
2251 /*
2252  * ext4_truncate()
2253  *
2254  * We block out ext4_get_block() block instantiations across the entire
2255  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2256  * simultaneously on behalf of the same inode.
2257  *
2258  * As we work through the truncate and commmit bits of it to the journal there
2259  * is one core, guiding principle: the file's tree must always be consistent on
2260  * disk.  We must be able to restart the truncate after a crash.
2261  *
2262  * The file's tree may be transiently inconsistent in memory (although it
2263  * probably isn't), but whenever we close off and commit a journal transaction,
2264  * the contents of (the filesystem + the journal) must be consistent and
2265  * restartable.  It's pretty simple, really: bottom up, right to left (although
2266  * left-to-right works OK too).
2267  *
2268  * Note that at recovery time, journal replay occurs *before* the restart of
2269  * truncate against the orphan inode list.
2270  *
2271  * The committed inode has the new, desired i_size (which is the same as
2272  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2273  * that this inode's truncate did not complete and it will again call
2274  * ext4_truncate() to have another go.  So there will be instantiated blocks
2275  * to the right of the truncation point in a crashed ext4 filesystem.  But
2276  * that's fine - as long as they are linked from the inode, the post-crash
2277  * ext4_truncate() run will find them and release them.
2278  */
2279 void ext4_truncate(struct inode *inode)
2280 {
2281         handle_t *handle;
2282         struct ext4_inode_info *ei = EXT4_I(inode);
2283         __le32 *i_data = ei->i_data;
2284         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2285         struct address_space *mapping = inode->i_mapping;
2286         ext4_lblk_t offsets[4];
2287         Indirect chain[4];
2288         Indirect *partial;
2289         __le32 nr = 0;
2290         int n;
2291         ext4_lblk_t last_block;
2292         unsigned blocksize = inode->i_sb->s_blocksize;
2293         struct page *page;
2294
2295         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2296             S_ISLNK(inode->i_mode)))
2297                 return;
2298         if (ext4_inode_is_fast_symlink(inode))
2299                 return;
2300         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2301                 return;
2302
2303         /*
2304          * We have to lock the EOF page here, because lock_page() nests
2305          * outside jbd2_journal_start().
2306          */
2307         if ((inode->i_size & (blocksize - 1)) == 0) {
2308                 /* Block boundary? Nothing to do */
2309                 page = NULL;
2310         } else {
2311                 page = grab_cache_page(mapping,
2312                                 inode->i_size >> PAGE_CACHE_SHIFT);
2313                 if (!page)
2314                         return;
2315         }
2316
2317         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2318                 ext4_ext_truncate(inode, page);
2319                 return;
2320         }
2321
2322         handle = start_transaction(inode);
2323         if (IS_ERR(handle)) {
2324                 if (page) {
2325                         clear_highpage(page);
2326                         flush_dcache_page(page);
2327                         unlock_page(page);
2328                         page_cache_release(page);
2329                 }
2330                 return;         /* AKPM: return what? */
2331         }
2332
2333         last_block = (inode->i_size + blocksize-1)
2334                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2335
2336         if (page)
2337                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2338
2339         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2340         if (n == 0)
2341                 goto out_stop;  /* error */
2342
2343         /*
2344          * OK.  This truncate is going to happen.  We add the inode to the
2345          * orphan list, so that if this truncate spans multiple transactions,
2346          * and we crash, we will resume the truncate when the filesystem
2347          * recovers.  It also marks the inode dirty, to catch the new size.
2348          *
2349          * Implication: the file must always be in a sane, consistent
2350          * truncatable state while each transaction commits.
2351          */
2352         if (ext4_orphan_add(handle, inode))
2353                 goto out_stop;
2354
2355         /*
2356          * The orphan list entry will now protect us from any crash which
2357          * occurs before the truncate completes, so it is now safe to propagate
2358          * the new, shorter inode size (held for now in i_size) into the
2359          * on-disk inode. We do this via i_disksize, which is the value which
2360          * ext4 *really* writes onto the disk inode.
2361          */
2362         ei->i_disksize = inode->i_size;
2363
2364         /*
2365          * From here we block out all ext4_get_block() callers who want to
2366          * modify the block allocation tree.
2367          */
2368         down_write(&ei->i_data_sem);
2369
2370         if (n == 1) {           /* direct blocks */
2371                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2372                                i_data + EXT4_NDIR_BLOCKS);
2373                 goto do_indirects;
2374         }
2375
2376         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2377         /* Kill the top of shared branch (not detached) */
2378         if (nr) {
2379                 if (partial == chain) {
2380                         /* Shared branch grows from the inode */
2381                         ext4_free_branches(handle, inode, NULL,
2382                                            &nr, &nr+1, (chain+n-1) - partial);
2383                         *partial->p = 0;
2384                         /*
2385                          * We mark the inode dirty prior to restart,
2386                          * and prior to stop.  No need for it here.
2387                          */
2388                 } else {
2389                         /* Shared branch grows from an indirect block */
2390                         BUFFER_TRACE(partial->bh, "get_write_access");
2391                         ext4_free_branches(handle, inode, partial->bh,
2392                                         partial->p,
2393                                         partial->p+1, (chain+n-1) - partial);
2394                 }
2395         }
2396         /* Clear the ends of indirect blocks on the shared branch */
2397         while (partial > chain) {
2398                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2399                                    (__le32*)partial->bh->b_data+addr_per_block,
2400                                    (chain+n-1) - partial);
2401                 BUFFER_TRACE(partial->bh, "call brelse");
2402                 brelse (partial->bh);
2403                 partial--;
2404         }
2405 do_indirects:
2406         /* Kill the remaining (whole) subtrees */
2407         switch (offsets[0]) {
2408         default:
2409                 nr = i_data[EXT4_IND_BLOCK];
2410                 if (nr) {
2411                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2412                         i_data[EXT4_IND_BLOCK] = 0;
2413                 }
2414         case EXT4_IND_BLOCK:
2415                 nr = i_data[EXT4_DIND_BLOCK];
2416                 if (nr) {
2417                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2418                         i_data[EXT4_DIND_BLOCK] = 0;
2419                 }
2420         case EXT4_DIND_BLOCK:
2421                 nr = i_data[EXT4_TIND_BLOCK];
2422                 if (nr) {
2423                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2424                         i_data[EXT4_TIND_BLOCK] = 0;
2425                 }
2426         case EXT4_TIND_BLOCK:
2427                 ;
2428         }
2429
2430         ext4_discard_reservation(inode);
2431
2432         up_write(&ei->i_data_sem);
2433         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2434         ext4_mark_inode_dirty(handle, inode);
2435
2436         /*
2437          * In a multi-transaction truncate, we only make the final transaction
2438          * synchronous
2439          */
2440         if (IS_SYNC(inode))
2441                 handle->h_sync = 1;
2442 out_stop:
2443         /*
2444          * If this was a simple ftruncate(), and the file will remain alive
2445          * then we need to clear up the orphan record which we created above.
2446          * However, if this was a real unlink then we were called by
2447          * ext4_delete_inode(), and we allow that function to clean up the
2448          * orphan info for us.
2449          */
2450         if (inode->i_nlink)
2451                 ext4_orphan_del(handle, inode);
2452
2453         ext4_journal_stop(handle);
2454 }
2455
2456 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2457                 unsigned long ino, struct ext4_iloc *iloc)
2458 {
2459         unsigned long desc, group_desc;
2460         ext4_group_t block_group;
2461         unsigned long offset;
2462         ext4_fsblk_t block;
2463         struct buffer_head *bh;
2464         struct ext4_group_desc * gdp;
2465
2466         if (!ext4_valid_inum(sb, ino)) {
2467                 /*
2468                  * This error is already checked for in namei.c unless we are
2469                  * looking at an NFS filehandle, in which case no error
2470                  * report is needed
2471                  */
2472                 return 0;
2473         }
2474
2475         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2476         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2477                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2478                 return 0;
2479         }
2480         smp_rmb();
2481         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2482         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2483         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2484         if (!bh) {
2485                 ext4_error (sb, "ext4_get_inode_block",
2486                             "Descriptor not loaded");
2487                 return 0;
2488         }
2489
2490         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2491                 desc * EXT4_DESC_SIZE(sb));
2492         /*
2493          * Figure out the offset within the block group inode table
2494          */
2495         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2496                 EXT4_INODE_SIZE(sb);
2497         block = ext4_inode_table(sb, gdp) +
2498                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2499
2500         iloc->block_group = block_group;
2501         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2502         return block;
2503 }
2504
2505 /*
2506  * ext4_get_inode_loc returns with an extra refcount against the inode's
2507  * underlying buffer_head on success. If 'in_mem' is true, we have all
2508  * data in memory that is needed to recreate the on-disk version of this
2509  * inode.
2510  */
2511 static int __ext4_get_inode_loc(struct inode *inode,
2512                                 struct ext4_iloc *iloc, int in_mem)
2513 {
2514         ext4_fsblk_t block;
2515         struct buffer_head *bh;
2516
2517         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2518         if (!block)
2519                 return -EIO;
2520
2521         bh = sb_getblk(inode->i_sb, block);
2522         if (!bh) {
2523                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2524                                 "unable to read inode block - "
2525                                 "inode=%lu, block=%llu",
2526                                  inode->i_ino, block);
2527                 return -EIO;
2528         }
2529         if (!buffer_uptodate(bh)) {
2530                 lock_buffer(bh);
2531                 if (buffer_uptodate(bh)) {
2532                         /* someone brought it uptodate while we waited */
2533                         unlock_buffer(bh);
2534                         goto has_buffer;
2535                 }
2536
2537                 /*
2538                  * If we have all information of the inode in memory and this
2539                  * is the only valid inode in the block, we need not read the
2540                  * block.
2541                  */
2542                 if (in_mem) {
2543                         struct buffer_head *bitmap_bh;
2544                         struct ext4_group_desc *desc;
2545                         int inodes_per_buffer;
2546                         int inode_offset, i;
2547                         ext4_group_t block_group;
2548                         int start;
2549
2550                         block_group = (inode->i_ino - 1) /
2551                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2552                         inodes_per_buffer = bh->b_size /
2553                                 EXT4_INODE_SIZE(inode->i_sb);
2554                         inode_offset = ((inode->i_ino - 1) %
2555                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2556                         start = inode_offset & ~(inodes_per_buffer - 1);
2557
2558                         /* Is the inode bitmap in cache? */
2559                         desc = ext4_get_group_desc(inode->i_sb,
2560                                                 block_group, NULL);
2561                         if (!desc)
2562                                 goto make_io;
2563
2564                         bitmap_bh = sb_getblk(inode->i_sb,
2565                                 ext4_inode_bitmap(inode->i_sb, desc));
2566                         if (!bitmap_bh)
2567                                 goto make_io;
2568
2569                         /*
2570                          * If the inode bitmap isn't in cache then the
2571                          * optimisation may end up performing two reads instead
2572                          * of one, so skip it.
2573                          */
2574                         if (!buffer_uptodate(bitmap_bh)) {
2575                                 brelse(bitmap_bh);
2576                                 goto make_io;
2577                         }
2578                         for (i = start; i < start + inodes_per_buffer; i++) {
2579                                 if (i == inode_offset)
2580                                         continue;
2581                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2582                                         break;
2583                         }
2584                         brelse(bitmap_bh);
2585                         if (i == start + inodes_per_buffer) {
2586                                 /* all other inodes are free, so skip I/O */
2587                                 memset(bh->b_data, 0, bh->b_size);
2588                                 set_buffer_uptodate(bh);
2589                                 unlock_buffer(bh);
2590                                 goto has_buffer;
2591                         }
2592                 }
2593
2594 make_io:
2595                 /*
2596                  * There are other valid inodes in the buffer, this inode
2597                  * has in-inode xattrs, or we don't have this inode in memory.
2598                  * Read the block from disk.
2599                  */
2600                 get_bh(bh);
2601                 bh->b_end_io = end_buffer_read_sync;
2602                 submit_bh(READ_META, bh);
2603                 wait_on_buffer(bh);
2604                 if (!buffer_uptodate(bh)) {
2605                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2606                                         "unable to read inode block - "
2607                                         "inode=%lu, block=%llu",
2608                                         inode->i_ino, block);
2609                         brelse(bh);
2610                         return -EIO;
2611                 }
2612         }
2613 has_buffer:
2614         iloc->bh = bh;
2615         return 0;
2616 }
2617
2618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2619 {
2620         /* We have all inode data except xattrs in memory here. */
2621         return __ext4_get_inode_loc(inode, iloc,
2622                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2623 }
2624
2625 void ext4_set_inode_flags(struct inode *inode)
2626 {
2627         unsigned int flags = EXT4_I(inode)->i_flags;
2628
2629         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2630         if (flags & EXT4_SYNC_FL)
2631                 inode->i_flags |= S_SYNC;
2632         if (flags & EXT4_APPEND_FL)
2633                 inode->i_flags |= S_APPEND;
2634         if (flags & EXT4_IMMUTABLE_FL)
2635                 inode->i_flags |= S_IMMUTABLE;
2636         if (flags & EXT4_NOATIME_FL)
2637                 inode->i_flags |= S_NOATIME;
2638         if (flags & EXT4_DIRSYNC_FL)
2639                 inode->i_flags |= S_DIRSYNC;
2640 }
2641
2642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2643 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2644 {
2645         unsigned int flags = ei->vfs_inode.i_flags;
2646
2647         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2648                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2649         if (flags & S_SYNC)
2650                 ei->i_flags |= EXT4_SYNC_FL;
2651         if (flags & S_APPEND)
2652                 ei->i_flags |= EXT4_APPEND_FL;
2653         if (flags & S_IMMUTABLE)
2654                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2655         if (flags & S_NOATIME)
2656                 ei->i_flags |= EXT4_NOATIME_FL;
2657         if (flags & S_DIRSYNC)
2658                 ei->i_flags |= EXT4_DIRSYNC_FL;
2659 }
2660 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2661                                         struct ext4_inode_info *ei)
2662 {
2663         blkcnt_t i_blocks ;
2664         struct inode *inode = &(ei->vfs_inode);
2665         struct super_block *sb = inode->i_sb;
2666
2667         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2668                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2669                 /* we are using combined 48 bit field */
2670                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2671                                         le32_to_cpu(raw_inode->i_blocks_lo);
2672                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2673                         /* i_blocks represent file system block size */
2674                         return i_blocks  << (inode->i_blkbits - 9);
2675                 } else {
2676                         return i_blocks;
2677                 }
2678         } else {
2679                 return le32_to_cpu(raw_inode->i_blocks_lo);
2680         }
2681 }
2682
2683 void ext4_read_inode(struct inode * inode)
2684 {
2685         struct ext4_iloc iloc;
2686         struct ext4_inode *raw_inode;
2687         struct ext4_inode_info *ei = EXT4_I(inode);
2688         struct buffer_head *bh;
2689         int block;
2690
2691 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2692         ei->i_acl = EXT4_ACL_NOT_CACHED;
2693         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2694 #endif
2695         ei->i_block_alloc_info = NULL;
2696
2697         if (__ext4_get_inode_loc(inode, &iloc, 0))
2698                 goto bad_inode;
2699         bh = iloc.bh;
2700         raw_inode = ext4_raw_inode(&iloc);
2701         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2702         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2703         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2704         if(!(test_opt (inode->i_sb, NO_UID32))) {
2705                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2706                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2707         }
2708         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2709
2710         ei->i_state = 0;
2711         ei->i_dir_start_lookup = 0;
2712         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2713         /* We now have enough fields to check if the inode was active or not.
2714          * This is needed because nfsd might try to access dead inodes
2715          * the test is that same one that e2fsck uses
2716          * NeilBrown 1999oct15
2717          */
2718         if (inode->i_nlink == 0) {
2719                 if (inode->i_mode == 0 ||
2720                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2721                         /* this inode is deleted */
2722                         brelse (bh);
2723                         goto bad_inode;
2724                 }
2725                 /* The only unlinked inodes we let through here have
2726                  * valid i_mode and are being read by the orphan
2727                  * recovery code: that's fine, we're about to complete
2728                  * the process of deleting those. */
2729         }
2730         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2731         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2732         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2733         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2734             cpu_to_le32(EXT4_OS_HURD)) {
2735                 ei->i_file_acl |=
2736                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2737         }
2738         inode->i_size = ext4_isize(raw_inode);
2739         ei->i_disksize = inode->i_size;
2740         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2741         ei->i_block_group = iloc.block_group;
2742         /*
2743          * NOTE! The in-memory inode i_data array is in little-endian order
2744          * even on big-endian machines: we do NOT byteswap the block numbers!
2745          */
2746         for (block = 0; block < EXT4_N_BLOCKS; block++)
2747                 ei->i_data[block] = raw_inode->i_block[block];
2748         INIT_LIST_HEAD(&ei->i_orphan);
2749
2750         if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2751             EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2752                 /*
2753                  * When mke2fs creates big inodes it does not zero out
2754                  * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2755                  * so ignore those first few inodes.
2756                  */
2757                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2758                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2759                     EXT4_INODE_SIZE(inode->i_sb)) {
2760                         brelse (bh);
2761                         goto bad_inode;
2762                 }
2763                 if (ei->i_extra_isize == 0) {
2764                         /* The extra space is currently unused. Use it. */
2765                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2766                                             EXT4_GOOD_OLD_INODE_SIZE;
2767                 } else {
2768                         __le32 *magic = (void *)raw_inode +
2769                                         EXT4_GOOD_OLD_INODE_SIZE +
2770                                         ei->i_extra_isize;
2771                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2772                                  ei->i_state |= EXT4_STATE_XATTR;
2773                 }
2774         } else
2775                 ei->i_extra_isize = 0;
2776
2777         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2778         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2779         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2780         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2781
2782         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2783         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2784                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2785                         inode->i_version |=
2786                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2787         }
2788
2789         if (S_ISREG(inode->i_mode)) {
2790                 inode->i_op = &ext4_file_inode_operations;
2791                 inode->i_fop = &ext4_file_operations;
2792                 ext4_set_aops(inode);
2793         } else if (S_ISDIR(inode->i_mode)) {
2794                 inode->i_op = &ext4_dir_inode_operations;
2795                 inode->i_fop = &ext4_dir_operations;
2796         } else if (S_ISLNK(inode->i_mode)) {
2797                 if (ext4_inode_is_fast_symlink(inode))
2798                         inode->i_op = &ext4_fast_symlink_inode_operations;
2799                 else {
2800                         inode->i_op = &ext4_symlink_inode_operations;
2801                         ext4_set_aops(inode);
2802                 }
2803         } else {
2804                 inode->i_op = &ext4_special_inode_operations;
2805                 if (raw_inode->i_block[0])
2806                         init_special_inode(inode, inode->i_mode,
2807                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2808                 else
2809                         init_special_inode(inode, inode->i_mode,
2810                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2811         }
2812         brelse (iloc.bh);
2813         ext4_set_inode_flags(inode);
2814         return;
2815
2816 bad_inode:
2817         make_bad_inode(inode);
2818         return;
2819 }
2820
2821 static int ext4_inode_blocks_set(handle_t *handle,
2822                                 struct ext4_inode *raw_inode,
2823                                 struct ext4_inode_info *ei)
2824 {
2825         struct inode *inode = &(ei->vfs_inode);
2826         u64 i_blocks = inode->i_blocks;
2827         struct super_block *sb = inode->i_sb;
2828         int err = 0;
2829
2830         if (i_blocks <= ~0U) {
2831                 /*
2832                  * i_blocks can be represnted in a 32 bit variable
2833                  * as multiple of 512 bytes
2834                  */
2835                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2836                 raw_inode->i_blocks_high = 0;
2837                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2838         } else if (i_blocks <= 0xffffffffffffULL) {
2839                 /*
2840                  * i_blocks can be represented in a 48 bit variable
2841                  * as multiple of 512 bytes
2842                  */
2843                 err = ext4_update_rocompat_feature(handle, sb,
2844                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2845                 if (err)
2846                         goto  err_out;
2847                 /* i_block is stored in the split  48 bit fields */
2848                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2849                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2850                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2851         } else {
2852                 /*
2853                  * i_blocks should be represented in a 48 bit variable
2854                  * as multiple of  file system block size
2855                  */
2856                 err = ext4_update_rocompat_feature(handle, sb,
2857                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2858                 if (err)
2859                         goto  err_out;
2860                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2861                 /* i_block is stored in file system block size */
2862                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2863                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2864                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2865         }
2866 err_out:
2867         return err;
2868 }
2869
2870 /*
2871  * Post the struct inode info into an on-disk inode location in the
2872  * buffer-cache.  This gobbles the caller's reference to the
2873  * buffer_head in the inode location struct.
2874  *
2875  * The caller must have write access to iloc->bh.
2876  */
2877 static int ext4_do_update_inode(handle_t *handle,
2878                                 struct inode *inode,
2879                                 struct ext4_iloc *iloc)
2880 {
2881         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2882         struct ext4_inode_info *ei = EXT4_I(inode);
2883         struct buffer_head *bh = iloc->bh;
2884         int err = 0, rc, block;
2885
2886         /* For fields not not tracking in the in-memory inode,
2887          * initialise them to zero for new inodes. */
2888         if (ei->i_state & EXT4_STATE_NEW)
2889                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2890
2891         ext4_get_inode_flags(ei);
2892         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2893         if(!(test_opt(inode->i_sb, NO_UID32))) {
2894                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2895                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2896 /*
2897  * Fix up interoperability with old kernels. Otherwise, old inodes get
2898  * re-used with the upper 16 bits of the uid/gid intact
2899  */
2900                 if(!ei->i_dtime) {
2901                         raw_inode->i_uid_high =
2902                                 cpu_to_le16(high_16_bits(inode->i_uid));
2903                         raw_inode->i_gid_high =
2904                                 cpu_to_le16(high_16_bits(inode->i_gid));
2905                 } else {
2906                         raw_inode->i_uid_high = 0;
2907                         raw_inode->i_gid_high = 0;
2908                 }
2909         } else {
2910                 raw_inode->i_uid_low =
2911                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2912                 raw_inode->i_gid_low =
2913                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2914                 raw_inode->i_uid_high = 0;
2915                 raw_inode->i_gid_high = 0;
2916         }
2917         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2918
2919         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2920         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2921         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2922         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2923
2924         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2925                 goto out_brelse;
2926         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2927         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2928         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2929             cpu_to_le32(EXT4_OS_HURD))
2930                 raw_inode->i_file_acl_high =
2931                         cpu_to_le16(ei->i_file_acl >> 32);
2932         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2933         ext4_isize_set(raw_inode, ei->i_disksize);
2934         if (ei->i_disksize > 0x7fffffffULL) {
2935                 struct super_block *sb = inode->i_sb;
2936                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2937                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2938                                 EXT4_SB(sb)->s_es->s_rev_level ==
2939                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2940                         /* If this is the first large file
2941                          * created, add a flag to the superblock.
2942                          */
2943                         err = ext4_journal_get_write_access(handle,
2944                                         EXT4_SB(sb)->s_sbh);
2945                         if (err)
2946                                 goto out_brelse;
2947                         ext4_update_dynamic_rev(sb);
2948                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2949                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2950                         sb->s_dirt = 1;
2951                         handle->h_sync = 1;
2952                         err = ext4_journal_dirty_metadata(handle,
2953                                         EXT4_SB(sb)->s_sbh);
2954                 }
2955         }
2956         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2957         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2958                 if (old_valid_dev(inode->i_rdev)) {
2959                         raw_inode->i_block[0] =
2960                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2961                         raw_inode->i_block[1] = 0;
2962                 } else {
2963                         raw_inode->i_block[0] = 0;
2964                         raw_inode->i_block[1] =
2965                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2966                         raw_inode->i_block[2] = 0;
2967                 }
2968         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2969                 raw_inode->i_block[block] = ei->i_data[block];
2970
2971         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2972         if (ei->i_extra_isize) {
2973                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2974                         raw_inode->i_version_hi =
2975                         cpu_to_le32(inode->i_version >> 32);
2976                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2977         }
2978
2979
2980         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2981         rc = ext4_journal_dirty_metadata(handle, bh);
2982         if (!err)
2983                 err = rc;
2984         ei->i_state &= ~EXT4_STATE_NEW;
2985
2986 out_brelse:
2987         brelse (bh);
2988         ext4_std_error(inode->i_sb, err);
2989         return err;
2990 }
2991
2992 /*
2993  * ext4_write_inode()
2994  *
2995  * We are called from a few places:
2996  *
2997  * - Within generic_file_write() for O_SYNC files.
2998  *   Here, there will be no transaction running. We wait for any running
2999  *   trasnaction to commit.
3000  *
3001  * - Within sys_sync(), kupdate and such.
3002  *   We wait on commit, if tol to.
3003  *
3004  * - Within prune_icache() (PF_MEMALLOC == true)
3005  *   Here we simply return.  We can't afford to block kswapd on the
3006  *   journal commit.
3007  *
3008  * In all cases it is actually safe for us to return without doing anything,
3009  * because the inode has been copied into a raw inode buffer in
3010  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3011  * knfsd.
3012  *
3013  * Note that we are absolutely dependent upon all inode dirtiers doing the
3014  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3015  * which we are interested.
3016  *
3017  * It would be a bug for them to not do this.  The code:
3018  *
3019  *      mark_inode_dirty(inode)
3020  *      stuff();
3021  *      inode->i_size = expr;
3022  *
3023  * is in error because a kswapd-driven write_inode() could occur while
3024  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3025  * will no longer be on the superblock's dirty inode list.
3026  */
3027 int ext4_write_inode(struct inode *inode, int wait)
3028 {
3029         if (current->flags & PF_MEMALLOC)
3030                 return 0;
3031
3032         if (ext4_journal_current_handle()) {
3033                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3034                 dump_stack();
3035                 return -EIO;
3036         }
3037
3038         if (!wait)
3039                 return 0;
3040
3041         return ext4_force_commit(inode->i_sb);
3042 }
3043
3044 /*
3045  * ext4_setattr()
3046  *
3047  * Called from notify_change.
3048  *
3049  * We want to trap VFS attempts to truncate the file as soon as
3050  * possible.  In particular, we want to make sure that when the VFS
3051  * shrinks i_size, we put the inode on the orphan list and modify
3052  * i_disksize immediately, so that during the subsequent flushing of
3053  * dirty pages and freeing of disk blocks, we can guarantee that any
3054  * commit will leave the blocks being flushed in an unused state on
3055  * disk.  (On recovery, the inode will get truncated and the blocks will
3056  * be freed, so we have a strong guarantee that no future commit will
3057  * leave these blocks visible to the user.)
3058  *
3059  * Called with inode->sem down.
3060  */
3061 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3062 {
3063         struct inode *inode = dentry->d_inode;
3064         int error, rc = 0;
3065         const unsigned int ia_valid = attr->ia_valid;
3066
3067         error = inode_change_ok(inode, attr);
3068         if (error)
3069                 return error;
3070
3071         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3072                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3073                 handle_t *handle;
3074
3075                 /* (user+group)*(old+new) structure, inode write (sb,
3076                  * inode block, ? - but truncate inode update has it) */
3077                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3078                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3079                 if (IS_ERR(handle)) {
3080                         error = PTR_ERR(handle);
3081                         goto err_out;
3082                 }
3083                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3084                 if (error) {
3085                         ext4_journal_stop(handle);
3086                         return error;
3087                 }
3088                 /* Update corresponding info in inode so that everything is in
3089                  * one transaction */
3090                 if (attr->ia_valid & ATTR_UID)
3091                         inode->i_uid = attr->ia_uid;
3092                 if (attr->ia_valid & ATTR_GID)
3093                         inode->i_gid = attr->ia_gid;
3094                 error = ext4_mark_inode_dirty(handle, inode);
3095                 ext4_journal_stop(handle);
3096         }
3097
3098         if (attr->ia_valid & ATTR_SIZE) {
3099                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3100                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3101
3102                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3103                                 error = -EFBIG;
3104                                 goto err_out;
3105                         }
3106                 }
3107         }
3108
3109         if (S_ISREG(inode->i_mode) &&
3110             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3111                 handle_t *handle;
3112
3113                 handle = ext4_journal_start(inode, 3);
3114                 if (IS_ERR(handle)) {
3115                         error = PTR_ERR(handle);
3116                         goto err_out;
3117                 }
3118
3119                 error = ext4_orphan_add(handle, inode);
3120                 EXT4_I(inode)->i_disksize = attr->ia_size;
3121                 rc = ext4_mark_inode_dirty(handle, inode);
3122                 if (!error)
3123                         error = rc;
3124                 ext4_journal_stop(handle);
3125         }
3126
3127         rc = inode_setattr(inode, attr);
3128
3129         /* If inode_setattr's call to ext4_truncate failed to get a
3130          * transaction handle at all, we need to clean up the in-core
3131          * orphan list manually. */
3132         if (inode->i_nlink)
3133                 ext4_orphan_del(NULL, inode);
3134
3135         if (!rc && (ia_valid & ATTR_MODE))
3136                 rc = ext4_acl_chmod(inode);
3137
3138 err_out:
3139         ext4_std_error(inode->i_sb, error);
3140         if (!error)
3141                 error = rc;
3142         return error;
3143 }
3144
3145
3146 /*
3147  * How many blocks doth make a writepage()?
3148  *
3149  * With N blocks per page, it may be:
3150  * N data blocks
3151  * 2 indirect block
3152  * 2 dindirect
3153  * 1 tindirect
3154  * N+5 bitmap blocks (from the above)
3155  * N+5 group descriptor summary blocks
3156  * 1 inode block
3157  * 1 superblock.
3158  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3159  *
3160  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3161  *
3162  * With ordered or writeback data it's the same, less the N data blocks.
3163  *
3164  * If the inode's direct blocks can hold an integral number of pages then a
3165  * page cannot straddle two indirect blocks, and we can only touch one indirect
3166  * and dindirect block, and the "5" above becomes "3".
3167  *
3168  * This still overestimates under most circumstances.  If we were to pass the
3169  * start and end offsets in here as well we could do block_to_path() on each
3170  * block and work out the exact number of indirects which are touched.  Pah.
3171  */
3172
3173 int ext4_writepage_trans_blocks(struct inode *inode)
3174 {
3175         int bpp = ext4_journal_blocks_per_page(inode);
3176         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3177         int ret;
3178
3179         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3180                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3181
3182         if (ext4_should_journal_data(inode))
3183                 ret = 3 * (bpp + indirects) + 2;
3184         else
3185                 ret = 2 * (bpp + indirects) + 2;
3186
3187 #ifdef CONFIG_QUOTA
3188         /* We know that structure was already allocated during DQUOT_INIT so
3189          * we will be updating only the data blocks + inodes */
3190         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3191 #endif
3192
3193         return ret;
3194 }
3195
3196 /*
3197  * The caller must have previously called ext4_reserve_inode_write().
3198  * Give this, we know that the caller already has write access to iloc->bh.
3199  */
3200 int ext4_mark_iloc_dirty(handle_t *handle,
3201                 struct inode *inode, struct ext4_iloc *iloc)
3202 {
3203         int err = 0;
3204
3205         if (test_opt(inode->i_sb, I_VERSION))
3206                 inode_inc_iversion(inode);
3207
3208         /* the do_update_inode consumes one bh->b_count */
3209         get_bh(iloc->bh);
3210
3211         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3212         err = ext4_do_update_inode(handle, inode, iloc);
3213         put_bh(iloc->bh);
3214         return err;
3215 }
3216
3217 /*
3218  * On success, We end up with an outstanding reference count against
3219  * iloc->bh.  This _must_ be cleaned up later.
3220  */
3221
3222 int
3223 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3224                          struct ext4_iloc *iloc)
3225 {
3226         int err = 0;
3227         if (handle) {
3228                 err = ext4_get_inode_loc(inode, iloc);
3229                 if (!err) {
3230                         BUFFER_TRACE(iloc->bh, "get_write_access");
3231                         err = ext4_journal_get_write_access(handle, iloc->bh);
3232                         if (err) {
3233                                 brelse(iloc->bh);
3234                                 iloc->bh = NULL;
3235                         }
3236                 }
3237         }
3238         ext4_std_error(inode->i_sb, err);
3239         return err;
3240 }
3241
3242 /*
3243  * Expand an inode by new_extra_isize bytes.
3244  * Returns 0 on success or negative error number on failure.
3245  */
3246 static int ext4_expand_extra_isize(struct inode *inode,
3247                                    unsigned int new_extra_isize,
3248                                    struct ext4_iloc iloc,
3249                                    handle_t *handle)
3250 {
3251         struct ext4_inode *raw_inode;
3252         struct ext4_xattr_ibody_header *header;
3253         struct ext4_xattr_entry *entry;
3254
3255         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3256                 return 0;
3257
3258         raw_inode = ext4_raw_inode(&iloc);
3259
3260         header = IHDR(inode, raw_inode);
3261         entry = IFIRST(header);
3262
3263         /* No extended attributes present */
3264         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3265                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3266                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3267                         new_extra_isize);
3268                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3269                 return 0;
3270         }
3271
3272         /* try to expand with EAs present */
3273         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3274                                           raw_inode, handle);
3275 }
3276
3277 /*
3278  * What we do here is to mark the in-core inode as clean with respect to inode
3279  * dirtiness (it may still be data-dirty).
3280  * This means that the in-core inode may be reaped by prune_icache
3281  * without having to perform any I/O.  This is a very good thing,
3282  * because *any* task may call prune_icache - even ones which
3283  * have a transaction open against a different journal.
3284  *
3285  * Is this cheating?  Not really.  Sure, we haven't written the
3286  * inode out, but prune_icache isn't a user-visible syncing function.
3287  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3288  * we start and wait on commits.
3289  *
3290  * Is this efficient/effective?  Well, we're being nice to the system
3291  * by cleaning up our inodes proactively so they can be reaped
3292  * without I/O.  But we are potentially leaving up to five seconds'
3293  * worth of inodes floating about which prune_icache wants us to
3294  * write out.  One way to fix that would be to get prune_icache()
3295  * to do a write_super() to free up some memory.  It has the desired
3296  * effect.
3297  */
3298 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3299 {
3300         struct ext4_iloc iloc;
3301         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3302         static unsigned int mnt_count;
3303         int err, ret;
3304
3305         might_sleep();
3306         err = ext4_reserve_inode_write(handle, inode, &iloc);
3307         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3308             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3309                 /*
3310                  * We need extra buffer credits since we may write into EA block
3311                  * with this same handle. If journal_extend fails, then it will
3312                  * only result in a minor loss of functionality for that inode.
3313                  * If this is felt to be critical, then e2fsck should be run to
3314                  * force a large enough s_min_extra_isize.
3315                  */
3316                 if ((jbd2_journal_extend(handle,
3317                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3318                         ret = ext4_expand_extra_isize(inode,
3319                                                       sbi->s_want_extra_isize,
3320                                                       iloc, handle);
3321                         if (ret) {
3322                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3323                                 if (mnt_count !=
3324                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3325                                         ext4_warning(inode->i_sb, __FUNCTION__,
3326                                         "Unable to expand inode %lu. Delete"
3327                                         " some EAs or run e2fsck.",
3328                                         inode->i_ino);
3329                                         mnt_count =
3330                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3331                                 }
3332                         }
3333                 }
3334         }
3335         if (!err)
3336                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3337         return err;
3338 }
3339
3340 /*
3341  * ext4_dirty_inode() is called from __mark_inode_dirty()
3342  *
3343  * We're really interested in the case where a file is being extended.
3344  * i_size has been changed by generic_commit_write() and we thus need
3345  * to include the updated inode in the current transaction.
3346  *
3347  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3348  * are allocated to the file.
3349  *
3350  * If the inode is marked synchronous, we don't honour that here - doing
3351  * so would cause a commit on atime updates, which we don't bother doing.
3352  * We handle synchronous inodes at the highest possible level.
3353  */
3354 void ext4_dirty_inode(struct inode *inode)
3355 {
3356         handle_t *current_handle = ext4_journal_current_handle();
3357         handle_t *handle;
3358
3359         handle = ext4_journal_start(inode, 2);
3360         if (IS_ERR(handle))
3361                 goto out;
3362         if (current_handle &&
3363                 current_handle->h_transaction != handle->h_transaction) {
3364                 /* This task has a transaction open against a different fs */
3365                 printk(KERN_EMERG "%s: transactions do not match!\n",
3366                        __FUNCTION__);
3367         } else {
3368                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3369                                 current_handle);
3370                 ext4_mark_inode_dirty(handle, inode);
3371         }
3372         ext4_journal_stop(handle);
3373 out:
3374         return;
3375 }
3376
3377 #if 0
3378 /*
3379  * Bind an inode's backing buffer_head into this transaction, to prevent
3380  * it from being flushed to disk early.  Unlike
3381  * ext4_reserve_inode_write, this leaves behind no bh reference and
3382  * returns no iloc structure, so the caller needs to repeat the iloc
3383  * lookup to mark the inode dirty later.
3384  */
3385 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3386 {
3387         struct ext4_iloc iloc;
3388
3389         int err = 0;
3390         if (handle) {
3391                 err = ext4_get_inode_loc(inode, &iloc);
3392                 if (!err) {
3393                         BUFFER_TRACE(iloc.bh, "get_write_access");
3394                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3395                         if (!err)
3396                                 err = ext4_journal_dirty_metadata(handle,
3397                                                                   iloc.bh);
3398                         brelse(iloc.bh);
3399                 }
3400         }
3401         ext4_std_error(inode->i_sb, err);
3402         return err;
3403 }
3404 #endif
3405
3406 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3407 {
3408         journal_t *journal;
3409         handle_t *handle;
3410         int err;
3411
3412         /*
3413          * We have to be very careful here: changing a data block's
3414          * journaling status dynamically is dangerous.  If we write a
3415          * data block to the journal, change the status and then delete
3416          * that block, we risk forgetting to revoke the old log record
3417          * from the journal and so a subsequent replay can corrupt data.
3418          * So, first we make sure that the journal is empty and that
3419          * nobody is changing anything.
3420          */
3421
3422         journal = EXT4_JOURNAL(inode);
3423         if (is_journal_aborted(journal))
3424                 return -EROFS;
3425
3426         jbd2_journal_lock_updates(journal);
3427         jbd2_journal_flush(journal);
3428
3429         /*
3430          * OK, there are no updates running now, and all cached data is
3431          * synced to disk.  We are now in a completely consistent state
3432          * which doesn't have anything in the journal, and we know that
3433          * no filesystem updates are running, so it is safe to modify
3434          * the inode's in-core data-journaling state flag now.
3435          */
3436
3437         if (val)
3438                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3439         else
3440                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3441         ext4_set_aops(inode);
3442
3443         jbd2_journal_unlock_updates(journal);
3444
3445         /* Finally we can mark the inode as dirty. */
3446
3447         handle = ext4_journal_start(inode, 1);
3448         if (IS_ERR(handle))
3449                 return PTR_ERR(handle);
3450
3451         err = ext4_mark_inode_dirty(handle, inode);
3452         handle->h_sync = 1;
3453         ext4_journal_stop(handle);
3454         ext4_std_error(inode->i_sb, err);
3455
3456         return err;
3457 }